
EE 381V: Large Scale Optimization Fall 2012

Lecture 11 — October 4

Lecturer: Caramanis & Sanghavi Scribe: Harsh Pareek

� These scribes notes are for the ghost lecture on October 4. The lecture video and
instructor’s notes are on Blackboard.

11.1 Last time

Last time we recapped optimality conditions in constrained problems. Recall the constrained
convex optimization problem:

min
x

f(x)

subject to x ∈ X
(11.1)

where f is a convex function and X is a convex set. x? is a minimum for this program iff
every feasible direction is an ascent direction:

0 ∈ ∇f(x?) +NX(x?) (11.2)

where NX(x?) is the normal cone at x?. Also recall that we write it in this particular form to
compare it with the unconstrained case where the optimality condition is ∇f(x?) = 0. This
form will also be useful when we generalize f to be a non-smooth function and its gradient
will be replaced by a set.

In particular, we applied this to Linear Programming. In this lecture, we will prove weak
and strong duality results for Linear Programs. Consider the linear program

min
x∈Rn

cTx

subject to aTi x ≥ bi, i = 1, 2, . . . ,m
(11.3)

Figure 11.1 shows an example linear program with x ∈ R2 and m = 6 constraints.

11.2 Weak Duality

Recall that the normal cone is the polar of the tangent cone.

NX(x?) = (TX(x?))◦

⇒ NX(x?) = {v : 〈v, x− x?〉 ≤ 0, ∀x ∈ X}
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Figure 11.1. Example of a linear program. We can see from the figure that the optimality condition clearly
holds, namely, −∇f(x) ∈ NX (x).

For LPs, X is defined by linear inequalities,

= {v : 〈v, x− x?〉 ≤ 0, ∀x : aTi x ≥ bi}

In Figure 11.1, at x?, aT2 x
? = b2 and aT3 x

? = b3 and the other inactive constraints are not
needed,

= {v : 〈v, x− x?〉 ≤ 0, ∀x : aT2 x ≥ b2, a
T
3 x ≥ b3}

Subtracting off bis and letting z = x− x?

= {v : 〈v, z〉 ≤ 0, ∀z : aT2 z ≥ 0, aT3 z ≥ 0}
⇒ NX(x?) = {v : v = λ2a2 + λ3a3, λ2, λ3 ≤ 0}

Thus, the normal cone is the cone generated by the normals of the active constraints at the
optimal point x?.

The gradient of f is ∇f(x?) = c. Therefore, by Equation 11.2 we have

−c ∈ NX(x?) (11.4)

⇒ −c = λ2a2 + λ3a3, λi ≤ 0 (11.5)

⇒ c = λ2a2 + λ3a3, λi ≥ 0 (11.6)

λ2 and λ3 satisfy the following properties:
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1. λ2a2 + λ3a3 = c

2. λ2, λ3 ≥ 0

3. Optimality (discussed in the next paragraph)

4. Duality: Multiplying Equation 11.6 by x?, we get,

cTx? = λ2a
T
2 x

? + λ3a
T
3 x

? (11.7)

As x? is on these constraints, aT2 x
? = b2 and aT3 x

? = b3

⇒ cTx? = λ2b2 + λ3b3 (11.8)

⇒ cTx? = λT b (11.9)

for λ = (0, λ2, λ3, 0, 0, 0)

Now, we describe the optimality of the λi. Consider any variables λ = (λ1, λ2, λ3, λ4, λ5, λ6)
with one λi per constraint aTi x ≥ bi. Observe the following: If λi ≥ 0 and

∑
i λi = c, then

we will have a lower bound on our objective cTx as, for any feasible x,(∑
i

λia
T
i

)
x =cTx and aTi x ≥ bi

⇒ cTx ≥ λT b

Call any x which satisfies aTi x ≥ bi Primal feasible and any λ that satisfies λ ≥ 0 and∑
i λiai = c Dual feasible. Then, we have, for primal feasible x and dual feasible λ

cTx ≥ λT b (11.10)

This gives the following theorem.

Theorem 11.1 (Weak Duality). For all Primal feasible x and Dual feasible λ,

(Primal)

[
min
x

cTx

s.t. aTi x ≥ bi, 1 ≤ i ≤ m

]
≥

Weak Duality


max
λ

λT b

s.t.
m∑
i=1

λiai = c

λ ≥ 0

 (Dual) (11.11)

Proof (Using Lagrange Multipliers): We will now give an alternate proof of this theo-
rem using Lagrange Multipliers.
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Lemma 11.2 (Minimax form of Primal). The optimal value of the (Primal) is the same
as the following unconstrained minimax problem.

min
x

[
max
λ≥0

(
cTx+

∑
i

λi(bi − aTi x)

)]
(11.12)

Proof (Lemma 11.2): The order of the variables is important. x is chosen first and for
each value of x, the inner problem attempts to maximize the objective value. For any x not
feasible, aTi x < bi ⇒ bi − aTi x > 0 and as λ ≥ 0 can be chosen as large as required, the
value of the term λi(bi − aTi x) in the inner problem will be +∞. If the primal has a finite
optimum, such an x cannot achieve the minimum value of the minimax. (If the optimal
value of the primal is +∞, the result holds trivially). So, the optimal x? of Equation 11.12
will be feasible.

But, x feasible ⇒ (bi − aTi x) ≤ 0 ⇒ λi = 0 will be an optimal solution for the inner
problem. Then, the minimax problem becomes

min
x

max
λ≥0

cTx+
∑
i

λi︸︷︷︸
=0

(bi − aTi x) = min
x:aTi x≥bi

cTx (11.13)

So, the optimum value of the minimax will be equal to the optimum value of the primal. �

Exercise: Show that you can exchange the order of the terms in the minimax to get
max min g ≥ min max g for any g. (Hint: The inside term has more “power”).

So, we have that,

Lemma 11.3 (Exchanging the order of the minimax).

min
x

max
λ≥0

cTx+
∑
i

λi(bi − aTi x) ≥ max
λ≥0

min
x
cTx+

∑
i

λi(bi − aTi x) (11.14)

We now look at conditions imposed by the RHS on λ and show that it is equal to the
optimum of the dual problem. Rewriting,

max
λ≥0

min
x
cTx+

∑
i

λi(bi − aTi x)︸ ︷︷ ︸ ≡ max
λ≥0

q(λ) (11.15)

with

q(λ) = min
x
cTx+

∑
i

λi
(
bi − aTi x

)
=

(
cT −

∑
i

λia
T
i

)
x+

∑
i

λibi (11.16)

Now, dom(q(λ)) : = {λ : q(λ) < +∞}. So,

dom(q(λ)) = {λ : λ ≥ 0 ∧ c =
∑
i

λiai} (11.17)
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Again, this holds because of the order.
∑

i λia
T
i 6= cT ⇒ (cT −

∑
i λia

T
i ) 6= 0⇒ q(λ) = −∞.

Finally, this implies that the optimum of the RHS of Equation 11.14 is equal to the optimum
of the dual problem.

Summarizing,

(P)

[
min
x

cTx

s.t. aTi x ≥ bi, 1 ≤ i ≤ m

]
= min

x
max
λ≥0

cTx+
∑
i

λi(bi − aTi x)

≥ max
λ≥0

min
x
cTx+

∑
i

λi(bi − aTi x)

=


max
λ

λT b

s.t.
m∑
i=1

λiai = c

λ ≥ 0

 (D)

�

The natural question in the above setting is when equality holds in the above equation. This
is called strong duality, and as we will show in the next section, it always holds for linear
programs, though it does not hold in general for optimization problems.

11.2.1 Weak Duality in General Optimization Programs

We can follow the same steps as in the proof of Theorem 11.1 for a general program (not
necessarily convex) and show the following:

(Primal)


min
x

f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X

 = min
x∈X

max
µ≥0,λ

[
f(x) + λTh(x) + µTg(x)

]

= min
x∈X

max
µ≥0,λ

L(x, λ, µ)

≥ max
µ≥0,λ

min
x∈X
L(x, λ, µ)︸ ︷︷ ︸
q(λ,µ)

=

[
max
λ,µ

q(λ, µ)

s.t. µ ≥ 0

]
(Dual)
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This holds for any optimization problem without any conditions on f, g, h,X and we can
obtain the dual q(λ, µ). Thus every optimization problem has a dual.

Further, we can also show that,

Lemma 11.4. While the primal of an optimization problem may not be convex, the dual
is always convex

Exercise: Prove this. (Hint: Assume X is finite, X = {x1, x2, x3, x4, x5} and draw the
picture)

Consequence: Since the dual is convex, the dual of the dual is also convex. We will
later see that the dual of the dual is, in a precise sense, a convex relaxation of the primal, if
the primal fails to be convex.

11.3 Strong Duality

In this section, we will show strong duality for linear programs. First, we will rewrite the
linear program in the “Standard Form”.[

min
x

cTx

s.t. Ax ≥ b

]
≡

[
min
x

cTx

s.t. Ãx ≤ b̃

]

≡


min
x

cTx

s.t. Ãx+ s = b̃

s ≥ 0


With a different A, x and b, this can be rewritten

min
x

cTx

s.t. Ax = b

x ≥ 0

(11.18)

This is known as the Standard Form LP.
Exercise: Derive the dual of the Standard form LP

Theorem 11.5 (Strong Duality). If either (P ) or (D) has a finite optimal solution, then
the other is feasible and has a finite optimal solution. Moreover, Strong Duality holds,
(P ) = (D)

Corollary 11.6. If either problem has unbounded objective, then the other is infeasible.

Exercise: Prove the corollary. (Hint: Use Weak Duality)
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Figure 11.2. Separation of x from C by H

Proof (Proof of Strong Duality): The key to this result is the separation theorem (Fig-
ure 11.2) from Lecture 3: If C is a closed convex set and x /∈ C, then we can separate x from
C by a hyperplane H such that C ⊆ H+ and x ∈ intH−. Suppose that (P ) is feasible with
finite optimal value zp.

Define:

C = {(r, w) ∈ Rm+1 : r = tzp − cTx ∈ R, w = tb− Ax ∈ Rm, x ≥ 0, t ≥ 0} (11.19)

Recall that A is an m×n matrix where m is the number of constraints and n is the dimension
of the optimization variable x

Claim: C is a convex set. In fact, it is a closed convex cone.
Exercise: Prove this claim. Check that C is a cone. (Hint: Prove that (r, w) ∈ C ⇒

α(r, w) ∈ C ∀α)

Lemma 11.7. For C as defined in Equation 11.19, (1, 0) /∈ C

We will prove this lemma after the main theorem.

Corollary 11.8 (Consequence of Lemma 11.7). ∃H with (1, 0) ∈ int(H−), C ⊆ H+.

As H is a hyperplane, it is defined by its normal vector and offset.

H = {(r, w) :

〈
(λ0, λm)︸ ︷︷ ︸

normal

, (r, w)

〉
= β︸︷︷︸

offset

, λ0 ∈ R, λm ∈ Rm} (11.20)

Then,
C ⊆ H+ ⇒ λ0r + 〈λm, w〉 ≥ β ∀(r, w) ∈ C
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Note that, C is a cone ⇒ β = 0 Also,

(1, 0) ∈ int(H−)⇒ 〈(λ0, λm), (1, 0)〉 < β ⇒ λ0 + 0 < β = 0⇒ λ0 < 0

As λ0 < 0 and β = 0, we can scale λ0, λm to assume WLOG that λ0 = −1 Now,

C ⊆ H+ ⇒ −r + λTmw ≥ 0 ∀(r, w) ∈ C

By definition of C (Equation 11.19),

⇒ cTx− tzp + λTm(tb− Ax) ≥ 0 ∀t, x ≥ 0

⇒ (cT − λTmA)x− t(zp − λTmb) ≥ 0 ∀t, x ≥ 0

Since this holds for all x, t, we can set specific values to get,

t = 0⇒ λTmA ≤ c (11.21)

So λm is dual feasible. By weak duality, λTmb ≤ zp

x = 0, t = 1⇒ zp ≤ λTmb (11.22)

Combining, we get, λT b = zp = cTx? ⇒ (P ) = (D). So we have strong duality. �

Finally, we prove that (1, 0) /∈ C to complete the proof.

Proof (Proof of Lemma 11.7): Suppose to the contrary (1, 0) ∈ C.
By the definition of C (Equation 11.19), this implies,

1 = t0zp − cTx0 and 0 = t0b− Ax0

for some t0 ∈ R ≥ 0, x0 ∈ Rm ≥ 0 If t0 > 0, x̂ = x0/t0 is a feasible for the LP Equation 11.18
(as Ax̂ = b and x̂ ≥ 0). As zp is the optimal value,

cT x̂ ≥ zp ⇒ 1 = t0zp − cTx0 ≤ 0

This contradiction ⇒ t0 = 0 Then,

t0 = 0⇒ 1 = t0zp − cTx0 ⇒ 1 = −cTx0

and
0 = −Ax0, x0 ≥ 0

i.e. A has a nontrivial null space and ∃x0, x0 ≥ 0 and cTx0 < 0, So, if x̃ is any feasible
solution, then x̃ + αx0 is feasible for any α > 0 ⇒ the primal (P ) is unbounded. This is a
contradiction. Hence, (1, 0) /∈ C. �

In this class we established weak and strong duality for LPs. In the next class, we will
discuss duality for other classes of functions.
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