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Lecturer: Caramanis & Sanghavi Scribe: Xinyang Yi & Yicong Wang

12.1 Last time

In the previous lecture, in the first place, we talked about duality for general non-convex
optimization. And we know that dual functions are always convex. The dual of the dual
problem is also convex. In applications, the dual of the dual can be used as the convex
relaxation of the primal (and we will see this explicitly in the next lecture). Then, we
covered the concepts of weak duality and strong duality. We proved that weak duality
always holds and strong duality always holds for linear programming. This time we will
continue the topics about duality, strong duality and related applications.

12.2 Quadratically constrained quadratic program

The optimization problem are called quadratically constrained quadratic program(QCQP)
if objective funciton are both quadratic. In particular, we have:

minimize
x

1

2
xTP0x+ pT0 x+ r0

subject to
1

2
xTPix+ pTi x+ ri ≤ 0, i = 1, . . . ,m.

(12.1)

Note that P0, Pi may not be positive semidefinite, which means the optimizaton problem
doesn’t have to be convex. In this case, we can use the dual of the dual to get the convex
relaxation of the primal. For now, we make the assumption that P0, Pi � 0, the QCQP
problem is convex. The we derive the dual problem. Recall what we did in last time, we get
the dual function(λ):

q(λ) = inf
x

(
1

2
xTP0x+ pT0 x+ r0 +

∑
i

λi

(
1

2
xTPix+ pTi x+ ri

))

= inf
x

(
1

2
xT
[
P0 +

∑
i

λiPi

]
x+

[
p0 +

∑
i

λipi

]T
x+

[
r0 +

∑
i

λiri

])
.

To simplify expression, we let P (λ) := P0+
∑

i λiPi, p(λ) := p0+
∑

i λipi,r(λ) := r0+
∑

i λiri,
then we can get:

q(λ) = inf
x

(
1

2
xTP (λ)x+ p(λ)Tx+ r(λ)

)
. (12.2)
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Since λi is non-negative, P (λ) � 0. So x∗ = −P (λ)−1p(λ), and

q(λ) =
1

2
p(λ)TP (λ)−1p(λ) + r(λ). (12.3)

The dual of the primal problem (12.1) is:

max
λ

q(λ)

s.t. λ ≥ 0.
(12.4)

Excercise 1: Check that q(λ) is concave, which means that the dual problem is convex.

Proof: Actually this is true for a general optimization problem, convex or not. Let L(x, λ)denote
the lagrangian dual function. Suppose q(λ1) = inf

x
L(x, λ1), q(λ2) = inf

x
L(x, λ2). For

0 ≤ θ ≤ 1, we have:

L(x, θλ1 + (1− θ)λ2) = θL(x, λ1) + (1− θ)L(x, λ2)

≥ θq(λ1) + (1− θ)q(λ2)

By taking the infimum of the left side, we get q(θλ1 + (1 − θ)λ2) ≥ θq(λ1) + (1 − θ)q(λ2).
Thus q(λ) is concave. Another simple way to see this is that q(λ) is the infimum of linear
functions, and hence concave. �

12.3 Strong duality—Slater’s condition

We already know that weak duality p∗ ≥ d∗ always holds. The natural question is that when
strong duality p∗ = q∗holds. However, it’s difficult to give the necessary condition of strong
duality. On the other hand, there are sets of sufficient conditions where strong duality holds.
These sets of condition are generally called constraint qualification. Among them, Slater’s
condition is one of the most important and commonly used since it is able to cover a large
set of optimization problems, and in many cases, it can be easy to check that it holds.

Theorem 12.1. Consider the following optimzition problem:

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m.

A1x ≤ b1

A2x = b2.

(12.5)

Suppose that f and gi are convex (nonlinear) functions. If there exists x̄ ∈ relint dom(f)
such that gi(x̄) < 0, then strong duality holds.
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Proof: For the detailed proof of Slater’s condition, please refer to Convex analysis and
optimization by D. Bertsekas. The basic idea is that for a convex set, if there exists a point
which lies outside the set, we could find a hyperplane to seperate support the set. Actually,
when f, g are convex, C = epigraph(f(x) − f ∗, g(x)) is also convex. Note that (0, 0) /∈
relintC, so when slater’s condition are satisfied, we could find hyperplane (1, λ), λ ≥ 0 such
that f(x)− f ∗ + λg(x) ≥ 0. �

The insight that we gained from the proof of Slater’s condition is that strong duality typically
doesn’t hold for nonconvex problems. It’s easy to give such examples.
Excercise 2: Construct a non-convex optimization problem which shows strong duality
doesn’t hold (Hint: LP + integral constraints).
Next, we give two examples where Slater’s condition is not satisfied and strong duality
doesn’t hold in the same time.
Example 1: Considering the following optimization problem:

min
x1,x2

x1 + x2

s.t. (x1 + 1)2 + x2
2 − 1 = 0,

(x1 − 2)2 + x2
2 − 4 = 0

(12.6)

It’s obvious that the feasible set is X = (0, 0). Figure 12.1 shows that the constraints are two
circles with only one intersect point. Thus, the optimal solution x∗ = (0, 0). We know that
for convex optimization, the optimal solution should satisfy 0 ∈ ∇f(x∗) + NX(x∗), where
NX(x∗) is the norm cone at x∗. Remember that this is always true. However, let us consider
another expression 0 ∈ ∇f(x∗) + λ1∇g1(x∗) + λ2∇g2(x∗). In this case,∇f(x∗) = (1, 1)T ,
∇g1(x∗) = (2, 0)T , ∇g2(x∗) = (−4, 0)T . We can’t find such λ1, λ2 that:

0 ∈
(

1
1

)
+ λ1

(
2
0

)
+ λ2

(
−4
0

)
.

This tells us the latter expression doesn’t always holds which means the norm cone cannot
always be written as the linear combination of constraints’ gradient. For this example, it’s
easy to check that Slater’s condition doesn’t hold and there is no guarantee of strong duality.
Example 2: Let’s consider this problem:

min
x

ex2

s.t. ‖x‖2 − x1 ≤ 0
(12.7)

From the constraint we know the feasible region X = {(x1, x2) : x1 ≥ 0, x2 = 0}. The
constraint is always active so Slater’s condition is not satisfied. Next we show that strong
duality also doesn’t hold. The dual:

q(λ) = inf
x

(ex2 + λ(‖x‖2 − x1)) . (12.8)

Excercise 3: Check that for any value of λ ≥ 0, q(λ) = 0, which implies that d∗ = 0 <
p∗ = 1.
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Figure 12.1. Illustration of Example 1

Proof: It’s obvious that ex2 + λ(‖x‖2 − x1) ≥ 0. Let x1 = x4
2. We have:

ex2 + λ(‖x‖2 − x1) = ex2 + λx4
2(

√
1 +

1

x6
2

− 1).

When x2 → −∞, ex2 → 0, x4
2

√
1 + 1

x62
− 1 ∼ 1

2x22
→ 0. Thus q(λ) = 0 for any λ ≥ 0. �

The previous two examples show that strong duality doesn’t hold when Slater’s condition is
not satisfied. But it’s worth to note that Slater’s condition is just sufficient, not neccesary.
It’s possible that strong duality holds when Slater’s condition is not satisfied.

12.4 Complementary Slackness

Let us consider the optimization problem:

max
x

f(x)

s.t. gi(x) ≤ 0
(12.9)

F and G are convex functions and the same assumption holds in the following unless we
state that they are non-convex. Take the dual function:

L(λ, x) = f(x) +
∑
i

λigi(x). (12.10)

We could think of λi as penalties, that is, we will get punished if gi(x) > 0. We need to
guarantee gi(x) ≤ 0 if we want to minimize the price we pay. Suppose Strong Duality holds
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for the above optimization problem, e.g. Slater’s Condition is satisfied, and x∗ is a solution
to the problem with finite optimal value, then we have:

f(x∗) = q(x∗)
∆
= inf

x
(f(x) +

∑
i

λigi(x))

≤ f(x∗) +
∑
i

λi
∗gi(x

∗)

≤ f(x∗).

The first inequality holds since λi
∗ ≥ 0, gi(x

∗) ≥ 0 . Since f(x∗) = g(x∗) and g(x∗) ≤ f(x∗),
we can see that ∑

i

λi
∗gi(x

∗) = 0,

λ∗i gi(x
∗) = 0 for ∀i. (12.11)

At least one of the two terms is zero for every constraint and this is Complementary Slackness.
Let’s see two application examples of complementary slackness.

12.4.1 Power Allocation Problem: Waterfilling

Consider the problem of allocating a certain amount of power to different frequencies with
the object to maximize the total data rate. We have a Power Budget, P̄ , and we allocate
Pi to frequency band i, while the noise at frequency band i is ni . According to Shannon’s
formula, the data transmission rate at band i with transmission power Pi and noise ni is:

Rate(Pi) = log (1 + SNR)
= log(1 + Pi

ni
)

= log(ni + Pi)− log(ni)

(12.12)

We can write formulate the Optimization problem as:

max
∑
i

Rate(Pi)

s.t.
∑
i

Pi ≤ P̄

Pi ≥ 0

(12.13)

Figure 12.2 shows how data rate changes with Pi. Clearly, when ni are all equal, then we
equally allocate power to each channel in order to maximize the total rate. Now let’s consider
the general case in which ni may be different. Rewrite the optimization problem:

min −
∑
i

log(ni + Pi)

s.t.
∑
i

Pi ≤ P̄

Pi ≥ 0

(12.14)
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( ) log(1 )iRate P SNR 

iP

R
a
te

Figure 12.2. Relation bewteen channel rate and power

We can prove that the above optimization problem satisfies Slater’s Condition, thus Strong
Duality holds. The dual function of the problem is

q(λ, µi) = inf
Pi

(−
∑
i

log(ni + Pi) + λ(P̄ −
∑
i

Pi) +
∑
i

µiPi),

with λ ≤ 0, µi ≤ 0. Function q here is convex. Take gradient of q with respect to Pi, we have

− 1

niPi
− λ+ µi = 0

µi ≤ 0⇔ − 1

ni + Pi
− λ = −µi ≥ 0

According to Complementary Slackness, µi ·Pi = 0, then Pi(λ+ 1
ni+Pi

) = 0. Now we consider

two cases, 0 ≤ −λ < 1
ni

, and −λ > 1
ni

. If 0 ≤ −λ < 1
ni

, we have

−λ− 1
ni+Pi

= µi ≥ 0

⇒ Pi > 0
⇒ λ+ 1

ni+Pi
= 0

⇒ Pi = − 1
λ
− ni

If −λ > 1
ni

, then

λ+
1

ni + Pi
6= 0⇒ Pi = 0.

In conclusion, if we know λ, then Pi could be expressed as

Pi =

{
− 1
λ
− ni for −λ ≤ 1

ni

0 for −λ ≥ 1
ni

(12.15)

Explanation of the allocation scheme of Pi: Assume we know λ, which is the penalty of∑
i

Pi ≥ P̄ . If the noise in one channel, ni > − 1
λ

, then pi = 0, which means we will not

allocate energy to this channel; If ni ≤ − 1
λ
, then we’ll allocate Pi = − 1

λ
−ni to this channel.

The shaded part in figure 12.3 shows how much power is allocated to each channel.
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Figure 12.3. Illustration of waterfilling strategy
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Figure 12.4. Uncertain region of coefficients in robust optimization.(a) U region in case 1;(b) U in case 2

12.4.2 Robust Optimization Problem

Consider the optimization problem as follows:

min cTx
s.t. x ∈ X

(12.16)

In most applications, ai is only approximately known. For example, Stochastic Programming
deals with the problems such as P (aTi x ≤ bi) ≥ 1 − ε. Robust Optimization is another
approach, that its goal is to optimize cTx with constraints aTi x ≤ bi , ∀ai ∈ Ui. The
optimization problem should justify every value in a set, which is shown in figure 12.4. Thus
there are infinitely many constraints. Here we study two cases of different U .
Case 1: Ui is a polytope, as shown in figure 12.4(a), Ui = {ai : Diai ≤ di}. Then x satisfies

aTi x ≤ bi , ∀ai ∈ Ui is equivalent to

[
max : aTi x
s.t : ai ∈ Ui

]
≤ bi By Strong Duality, we could see

that the following two optimization problems are equivalent:[
max ai

Tx
s.t. Diai ≤ di

]
=

 min Pi
Tdi

s.t. Pi
TD = x
Pi ≥ 0

 (12.17)

12-7



EE 381V Lecture 12 — October 9 Fall 2012

After changing the constraints, we now have a new optimization problem as the original one,

min cTx
s.t. P T

i di ≤ bi
P T
i D = x
Pi ≥ 0
x ∈ X

, (12.18)

which is a usual Linear Programming problem that we already know how to solve.
Case 2: Ui is an ellipse, then the constraints are (ai + âi)

Tx ≤ bi ∀âi ∈ Ui. Ui can be
written as

Ui = {âi : âi
TQiâi + qTi âi − di ≤ 0}

= {âi : âi
TQiâi ≤ di}

= {âi : ‖âi‖2
Qi
≤ di}

(12.19)

The previous constraint of x,

(ai + âi)
Tx ≤ bi , âi ∈ Ui ,

is now equivalent to

aTi x+

[
max âi

Tx

s.t. ‖âi‖2
Qi
≤ di

]
= aTi x+ di‖x‖X ≤ bi

Here ‖·‖X is the Dual Norm. Now we can rewrite the optimization problem as:

max cTx
s.t. aTi x+ di‖x‖X ≤ bi

Conclusion: For any convex set Ui for which we can solve,[
max aTx
s.t. a ∈ U

]
(12.20)

produces a tractable Robust Optimization problem.
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