
EE 381V: Large Scale Optimization Fall 2012

Lecture 13 — October 11
Lecturer: Caramanis & Sanghavi Scribe: Tong Zhao, Yingzhe Li

13.1 Topics Covered Last Time
• Duality for Convex Quadratic

• Robust Optimization

In the last lecture, we covered duality for convex quadratic problems. We introduced Slater’s
condition, which essentially says that if the functions defining the objective and the constraints are
convex, and if there is a point that is strictly feasible for all non-polyhedral constraints, then strong
duality holds. We also discussed complementary slackness, and showed how we can use this, to
solve the so-called water-filling problem. Then, we introduced the notion of Robust Optimization.
We showed that the nominal problem, when robustified, seems to have infinitely many constraints.
We showed how this can often be reformulated as a (finite dimensional) convex optimization prob-
lem, using duality. We saw several examples of Robust Optimization.

In this lecture, we study conic duality and convex conic programming, which is a powerful
generalization of linear programming.

13.2 Conic Duality

13.2.1 From Linear to Cone Programming
In the standard linear programming (LP) problem

min c
′
x

s.t. Ax− b ≥ 0 (A: m× n).

The constraint inequality Ax− b ≥ 0 in LP is an inequality between vector, and it holds when
Ax− b ∈ Rn

+. Thus in LP, for any vector x ∈ Rn, we have:

x ≥ 0⇔ x ∈ Rn
+.

While in the conic duality problems, we want to define the ”vector inequality” based on a
convex cone K, instead of Rn

+. Then, the vector inequality � is completely identified by the set K
of � −nonnegative vectors, which leads to the following definition:
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Definition 1. (Vector Ineuqality) For any vector in Euclidean space E, the vector inequality � is
completely identified by the set K of � −nonnegative vectors, where:

K = {a ∈ E : a � 0}.

And for any vectors a, b,

a � b⇔ a− b � 0

⇔ a− b ∈ K
(13.1)

In Definition 1, the set K should be a convex cone, which needs to satisfy the following condi-
tions:

1. K is non empty and closed under addition:

a, a
′ ∈ K⇒ a+ a

′ ∈ K;

2. K is a conic set:
a ∈ K, λ ≥ 0⇒ λa ∈ K;

3. K is pointed:
a ∈ K and− a ∈ K⇒ a = 0.

From now on, for any vector x and convex set K, we will use �K equivalently as:

x �K 0⇔ x ∈ K.

Next, we will provide some examples of the convex cones that can be applied to the coni duality
problems:

• (Second Order Cone) The second order cone K is defined as for any vector x ∈ Rn+1, x ∈ K
if and only if:

xn+1 ≥ (x2
1 + x2

2 + ...+ xn2)
1
2 .

Specifically, for the 3-D second order cone, or ice-cream cone, is shown in the following
figure:

• (Semi-Definite Cone) The semi-definite cone is defined as:

Sn+ = {X ∈ Sn, λi(X) ≥ 0}
= {X ∈ Sn, zTXz ≥ 0,∀z ∈ Rn},

where λi(X) denotes the i-th eigenvalue of X.

It is easy to see using the second definition above, that the semi-definte cone is a convex set.
It is interesting to consider what separation means in this space. That is, recall we have
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Figure 13.1. 3-D ice cream cone

shown in an earlier lecture, that if C is any closed convex set, and x a point not in C, then
there is a hyperplaneH such that C ⊆ H+ and x ∈ intH−. We apply this to the semidefinite
cone:

Example. Suppose we have a symmetric matrix M /∈ Sn+. Then there exists a symmetric
vector N ⊂ Sn and β ∈ R which define the hyperplane H = {X : 〈N,X〉 = β} such that:

Sn+ ⊆ H+,M ∈ intH−.

Now, generically, a hyperplane is defined by its normal, and its offset, N and β, respectively.
Since Sn+ ⊆ H+, and since Sn+ is a cone (i.e., we can scale it by any nonnegative scalar) we
can immediately see that we must have β = 0. Therefore we need only find N . Now, M is
not semidefinite. Therefore, by definition, it must have an eigenvector with strictly negative
eigenvalue. Let x denote this eigenvector, and λ < 0 the associated eigenvector. Then it
follows that:

〈M,xxT 〉 =
∑

Mij(xx
T )ij =

∑
Mijxixj

= xTMx = xTλx

= λ‖x‖2 < 0.

Meanwhile, 〈A, xx>〉 ≥ 0 for all A ∈ Sn+, by definition. Therefore, N = xx> is the normal
we need to define our hyperplane.
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13.2.2 Cone Programming
Having defined some of the motivation and a few examples of cones, we now define conic pro-
gramming. It can be considered as a straightforward generalization of linear programming. Indeed,
recall the linear programming problem:

min c
′
x

s.t. Ax = b,

x ∈ Rn
+.

We can define the cone programming problem as:

Definition 2. (Cone Programming):

min 〈c,X〉
s.t. 〈Ai, X〉 = bi,

X �k 0.

Recall from previous section, X �k 0 ⇔ X ∈ K, and X �k Y ⇔ X − Y �k 0. The
semi-definite cone is a very popular example of a cone that is often used. We will see several uses
of it in this and subsequent lectures.

Next, we analyze the dual functions of cone programming. First let’s recall the LP problem:

min c
′
x

s.t. b− Ax ≥ 0.
(13.2)

The dual function of (13.2) is defined as:

q(λ) = inf
x
L(x, λ)

= inf
x
c
′
x+ λT (Ax− b),

(13.3)

where λ ≥ 0.
Similar to LP, consider the following cone programming problem:

(P): min 〈c, x〉
s.t. B −Ax �K 0.

(13.4)

The dual function of (13.4) is:

q(Λ) = inf
x
〈c, x〉+ 〈Λ,AX −B〉. (13.5)

Recall that in linear programming, we restricted λ to be nonnegative, i.e., in the positive outhunt
Rn

+. The reason for that restriction was that in the formulation of the Lagrangian, we had:

min
x

max
λ

: c>x+ λ(Ax− b).
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If x is chosen so that the constraint Ax − b ≤ 0 is violated, then a nonnegative λ could drive the
cost to +∞. Depending on the sign of the constraints, the restriction on λ is chosen analogously.
To this end, define the dual of a cone as follows:

K∗ = {Z : 〈Z,X〉 ≥ 0,∀x ∈ K}

The relation between K∗ and K is illustrated in the following figure. The case of K = Rn
+, and

Figure 13.2. Iluustration of dual cone

also K = Sn+, are special, as these are what is known as self-dual. That is, it can be derived (try
it!) that:

K∗ = {Z : 〈Z,X〉 ≥ 0, ∀x ≥ 0}
= Rn

+

and similarly for K = Sn+.
The dual cone is the key object we want. We now turn to the derivation of the conic dual.

13.2.3 Dual Problem of Cone Programming
Next, we will derive the dual problem of (13.4). Similar to LP, we can derive the weak duality of
cone programming through Lagrange multipliers. Let’s write the primal, as above:

min : 〈c, x〉
s.t. : B −Ax �K 0.

Now, using the dual, we can write this exactly, as

min
x

max
Λ∈K∗

: 〈c, x〉+ 〈Λ,Ax−B〉.
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Note that by the definition of K∗, if x is chosen in a way that violates the constraint, then the inner
max can take the value to +∞. Therefore, this min max is equivalent to the original formulation.
Flipping the min and the max gives us weak duality. Putting all this together, we get:

min 〈c, x〉
s.t. B −Ax �K 0

= min
x

: max
Λ∈K∗
〈c, x〉+ 〈Λ,Ax−B〉

≥ max
Λ∈K∗

: min
x
〈c, x〉+ 〈Λ,Ax−B〉

= max
Λ∈−K∗

: min
x
〈c−A∗Λ, x〉+ 〈Λ, B〉

(13.6)

where A∗ is the adjoint operator of A. For real matrices, the adjoint operator is merely the
transpose, but the adjoint is defined much more generally, for any two (linearly) paired spaces. See
any text book on linear operators or functional analysis for many more details on this. In short, the
adjoint of a linear operator A is defined by the relationship:

〈Ax, y〉 = 〈x,A∗y〉, ∀x, y.

In (13.6), it can be seen that q(Λ) = minx〈c − A∗Λ, x〉 + 〈Λ, B〉, which is only a function of Λ.
The domain for q(Λ) should be:

dom q: Λ ∈ −K∗,
A∗Λ = C.

(13.7)

This follows from the fact that x is unconstrained, thus if A∗Λ 6= C, can choose x to make
q(Λ)→ −∞, under which Λ /∈ dom(q). Thus, the dual problem of (13.4) is:

(D): max: 〈Λ, B〉
s.t.: Λ ∈ dom q.

(13.8)

Next, we will derive the dual of standard form conic prolem (2) in the following corollary.

Corollary 13.1. For the standard form conic problem:

(P): min 〈c, x〉
s.t. Ax = B,

x �K 0.

(13.9)

the dual of (13.9) is:

(D): max: 〈Λ, B〉
s.t.: c− 〈A∗,Λ〉 ∈ K∗.

(13.10)
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Proof: For ∀λ ∈ K∗ and Λ, the Lagrangian of (13.9) can be written as:

L(x, λ,Λ) = 〈c, x〉+ 〈Λ, B −Ax〉 − λTx.

λ is added so that

max
λ∈K∗

−λTx =

{
0, if x ∈ K,
+∞, otherwise.

Thus, we will have:

(P) = min
x

max
Λ,λ∈K∗

L(x, λ,Λ)

= min
x

max
Λ,λ∈K∗

〈c, x〉+ 〈Λ, B −Ax〉 − λTx

≥ max
Λ,λ∈K∗

min
x
〈c−A∗Λ− λ, x〉+ 〈Λ, B〉

while

min
x
〈c−A∗Λ− λ, x〉+ 〈Λ, B〉 =

{
〈Λ, B〉 if c−A∗Λ− λ = 0,
+∞, otherwise.

Recall that λ ∈ K∗, thus we can derive the dual for standard form conic shown as (13.10). �

From 13.6, we have seen the weak duality holds for cone programming. Next, we will give the
following theorem regarding when strong duality holds for cone programming:

Theorem 13.2. (Strong Duality) For cone programming, if the primal problem is feasible with
finite solution, and there exists strictly feasible point, then we can guarantee that (P)=(D).

In Theorem (13.2), for the constraint that g(x) 4K 0, a strictly feasible point refers the point
x which satisfies that g(x) ≺K 0, or equivalently −g(x) ∈ int K. The detailed proof of Theo-
rem (13.2) can be found in Theorem 1.4.2 of Aharon Ben-Tal and Arkadi Nemirovski’s book.

13.3 Semidefinite Programming
Definition 3. (Semidefinite Programming)In the standard semidefinite programming (SDP) prob-
lem, we have K = Sn+, i.e., it is a self-dual Cone

(P): min
∑

Cixi

st
∑

Aixi −B � 0

Lemma 13.3. The dual of the SDP is

(D): max 〈Λ, B〉
st 〈Λ, Ai〉 = Ci,Λ � 0
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Proof: Check the Dual with Primal

Primal = min
x

: max
Λ∈K∗

:
∑

(〈Ci, xi〉+ 〈Λ, Aixi −Bi〉)

≥ max
Λ∈−K∗

: min
x

:
∑

(〈Ci, xi〉+ 〈−Λ, Aixi −Bi〉)

= max
Λ∈−K∗

: min
x

:
∑

(〈Ci − A∗iΛ, xi〉+ 〈xi, Bi〉)

where A∗ is adjoint A for minimization of x function, and we denote

q(λ) = min
x

:
∑

(〈Ci − A∗iΛ, xi〉+ 〈xi, Bi〉)

so that we obtain,

(D): max 〈Λ, B〉
st = Ci,Λ〈Λ, Ai〉 � 0

�

13.3.1 Application of semidefinite programming
Problem 1.
Given a set C ⊆ Rn, find minimum volume of ellipsoid ε, so that C ⊆ ε

ε = {x : xTQx+QT + C ≤ 0} = {x : ‖Ax+ b‖2 ≤ 1} (13.11)

Fact 1. Volume ε ∝ det(A−1)

Proof: Check with the fact as below:
Without loss in generality, we can assume that:
an arbitrarily oriented ellipsoid, centered at v, is defined by the equation.

(x− v)TB−1(x− v) = 1

where B is positive semidefinite with B = AAT and x,v are vectors.
Now, we can write the equation above with A in fact case:

(x− v)T (AAT )−1(x− v) = 1

For the quadratic part of the above equation, we have

ε ∝ det(A−1)

�

Fact 2. log(det(A−1)) is a convex function of A
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So that the problem is converted to

min: det(A−1)

st: ‖Ax+ b‖ ≤ 1,∀x ∈ C.

Problem 2. Considering the problem:

max
x∈C

:‖Ax+ b‖

st: ‖Ax+ b‖ ≤ 1,∀x ∈ C.
(13.12)

This is not convex optimization problem, and not tractable for the solution, i.e., NP hard.
Similarly, for the problem considering below:

min
x∈C

: xTA0x+ 2bT0 x+ C0

st : xTA1x+ 2bT1 x+ C1 ≤ 0.
(13.13)

where A0, A1 are not positive semidefinite and this is also a non-convex optimization

Problem 3. Consider the problem below:

q(λ) = inf
x
f(x) + λg(x) = min[linearfunctions] (13.14)

Obviously, q(λ) is always a concave function. Now consider the dual:

(D): max: q(λ)

st: λ ≥ 0,

λ ∈ dom(q).

We obtain that the dual of a concave function is a convex function. This is because the max function
of a negative concave function is a convex function.

q(λ) = inf
x
xT (A0 + λA1)x+ 2(b0 + λb1)Tx+ (c0 + λc1)

where

dom(q) :A0 + λA1 ≥ 0;

b0 + λb1 ∈ R(A0 + λA1)

In this way, we obtain that
x∗ = −(A0 + λA1)+(b0 + λb1), (13.15)

and (A0 + λA1)+ is known as ”Moore-Penrose Pseudo Inverse”.
So that the dual is now become

(D): max: (C0 + λC1)− (b0 + λb1)T (A0 + λA1)+(b0 + λb1)

st: λ ≥ 0

b0 + λb1 ∈ R(A0 + λA1)

A0 + λA1 � 0

(13.16)
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where R denoted as the Range of A0 + λA1

In the following section, we will concentrate on Schur Complement, which helps us solve the
dual function in SDP.

13.4 Schur Complement
Definition 4. Lemma on Schur Complement. Let X, defined as:

X =

[
A B
BT C

]
If A is invertible and det(A) 6= 0, then Schur Complement of A in X is

S = C −BTA−1B.

Theorem 13.4. X � 0 iff A � 0 and S � 0; If A � 0, then X � 0 iff S � 0.

Proof: The positive semidefiniteness of X is equivalent to the fact that: For ∀x ∈ Rk, y ∈ Rl,

0 ≤
(
xT yT

)( A B
BT C

)(
x
y

)
= xTAx+ 2xTBy + yTCy

or, which is same, to the fact that: ∀y ∈ Rk,

inf
x∈Rk

[xTAx+ 2xTBy + yTCy] ≥ 0.

Since A is positive definite by assumption, the infimum in x can be computed explicitly for every
fixed y: the optimal x is −A−1By, and the optimal value is:

yTCy − yTBTA−1Cy = yT [C −BTA−1B]y.

The positive definiteness/semidefiniteness of A is equivalent to the fact the latter expression is, re-
spectively, positive/nonnegative for every y 6= 0, i.e., to the positive definite-ness/semidefiniteness
of the Schur Complement of A in X. �

Property 1.
det(X) = det(A)× det(S) (13.17)
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Proof: Check A,B,C in 2× 2 matrix, thus:

det(X) = AC −BBT ,

det(S) = det(C)− det(B)2/ det(A).

since A is invertible. Then multiplies det(A) at LHS and RHS,

det(S) det(A) = det(C) det(A)− det(B)2 = det(X).

Thus, the statement holds. �

Property 2. Minimization: if A is positive semidefinite, i.e., A � 0, then:

min
x

(
[
xT yT

] [ A B
BT C

] [
x
y

]
) = min

x
(xTAx+ yTBTx+ xTBy + yTCy)

Obviously, it has optimal value:
x∗ = −A−1By,

with the minimum value of function that is:

min = yTSy.

13.4.1 SDP with Schur Complement
In this section, we will use Schur complement to analyze the non-convex optimization problem:

min
x∈C

: xTA0x+ 2bT0 x+ C0

st : xTA1x+ 2bT1 x+ C1 ≤ 0.
(13.18)

According to Schur Complement and recall the dual of (13.18) given in (13.16), we now intro-
duce γ and denotes: S = (C0 + λC1 − γ)− (b0 + λb1)T (A0 + λA1)(b0 + λb1), then we have:

(D): max: γ
st: S � 0,

λ ≥ 0,

B ∈ R(A),

A � 0.

(13.19)

where A denotes A0 + λA1, and B denotes b0 + λb1 for short.

Now we can rewrite the dual as below with Schur Complement:

(D): max: γ
st: λ ≥ 0,[

A0 + λA1 b0 + λb1,
b0 + λbT1 C0 + λC1 − γ

]
� 0.

(13.20)
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Now recall that:

(P): min: C>x
st: Ax− b �K 0,

x ≥ 0.

The dual is:

(D): max: µ>b

st: C − µ>A �K 0,

µ �k∗ 0.

Now, let us rewrite the dual above, in order to get it closer to the form we have here, so that we can
then easily take the dual. We have:

(D): -min: (0,−1)>(λ, γ)

st:
[
A1 b1

b>1 C1

]
λ+

[
0 0
0 −1

]
γ −

[
−A0 −b0

−b>0 −C0

]
� 0.

(13.21)

Now, this is quite close to the generic form we gave above. and thus we can take the dual of the
dual problem (13.21). With a bit of work, we see that this is:

min: 〈
(
A0 b0

bT0 C0

)
,
(
X x
xT 1

)
〉

st: 〈
(
A1 b1

bT1 C1

)
,
(
X x
xT 1

)
〉 ≤ 0,

X � xxT .

Multiplying out, we can see that this is equivalent to the optimization problem:

min: 〈A0, X〉+ 2bT0 x+ C0

st: 〈A1, X〉+ 2bT1 x+ C1 ≤ 0,

X � xxT .

(13.22)

Note that, 〈A0, xx
T 〉 = xTA0x and the problem above is convex optimization. Moreover, note

that if we replace the convex constraint X � xxT by the non-convex constraint, X = xxT , then
we precisely recover the primal problem. Thus, the dual of the dual, is a convex relaxation of the
(non-convex) primal problem. Essentially, the convexification here involves dropping the rank 1
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constraint. This is a common procedure, that has powerful implications for obtaining convex relax-
ations of combinatorial problems. In the next lecture, we discuss the application of this relaxation,
and its quality, to the so-called MAXCUT problem.

In general, the relaxation of the primal and the primal do not have the same objective. That
is, while weak duality (of course) holds, strong duality fails, primarily due to the non-convexity
of the primal. Perhaps surprisingly, this is not true for the special case of minimizing an arbitrary
quadratic subject to an arbitrary quadratic constraint. That is, we have the following theorem to
show the relation between the primal problem (13.18) and the dual of dual problem (13.22):

Theorem 13.5. (S-lemma, S-procedure): Primal (13.18)= Dual of dual (13.22).

This is related to a hidden convexity phenomenon that says the following: Suppose A0 and A1

are two n× n symmetric matrices, possibly not positive semidefinite. Then the set

W
4
= {(z1, z2) = (x>A0x, x

>A1x), x ∈ Rn} ⊆ R2,

is convex.
Exercise. Show that this is true, in the special (and easier) case when A0 and A1 are both

positive semidefinite.
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