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@ This is the danger environment.

14.1 Modeling & Applications

We have already seen how duality can help us solve convex optimization problems (e.g., with
the ”water-filling” example). We now develop more applications of these ideas; in particular,
we will look at combinatorial optimization problems (max-cut, maximal independent sets),
support vector machines, and congestion control problems in networking.

14.1.1 Max Cut Problem

Consider a graph with a set of nodes N, and a set of edges £. Suppose we wish to bicolor
the nodes red and blue in such a way that the the number of edges connecting red nodes to
blue nodes is maximal. More formally, we seek to solve the following convex optimization
problem:

1
max 5217](1 — a:i.rj)wij

s.t. x; € {—1,+1} (14.1)

Where z; represents the coloring of the particular node, and we have allowed for weights
w;; on the edge set (a weight of 0 means there is no edge). Observe that labeling the nodes
with £1 partitions the graph, and the optimization problem above finds the partition which
maximizes the weights of the edges between one component and its complement.

It turns out that solving the max cut problem is NP-Hard, and we thus wish to relax the
problem in some way to make it tractable. We proceed as follows: define a matrix X = (Xj;)
where X;; = z;z;, i.e., X = za’. The constraint x; € {+1, —1} can be rewritten as 27 = 1,
which is equivalent to requiring 22 = X;; = 1. We can thus rewrite the max cut problem as:

1
max 5217]<1 — XZ])UJ”
X =za?

(14.2)
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Moreover, observe that X is positive semi-definite and has rank equal to 1. In fact, an
arbitrary positive semidefinite matrix A with rank 1 can be written as A = aa’ by an ap-
plication of the spectral theorem.

We can thus rewrite our original problem as

1
max —217](1 — XZ])'LUZ]

2
X =0
rank(X) =1

Now that we have the max cut problem in the form above, we can relax the rank con-
straint (in fact, we can just drop it) and get a standard semi-definite programming problem.

For a while it was known that there existed 1/2-approximation algorithms for max cut
(that is, there were ways of approximately solving the problem such that the cost found
would be no worse than 1/2 the optimal cost). It was in 1995 that Goemans and Williamson
used the machinery of SDP to drastically improve this performance guarantee. In particular
they showed the following: let X be the solution of the SDP above. Write X = VTV and let
u be a random vector chosen uniformly on the unit sphere. Then our approximate solution
is given by 2 :=sgn(V7Tu), where sgn(v) is the vector of +1 depending on the signs of the
components of v. They showed that this randomized rounding procedure gives a solution
that has cost no worse than 0.878 of the optimal cost. In 1997, Bertsimas and Ye produced
an alternate randomized rounding procedure that achieves the same lower bound; namely,
they generate Z ~ N (0, X) and let & :=sgn(Z).

14.1.2 Maximal Independent Sets

Given a graph G, we seek to find the largest set .S of nodes such that no two nodes in S are
joined by an edge.

Figure 14.1. A Graph
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For example, we might think of the nodes as jobs to be performed, with an edge between
nodes representing a constraint that both jobs cannot be performed simultaneously. Find-
ing such a set (called a "maximal independent set”) is a classical example of an NP-Hard
problem. It is not hard to pick an independent set - the question is: how do know how close
to being maximal it is?

Figure 14.2. A Maximal Independent Set

Begin by rephrasing the problem as an integer linear programming problem:

max Ell'z
st. x;+x; <1, forall (4,j) € £ (14.4)
T; € {07 1}

where we interpret x; as an indicator vector for the maximal independent set. Now, we
can turn this into a convex optimization problem by relaxing the constraint z; € {0,1} to
0 < z; < 1. Because this is a linear programming problem, strong duality holds and we can
formulate the dual problem:

s.t. Mjenyi; > 1, for all ¢

The above problem is called the minimum weight edge problem. This gives us a hierarchy
of values: a dual guess > dual optimal > primal optimal > a primal guess.

If, for example, we can verify that our guess produces a primal cost that is equal to some
dual feasible cost, we know we have found our optimal solution. Taking the dual also helps
us relate hard combinatorial problems as above, and we might hope that if we have an ap-
proximation algorithm for one problem we can then formulate an approximation algorithm
for the dual.
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Figure 14.3. A Dual Certificate which Proves Maximality
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