
EE 381V: Large Scale Optimization Fall 2012

Lecture 15 — October 19

Lecturer: Caramanis & Sanghavi Scribe: Tsung-Wei Huang

15.1 Topics Covered Last Time

• Maximum independent set - dual form;

• Weighted maximum independent Set - dual form;

• Max cut - dual form.

In the last lecture, we covered several combinatorial optimization problems, and con-
sidered the notion of taking a dual as a solution or relaxation technique. Several NP-hard
combinatorial optimization problems can be relaxed as easeily solvable convex optimization
problems and thus can be efficiently solved or approximated.

In today’s lecture, we discuss more related applications that can solved using convex
optimization.

15.2 Application 1: Classification

Classification is a fundamental problem in machine learning and statistics. The problem is
as follows. We are given a finite set of labelled points in Rn. Based on this labelled set
of points, often called training points, our goal is to learn the labeling rule, so that we can
accurately label future (unlabeled) points that we see. For instance, we may want to learn
to classify an e-mail as spam or not-spam. Or we might want to classify a patient exhibiting
certain symptoms as stable or in critical condition. There are many diverse such examples,
which is why classification, along with regression, make up such an important part of pattern
recognition and problems in machine learning.

More concretely, suppose we are given points in Rn, X = {x1, x2, · · · , xN} and then (for
now, binary) labels in {−1,+1}: Y = {y1, y2, · · · , yN}. We wish to find a mapping function
f : Rn → R that is as accurate as possible, in terms of finding a labeling rule. That is, we
seek a function f ∈ F such that sgnf(xi) = yi. As the notation indicates, the function f
should come from a restricted class of functions, F , otherwise the result is typically no good
for prediction, i.e., for labeling future points that arrive unlabeled. Discussion of how one
restricts F is beyond the scope of this class (but see next semester’s class!).

If indeed these inequalities hold, i.e., sgnf(xi) = yi for all i, we say that the function f
separates, classifies, or discriminates the set of training points. We sometimes also consider
weak separation, in which the weak versions of the inequalities hold, i.e., yi · f(xi) ≥ 0 for
all i.

15-1

EE 381V Lecture 15 — October 19 Fall 2012

15.2.1 Linear Separation

In linear separation, we seek an affine function f(x) = aTx − b that separates the two
point sets, as shown in Figure 15.1. We have the following formulation: Find a hyperplane,
parameterized by a normal vector w and offset b, such that

yi · (〈w, x〉 − b) > 0, i = 1, · · · , N. (15.1)
8.6 Classification 423

Figure 8.8 The points x1, . . . , xN are shown as open circles, and the points
y1, . . . , yM are shown as filled circles. These two sets are classified by an
affine function f , whose 0-level set (a line) separates them.

8.6.1 Linear discrimination

In linear discrimination, we seek an affine function f(x) = aTx − b that classifies
the points, i.e.,

aTxi − b > 0, i = 1, . . . , N, aT yi − b < 0, i = 1, . . . ,M. (8.20)

Geometrically, we seek a hyperplane that separates the two sets of points. Since
the strict inequalities (8.20) are homogeneous in a and b, they are feasible if and
only if the set of nonstrict linear inequalities

aTxi − b ≥ 1, i = 1, . . . , N, aT yi − b ≤ −1, i = 1, . . . ,M (8.21)

(in the variables a, b) is feasible. Figure 8.8 shows a simple example of two sets of
points and a linear discriminating function.

Linear discrimination alternative

The strong alternative of the set of strict inequalities (8.20) is the existence of λ,
λ̃ such that

λ � 0, λ̃ � 0, (λ, λ̃) 6= 0,

N∑

i=1

λixi =

M∑

i=1

λ̃iyi, 1Tλ = 1T λ̃ (8.22)

(see §5.8.3). Using the third and last conditions, we can express these alternative
conditions as

λ � 0, 1Tλ = 1, λ̃ � 0, 1T λ̃ = 1,

N∑

i=1

λixi =

M∑

i=1

λ̃iyi

Figure 15.1. The points X+
4
= {xi : yi > 0} and X− 4= {xi : yi < 0} are shown as open and filled circles,

respectively. These two sets are classified by an affine function f , whose 0-level set appears to be a separate
line.

The geometric meaning is straightforward, and illustrated by the figure: we seek a hy-
perplane that separates the two point sets. Since the inequalities 15.1 are homogeneous in
w and b, they are feasible if and only if the following non-strict linear inequalities hold:

〈w, x〉 − b ≥ 1, ∀xi ∈ X+, 〈w, x〉 − b ≤ −1, ∀xi ∈ X−. (15.2)

Take Figure 15.2 for example. We can assume the offset on b is zero, while targeting on
examining the variable/vector w. Then we could have the following inequalities:

⇒ 〈w, x〉 ≥ 1, 〈w, y〉 ≤ −1 (15.3)

⇒ 8w ≥ 1, −3w ≤ −1

⇒ w ≥ 1/8, w ≥ 1/3

⇒ w ≥ 1/3

From inequalities 15.3, it is desirable to maximize 1/‖w‖. Indeed, we show below that
this is proportional to the margin. Maximizing 1/‖w‖ is the same as minimizing ‖w‖, and

15-2

EE 381V Lecture 15 — October 19 Fall 2012

X = 8

Y = -3

a

Figure 15.2. Example of finding inequalities (15.2).

therefore, we can formulate the entire linear classification problem into a convex optimization
as follows:

minimize : ‖w‖2 (15.4)

s.t. : 〈w, xi〉 − b ≥ 1,∀xi ∈ X+ (15.5)

〈w, xi〉 − b ≥ −1,∀xi ∈ X−. (15.6)

15.2.2 Maximum Gap of Separation

We make the above assertion about margin maximization more precise here. Consider the
setting depicted in Figure 15.1. There are infinitely many hyperplanes that separate the
labelled points. One sensible choice is the one that maximizes the margin, that is, that
maximizes the distance to the closest filled or empty circle (positively or negatively labelled
point).

Consider any hyperplane H = {x : 〈w, x〉+ b = 0}. It is easy to compute (try this!) the
distance from the origin to the hyperplane:

dist(H, 0) =
|b|
‖w‖ .

Note that, as one would expect, this expression does not depend on the (simultaneous)
scaling of w and b.

Now as mentioned above, we can always scale w and b so that the separation is given by

〈w, x〉 − b ≥ 1, ∀xi ∈ X+, 〈w, x〉 − b ≤ −1, ∀xi ∈ X−.

Exercise: check that the margin is given by the following expression:

margin =
|1− b|
‖w‖ +

| − 1− b|
‖w‖ =

2

‖w‖ .

15-3

EE 381V Lecture 15 — October 19 Fall 2012

Therefore, indeed, the margin is proportional to 1/‖w‖, and therefore maximizing the margin
is equivalent to minimizing ‖w‖.

15.2.3 Non-Linear Separation

We have now examined the linear separation technique. But what happens if the data do not
happen to be linearly separable? Figure 15.3 for example, illustrates such a setting, where
linear separation is not possible. As the figure suggests, however, there does seem to be avail-
able a fairly simple classification rule. Indeed, labeling the center of the figure as the origin,
it is straightforward to see that if we map the data non-linearly to an (n + 1)-dimensional
space via x 7→ (x, ‖x‖), then there will be a (linear) hyperplane that separates the circles
from the squares. This general idea of mapping non-linearly to a higher dimensional space
where linear separation might be possible, is depicted in Figure 15.4.

264 Algorithms in Bioinformatics II, SoSe’07, ZBIT, D. Huson, June 27, 2007

• The hyperplane’s equation will contain only the coordinates of data points that are closest to it.

• Those data points “support the plane” and are hence called Support Vectors (German:
Stützvektoren).

• From the hyperplane we will derive a decision function that allows us to classify new data points
with unknown class label.

16.3 Motivation: What can be done with data for which no linear
separation exists?

• How could we achieve a separation in this case?

• A more more complex, non-linear function would be needed.

16.4 Motivation: Mapping of the data to higher-dimensional space
where a linear separation is possible.

separating
hyperplane

Mapping

function

Φ

• With an appropriate mapping function Φ we could map these data from the IR2 to the IR3 where
a linear separation is possible.

16.5 Motivation: The Kernel Trick

Suppose, we have found an appropriate mapping function Φ that allows for a linear separation in
the so-called feature space H. Solving the equations for the optimal separating hyperplane in the
hyperspace we observe that all formulae only depend on the data through dot products in H, i.e. on
functions of the form Φ(xi) · Φ(xj). This encourages us to introduce a kernel function k such that
k(xi, xj) = Φ(xi) ·Φ(xj), and using it as a similarity measure for xi and xj without explicitely knowing
Φ nor the dimension of H.

Figure 15.3. An example of non-linear data distribution in a two-dimensional (2D) plane.

This non-linear mapping, denoted by Φ(x) in Figure 15.4, is called the kernel map.

264 Algorithms in Bioinformatics II, SoSe’07, ZBIT, D. Huson, June 27, 2007

• The hyperplane’s equation will contain only the coordinates of data points that are closest to it.

• Those data points “support the plane” and are hence called Support Vectors (German:
Stützvektoren).

• From the hyperplane we will derive a decision function that allows us to classify new data points
with unknown class label.

16.3 Motivation: What can be done with data for which no linear
separation exists?

• How could we achieve a separation in this case?

• A more more complex, non-linear function would be needed.

16.4 Motivation: Mapping of the data to higher-dimensional space
where a linear separation is possible.

separating
hyperplane

Mapping

function

Φ

• With an appropriate mapping function Φ we could map these data from the IR2 to the IR3 where
a linear separation is possible.

16.5 Motivation: The Kernel Trick

Suppose, we have found an appropriate mapping function Φ that allows for a linear separation in
the so-called feature space H. Solving the equations for the optimal separating hyperplane in the
hyperspace we observe that all formulae only depend on the data through dot products in H, i.e. on
functions of the form Φ(xi) · Φ(xj). This encourages us to introduce a kernel function k such that
k(xi, xj) = Φ(xi) ·Φ(xj), and using it as a similarity measure for xi and xj without explicitely knowing
Φ nor the dimension of H.

Figure 15.4. Mapping of the data to higher-dimensional space where a linear separation is possible.

15-4

EE 381V Lecture 15 — October 19 Fall 2012

In many practical applications, one often uses a mapping to a much higher dimensional –
possibly even infinite dimensional – space. The immediate question is to understand how this
impacts the optimization problem. Finding a hyperplane in n dimensions is an optimization
problem in (n+ 1) variables (one must find w and b, or only w if we impose a normalization
and set b = 1). Then, if we lift to N >> n dimensions, does computation time increase
accordingly?

It turns out that this is not the case, as long as we use a special kind of non-linear
mapping that has a special property. The property required is that it is “easy” to compute
inner products in the high-dimensional space. That is, there is a kernel function K such that

〈Φ(xi),Φ(xj)〉 = K(xi, xj),

and K(xi, xj) is easy to compute, where “easy” means that it is about as hard as computing
〈xi, xj〉 in the first place.

To see why this property of Φ is so important, and why when it holds it implies that
we can quickly solve problems and find separating hyperplanes in much higher dimension
without working any harder, we need to use the dual. Recall that the primal problem is as
follows:

min :
1

2
‖w‖2

s.t. : 〈w, xi〉+ b ≥ 1, ∀xi ∈ X+

〈w, xi〉+ b ≤ 1, ∀xi ∈ X−.

By writing the constraints above more compactly as

yi(〈w, xi〉+ b)− 1 ≥ 0, ∀i,

we can write the Lagrangian of this as (check this!):

L(w, b, λ) =
1

2
‖w‖2 −

n∑

i=1

λiyi(〈w, xi〉+ b) +
n∑

i=1

λi.

Note that the objective function and the constraints are convex, and in particular, Slater’s
condition is satisfied. This means that strong duality holds. Recall that as a fundamental
consequence of strong duality, we know that we have:

q(λ∗) = max
λ

min
w,b

L(w, b, λ) = min
w,b

max
λ

L(w, b, λ) = p(w∗, b∗),

where p(·, ·) denotes the primal function, and q(·) denotes the dual function. In particular,
this implies, by convexity, that at (w∗, b∗, λ∗), the first order necessary conditions are satisfied:

∇w,bL(w∗, b∗, λ∗) = 0, ∇λL(w∗, b∗, λ∗) = 0.

15-5

EE 381V Lecture 15 — October 19 Fall 2012

These give the conditions:

w =
∑

i

λiyixi,

and ∑

i

λiyi = 0.

Substituting back in, we have derived the dual optimization problem:

max : q(λ) = max :
∑

i

λi −
1

2

∑

i,j

λiλjyiyj〈xi, xj〉.

Notice the dependence on dimension: it is only there through the inner product, 〈xi, xj〉.
In particular, if we were to use a nonlinear mapping Φ to map the data {xi} to a higher
dimensional space, the resulting dual would simply be (check!)

max : q(λ) = max :
∑

i

λi −
1

2

∑

i,j

λiλjyiyj〈Φxi,Φxj〉.

If it happens that we have found an appropriate mapping function Φ that has the special
property that 〈Φxi,Φxj〉 = K(xi, xi), for some easily computable function K, then we see
that solving this optimization problem can be done essentially with no additional effort than
the original one. This is the so-called kernel trick and it has been used in regression as well
as in classification. We will learn more about kernel functions in the next semester.

One of the popular kernel mapping function is:

K(xi, xj) = e−‖xi−xj‖ (15.7)

This kernel represents a mapping Φ to infinite dimensions. Without duality, solving for
the linear separating hyperplane in infinite dimensions would be computationally hopeless.

15.3 Application 2: Congestion Control

Congestion control is an important topic in many network resource allocation problems. The
allocation problem can be described as a constrained maximization of some utility function,
which can be solved by convex optimization.

As shown in Figure 15.5, the flow network is a directed graph G = V, L, C, where V
is the node set, L is the edge link, and C is the capacity value associated with each edge.
We also have a set of source-sink pairs sources → sinks that can send a maximum amount
of flow value xs (sometimes called source rate). Also, each source-sink pair is associated
with an utility Us, which can be smooth, increasing, and concave. Then given a routing
matrix Rls ∈ {1, 0}, where the Rls = 1 means the flow from source s use the edge link l or

15-6

EE 381V Lecture 15 — October 19 Fall 2012

Dis = <a, x> - b

||a|| = 1

Dis = <a, y> - b

x

Cap

t

-t

A

C

B

F

D

E

s1

t1

t2

s2

Figure 15.5. Example of a flow network.

Rls = 0 otherwise. The objective is try to maximize the flow utility in the network. Thus,
the network utility maximization problem can be formulated as follows:

Maximize :
∑

s Us(xs) (15.8)

s.t.

RX � C

X � 0

The problem given in (15.8) satisfies the condition of strong duality, i.e., the optimal
primal value is equal to the optimal dual value. The Lagrangian dual form can be written
as follows:

L(x, λ) =
∑

s

Us(xs) +
∑

l

λl(cl −
∑

s

Rlsxs) (15.9)

=
∑

s[Us(xs)− (
∑

l

Rlsλl)xs] +
∑

l

clλl

Then the dual problem is:

Minimize :
∑

smaxxs≥0(Us(xs)− λsxs) +
∑

l clλl (15.10)

s.t. λ � 0

Additivity of total utility and flow constraints lead to decomposition into individual
source terms, a form of dual decomposition. This decomposition is called horizontal across
users in network. In practice, suppose suppose each user is associated with a source-sink
pair xs. Then each user can keep his utility private and only needs to know λs to solve the
problem maxxs≥0(Us(xs)− λsxs).

15-7

EE 381V Lecture 15 — October 19 Fall 2012

15.4 Application 3: Manifold Learning

Manifold learning, also referred to as non-linear dimensionality reduction, pursuits the goal
to unfold/embed data that originally lies in a high dimensional space into a low dimen-
sional space, while preserving characteristic properties. This is possible since for any high
dimensional data to be interesting, it must be intrinsically low dimensional.

Nonlinear dimensionality reduction
(ISOMAP, LLE, Laplacian Eigenmaps, Diffusion Maps, MVU,…)

Embedding should preserve “locality”

“Swissroll”

Embedding

Figure 15.6. A curled data is unfolded/embedded into one dimensionality.

The idea to solve this problem is try to find approximate the one-dimensional distance
to that in original space. Based on this intuition, we choose semidefinite embedding (SDE)
algorithm for manifold learning. Imagining that each point is connected to its nearest niegh-
bors with a rigid rod. We take this structure and pull it as far apart as possible, i.e., we
attempt to maximize the distance between points that are not neighbors. If the manifold
looks like a curved space, then hopefully this procedure will unravel it properly.

To make this intuition a little more concrete, let us look at a simple example in Figure
15.7. Suppose we sample some points from a sine curve in R2. The since curve is a one-
dimensional manifold embedded into R2, so let us apply to SDE idea to it to try to find a one-
dimensional representation. We first attach each point to its two nearest neighbors. We then
pull apart the resulting structure as far as possible. The entire steps is demonstrated in Figure
15.7. As the Figure shows, we have successfully found a one-dimensional representation of
the data set. However, if the neighbors were chosen a bit differently, the procedure would
have failed.

Now we examine the formulation of SDE. The primary constraint of the program is that
distances between neighboring points remain or approximate the same. In other words, if xi
and xj are neighbors then ‖ yi − yj ‖=‖ xi − xj ‖, where yi and yj are the low-dimensional
representatives of xi and xj. Translating the constraint into SDE is simple:

15-8

EE 381V Lecture 15 — October 19 Fall 2012

in some situations. The equivalence rests on another
motivation for Laplacian Eigenmaps, not discussed
here, that frames the algorithm as a discretized ver-
sion of finding the eigenfunctions4 of the Laplace-
Beltrami operator, L, on a manifold. The authors
demonstrate that LLE, under certain assumptions, is
finding the eigenfunctions of 1

2L2, which are the same
as the eigenfunctions of L. In the proof, they assume
that the neighborhood patches selected by LLE are
perfectly locally linear (i.e., the neighbors of a point
x actually lie on the tangent plane at x). Further-
more, the equivalence is only shown in expectation
over locally uniform measures on the manifold.

The connection is an intriguing one, but has not
been exploited or even demonstrated on any real data
sets. It is not clear how reasonable the assumptions
are. These two algorithms are still considered dis-
tinct, with different characteristics.

3.4 Semidefinite Embedding

Semidefinite embedding (SDE) [WSS04], yet another
algorithm for manifold learning, is based on a physi-
cal intuition. Imagine that each point is connected to
its nearest neighbors with a rigid rod. Now, we take
this structure and pull it as far apart as possible –i.e.
we attempt to maximize the distance between points
that are not neighbors. If the manifold looks like a
curved version of the parameter space, then hopefully
this procedure will unravel it properly.

To make this intuition a little more concrete, let
us look at a simple example. Suppose we sample
some points from a sine curve in R2. The sine curve
is a one-dimensional manifold embedded into R2, so
let us apply the SDE idea to it to try to find a
one-dimensional representation. We first attach each
point to its two nearest neighbors. We then pull apart
the resulting structure as far as possible. Figure 8
shows the steps of the procedure. As the figure shows,
we have successfully found a one-dimensional repre-
sentation of the data set. On the other hand, if the
neighbors were chosen a bit differently, the procedure
would have failed.

We this simple example in mind, we proceed to
describe the algorithm more precisely. The SDE al-
gorithm uses a semidefinite program [VB96], which
is essentially a linear program with additional con-
straints that force the variables to form a positive
semidefinite matrix. Recall that a matrix is a Gram

4In the algorithm presented, we are looking for eigenvectors.
The eigenvectors are the eigenfunctions evaluated at the data
points.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

Figure 8: An illustration of the idea behind SDE. The
top figure is a few points sampled from a sine curve.
The middle figure shows the result of connecting each
point to its two neighbors. The bottom shows the
result of the “pulling” step.

matrix (an inner product matrix) if and only if it
is positive semidefinite. The SDE algorithm uses a
semidefinite program to find an appropriate Gram
matrix, then extracts a configuration from the Gram
matrix using the same trick employed in classical
MDS.

The primary constraint of the program is that dis-
tances between neighboring points remain the same
–i.e if xi and xj are neighbors then ‖yi − yj‖ =
‖xi − xj‖, where yi and yj are the low-dimensional
representatives of xi and xj . However, we must ex-
press this constraint in terms of the Gram matrix,
B, since this is the variable the semidefinite program
works with (and not Y). Translating the constraint
is simple enough, though, since

‖yi − yj‖2 = ‖yi‖2 + ‖yj‖2 − 2〈yi, yj〉
= 〈yi, yi〉+ 〈yj , yj〉 − 2〈yi, yj〉
= Bii +Bjj − 2Bij .

The constraint, then is

Bii +Bjj − 2Bij = ‖xi − xj‖2

for all neighboring points xi, xj .
We wish to “pull” the remainder of the points as

far apart as possible, so we maximize the interpoint
distances of our configuration subject to the above
constraint. The objective function is:

max
∑

i,j

‖yi − yj‖2 = max
∑

i,j

Bii +Bjj − 2Bij

10

Figure 15.7. An illustration of the idea behind SDE. The top figure is a few points from a sine curve. The
middle figure shows the result of connecting each point to its two neighbors. the bottom shows the result of
the pulling step.

‖ yi − yj ‖2 = ‖ yi ‖ + ‖ yj ‖ −2〈yi, yj〉 (15.11)

= 〈yi, yi〉+ 〈yj, yj〉 − 2〈yi, yj〉
= Bii +Bjj − 2Bij

= ‖ xi − xj ‖2

Of course, we must have B to be semidefinite:

B � 0 (15.12)

Note these constraint (15.11) is only used for neighboring points. Then we wish to pull
the remainder of the points as far apart as possible, so we maximize the inter-point distances
of our configuration subject to the above constraint. The objective function is:

Maximize :
∑

i,j

‖ yi − yj ‖2 (15.13)

=
∑

i,j

Bii +Bjj − 2Bij

=
∑

i,j

Bii +Bjj

= tr(B)

The semidefinite program may be solved by using any of a wide variety of software pack-
ages. One major gripe with SDE is that solving a semidefinite program requires tremendous

15-9

EE 381V Lecture 15 — October 19 Fall 2012

computational resources. State-of-the-art semidefinite programming packages typically can-
not handle an instance more than 2000 points or so on a powerful desktop machine. This is
a a rather severe restriction since real data sets often contain many more than 2000 points.

15-10

