
EE 381V: Large Scale Optimization Fall 2012

Lecture 16 — October 23

Lecturer: Caramanis & Sanghavi Scribe: Chris Slaughter, Ioannis Mitliagkas

Overview:

1. solving the primal via the dual

2. sensitivity analysis

3. semidefinite programming

16.1 Solving the Primal from the Dual

We analyze a simple problem where we can solve the dual much more easily than the primal.
We also recover the primal variables from the solution. Consider the following problem:

min
∑

i fi(xi) (16.1)

s.t. aTx = b (16.2)

We can compute the Lagrangian as

Λ(x; v) =
∑

i

fi(xi) + v(aTx− b) (16.3)

=
∑

i

(vaixi + fi(xi))− vb (16.4)

Computing the dual function,

g(v) = inf
x
Λ(x; v) (16.5)

= −vb+
∑

i

inf
x
(vaixi + fi(xi)) (16.6)

= −vb−
∑

i

f ∗
i (−vai) (16.7)

Note that f ∗
i (θ) = supx(θ

Tx− fi(x)) is called the convex conjugate or Fenchel conjugate
of fi. In many cases, f ∗

i (θ) is known or efficiently computable.
In conclusion we can solve the simple unconstrained dual optimization problem in one

variable:
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max
v

−bv −
∑

i f
∗
i (−vai) (16.8)

By inspecting the first-order optimality conditions, we can recover the primal variables
as x∗

i = −vai.
This example illustrates a case where the dual problem is substantially more tractable

than the primal problem. It is important to note that discovering a tractable dual problem
not only depends on the primal problem, but also its optimization formulation. Hence some
formulations may lead to more tractable duals.

16.2 Sensitivity Analysis

Given an optimization problem, sensitivity analysis asks how the optimal value changes if
we perturb the constraints. Consider the MAX-CUT problem. MAX-CUT computes the
maximum flow, or capacity, through a network of pipes. A practical design question is which
link capacities should be increased to increase maximum flow. It turns out that the good
candidate links are exactly those with active constraints. In this section, we make this idea
more formal.

Consider an optimization problem in modified standard form:

p = minx f0(x) (16.9)

s.t. fi(x) ≤ ui, ∀ i (16.10)

hj(x) = vj, ∀ j (16.11)

It is immediately clear that for ui ≥ 0, an increase in ui leads to lower (better) p∗. We
now prove the following lemma:

Lemma 16.1. 1 Let p∗(u, v) be the optimal value of the above optimization problem with

constraint parameters u and v, and let λ∗, µ∗ be optimal dual variables of p∗(0, 0). Then:

p∗(u, v) ≥ p∗(0, 0)− (λ∗)Tu− (µ∗)Tv

Proof:

p∗(0, 0) = Λ(x∗, λ∗, µ∗) (16.12)

≤ Λ(x, λ∗, µ∗) (16.13)

= f0(x) +
∑

i

λ∗
i fi(x) +

∑

j

µ∗
jhj(x) (16.14)

≤ f0(x) +
∑

i

λ∗
iµi +

∑

j

µ∗
jvj (16.15)

�
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The last line follows from the feasibility of x for (u, v). We now utilize the definition of
derivative to analyze the sensitivity of a single constraint.

Lemma 16.2. Given λ∗ and µ∗ as above,

∂p∗(u, v)

∂ui

= λ∗
i

Proof:

p∗(ui, 0)− p∗(0, 0) ≥ −λ∗
iui (16.16)

Assuming ui > 0,
p∗(ui, 0)− p∗(0, 0)

ui

≥ −λi (16.17)

Assuming ui < 0,
p∗(ui, 0)− p∗(0, 0)

ui

≤ −λi (16.18)

By continuity of p∗, the positive and negative partial derivatives are equal at (0, 0) and we
obtain the lemma. �

16.2.1 Sensitivity of Max-Margin Linear Classifiers from KKT

Conditions

Recall the max-margin linear classification problem:

min ||w||2
2

(16.19)

s.t. yi(w
Tx− b) ≥ 1 ∀ i (16.20)

We know that the hyperplane normal can be recovered from dual variables as w =
∑

i αiyixi. Yet not each data point xi is required to define w. By complementary slackness,
if yi(w

Tx− b) > 1, then necessarily αi = 0. But the converse does not hold. That is, if i is
such that yi(w

Tx − b) = 1, it is not necessarily true αi > 0. It turns out that which αi are
non-zero is related to the dimensionality of the feature space and the number of data points
on the margin. In an n-dimensional feature space, we have n+ 1 linear constraints on {αi}
per the equations for (w, b). Hence if more than n + 1 data points lie on the margin, it is
possible that for some i such that yi(w

Tx− b) = 1, the corresponding αi is in fact 0.

16.3 Semi-Definite Programming

A very important sub-class of convex problems, that of Semi-Definite Programming problems
can be formulated in its simplest form as:

min cTx (16.21)

s.t. G+
∑

i

xiFi � 0, (16.22)
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where G, {Fi}i are symmetric matrices. Constraints of this type are referred to as Linear

Matrix Inequalities. SDPs have risen to popularity for being quite powerful and relatively
easy to solve. Using modern solvers, dealing with SDPs is almost as simple as dealing with
instances of Linear Programming.

Some problems can involve a number of constraints each of which can be formulated as
an LMI. It is quite straight-forward to argue that the formulation involving a single LMI is
as general. Consider the problem

min cTx (16.23)

s.t. A+
∑

i

xiBi � 0 (16.24)

M +
∑

i

xiNi � 0. (16.25)

We can formulate it as an equivalent SDP with a single LMI using

G =

[

A 0
0 M

]

, Fi =

[

Bi 0
0 Ni

]

. (16.26)

The most general form of SDP optimizes over a variable X, which is itself a matrix. Then
it receives the form:

min 〈A,X〉 (16.27)

s.t. 〈X,Fi〉 = bi, ∀i (16.28)

X � 0. (16.29)

16.3.1 The Dual

In this section we will calculate the dual of the standard SDP form, as described in (16.22).
Using the Lagrangian we can equivalently write:

inf
x
sup
Z�0

cTx− 〈Z,G+
∑

i

xiFi〉 (16.30)

To verify the validity of the Lagrangian multipliers added here, recall that

X � 0 ⇔ 〈A,X〉 ≥ 0, ∀A � 0. (16.31)

Finally, the dual can be written as:

min −〈G,Z〉 (16.32)

s.t. 〈Fi, Z〉 = ci, ∀i (16.33)

Z � 0. (16.34)
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16.3.2 Applications and Specializations

It is often useful to be able to reformulate weaker problem classes as SDP instances, especially
when one would like to bestow those classic problems with an additional, applitcation specific,
constraint in the form of an LMI. For example, it is very common for LPs or Quadratic
Programs to be rewritten as SDPs, when there is need to optimimize under uncertainty for
problem parameters (Robust Optimization).

Starting with Linear Programming,

min cTx (16.35)

s.t. aTx ≤ b (16.36)

we can easily reformulate this as an SDP by picking appropriate diagonal matrices F and G.
Similarly, instances of Quadratically Constrained Quadratic Programming (QCPC) can

be transformed into SDPs. Consider the general formulation of a QCQP:

min f0(x) (16.37)

s.t. fi(x) ≤ 0, ∀i, (16.38)

where, without loss of generality,

fi(x) = (Aix+ b)T (Aix+ bi)− cTi x− di. (16.39)

Recall that the Schur complement of a matrix

X =

[

A B

BT 0

]

, (16.40)

is defined as S = C −BTA−1B. Also,

X � 0 ⇔ A � 0 orS � 0 (16.41)

and
IfX � 0 thenA � 0 ⇔ S � 0. (16.42)

Exploiting these properties, we can rewrite the same QCQP as an SDP:

min
x,t

t (16.43)

s.t.

[

I A0x+ b0
A0x+ b0 cT

0
x+ d0 + t

]

� 0 (16.44)

[

I Aix+ bi
Aix+ bi cTi x+ di

]

� 0. (16.45)
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