
EE 381V: Large Scale Optimization Fall 2012

Lecture 17 — October 25

Lecturer: Caramanis & Sanghavi Scribe: Natalia Arzeno-Gonzalez, Joyce Ho

17.1 Last time

In the previous lecture, we defined linear matrix inequalities (LMIs) as:

F (x) = F0 + x1F1 + x2F2 + ...+ xnFn � 0, Fi ∈ Sn

We also defined the standard formulation of semidefinite programming (SDP):

min cTx (17.1)

s.t F (x) � 0

We covered two applications of SDP, linear programming and quadratically constrainted
quadratic programs.

17.2 Applications of SDP

SDP is useful for finding matrices with eigenvalues that satisfy certain properties. We will
look at 4 more examples of SDP. Further applications are covered in Vandenberghe and
Boyd’s paper on semidefinite programming [2].

17.2.1 Matrix with largest eigenvalue

The optimization problem we’d like to solve is finding the matrix X ∈ C with the largest
eigenvalue. Though the constraint X ∈ C is not a LMI, the problem can be formulated
using SDP as:

maxλmax(F (X)) ≡

{
min
X,t

t

s.t tI − F (X) � 0

17.2.2 Sum of r largest eigenvalues

Suppose we would like to minimize the sum of the r largest eigenvalues of A. Although the
ith eigenvalue, for i 6= 1 is neither convex or concave, the sum of the first r eigenvalues is a
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concave function. Thus the problem can be formulated using SDP [2]:

min rt+ Tr(X)

s.t tI +X − A � 0

X � 0

17.2.3 Sum of singular values of a symmetric but not PSD matrix

Consider the problem of minimizing the sum of the singular values of a symmetric ma-
trix. Note that for a symmetric matrix, the singular values are just the magnitude of the
eigenvalues.

min
X

∑
i

|λi(X)| (17.2)

s.t X ∈ C
X = XT

Fact Every symmetric matrix X can be described as the difference of two positive semidef-
inite matrices (X = X+ −X− where X+, X− ∈ Sn+) .

Proof: Using eigenvalue decomposition:

X = U︸︷︷︸[
U+ U−

]
[
Λ+ 0
0 Λ−

]
UT︸︷︷︸[

U+ U−
]T

X = U+Λ+(U+)T︸ ︷︷ ︸
PSD

+U−Λ−(U−)T︸ ︷︷ ︸
NSD

�

Fact If X � 0 then
∑
λi(X) = Tr(X).

Then problem 17.2 can be rewritten as:

min Tr(X+) + Tr(X−)

s.t X+ −X− ∈ C
X+ � 0, X− � 0

17.2.4 Sum of Squares

Consider the following optimization problem (univariate polynomial of degree k):

min f(x) = f0 + f1x+ f2x
2 + ..+ fkx

k (17.3)
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This is a non-convex optimization problem. However, we can reformulate problem 17.3 by
introducing a variable γ:

max
γ

γ (17.4)

s.t. f(x)− γ ≥ 0 ∀x

Fact A univariate polynomial is positive if and only if it is a sum of squares.

f(x) ≥ 0⇔ ∃ h1(x), h2(x) s.t. f(x) =
∑
i

hi(x)2

The fact can then be used to rewrite the constraint in problem formulation 17.4. Define

x =


1
x
x2

...
xk

 and h(x) =
[
h0 h1 . . . hk

]︸ ︷︷ ︸
hT

x. Then we know that h(x)2 = xThhTx = xTF (γ)x

where F (γ) � 0. So the constraint:

f(x)− γ ≥ 0 ∀x⇔ ∃ F (γ) � 0 s.t. xTF (γ)x ∀x

The problem formulation now is:

max
γ,F

γ

s.t. f(x)− γ = xTFx ∀x
F � 0

Note that the first constraint is still not a linear matrix inequality, but we can replace it
with linear constraints.

f0 − γ = F00

f1 = F01 + F10

f2 = F02 + F11 + F20

...

17.3 Log Determinant Optimization

So far we have studied SDP when the objective is a linear function. In log determinant
optimization, the objective can be a particular nonlinear function. The general form of the
problem is

min
x

cT − log detG(x) (17.5)

s.t. G(x) � 0

F (x) � 0
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Fact − log detG(X) is a convex function of G(X).

Proof: We follow the proof in section 3.1 of Boyd and Vandenberghe [1]. To show that
− log detX is convex inX overX � 0, it is sufficient to show that, for t ∈ R, − log det(Z+tY )
is convex in t for all Z � 0, and any symmetric Y .
Define f(X) = − log detX and g(t) = f(Z + tY ), restricting g such that Z + tY � 0.
Without loss of generality, assume t = 0 is inside this interval so that Z � 0. Then we have

g(t) = − log det(Z + tY )

= − log det(Z1/2(I + tZ−1/2Y Z−1/2)Z1/2)

= −
n∑
i=0

log(1 + tλi) + log detZ

where λ1, . . . , λn are the eigenvalues of Z−1/2Y Z−1/2. The first and second derivatives of the
function are:

g′(t) = −
n∑
i=1

λi
1 + tλi

g′′(t) =
n∑
i=1

λ2
i

(1 + tλi)2

Notice that g′′(t) is always nonnegative, so f is convex. �

One advantage of writing an optimization problem as a log determinant optimization is
that algorithms such as Newton’s method and gradient descent can be made more efficient
for this type of problem.

17.4 Applications of Log Determinant Optimization

17.4.1 Minimum volume ellipsoid

Given points x1, . . . , xn we want to find the minimum volume ellipsoid containing all the
points. Recall that an ellipsoid can be thought of as a linear transformation on a sphere,
where, in order to preserve volume, the transformation has to be invertible. We can also char-
acterize an ellipsoid by its transformation back into a ball (inverse transform parametriza-
tion), as:

ε = {x : ||Ax+ b|| ≤ 1} (17.6)

With this parametrization of an ellipsoid, we have vol ∝ detA−1. Then, in order to find the
ellipsoid with minimum value, we want min detA−1, which is equivalent to min log detA−1,
and thus we can write the problem as

min
A

− log detA (17.7)

s.t. ||Axi − b|| ≤ 1 for i = 1, . . . , n
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Figure 17.1. The linear transformation from the unit ball to an ellipsoid and the inverse transformation
back to a unit ball.

However, the constraints are not written as in linear matrix inequality form. We then use
the Schur complement to rewrite the problem as

min − log detA (17.8)

s.t.

[
I Axi − b

(Axi − b)T 1

]
for i = 1, . . . , n

A � 0

17.4.2 Maximum volume ellipsoid inside a polyhedron

Consider the problem of finding the ellipsoid with maximum volume that fits inside the
polyhedron P = {aT

i x ≤ bi for i = 1, . . . ,m} (Figure 17.2). For this problem, we will
parametrize the ellipsoid in terms of the transform from sphere to ellipsoid:

Figure 17.2. An ellipsoid inside a polyhedron.
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ε = {Cy + d : ||y|| ≤ 1} (17.9)

With this parametrization of an ellipsoid, we have vol ∝ detC. The problem can then be
written as

max
C,d

log detC (17.10)

s.t.

(
sup
||y||≤1

aTi Cy

)
+ aTi d ≤ bi

where the constraint can be rewritten as

||aTi C||+ aTi d ≤ bi

||aTi C||2 ≤
(
bi − aTi d

)2

As with the minimum volume ellipsoid problem, we have to rewrite our constraints as linear
matrix inequalities. The final problem then becomes

max
C,d

log detC (17.11)

s.t.

[
(bi − aTi d)I Cai

(Cai)
T (bi − aTi d)

]
� 0

The form of equation (17.10) is similar to what we saw for robust optimization, with the
constraint written as aTi Cy + aTi ≤ bi ∀y such that ||y|| ≤ 1.

17.4.3 Gaussian maximum likelihood

For a zero-mean m-dimensional multivariate Gaussian: N (0,Σ),

p(x; Σ) =

(
1

2π det(Σ)

)m/2
exp

(
−xTΣ−1x

2

)

log p(x; Σ) ∝ −m
2

log det(Σ)− xTΣ−1x

2

If we perform a change of variables: Θ = Σ−1:

log p(x; Θ) =
m

2
log det(Θ)− 1

2
〈Θ, xxT〉

In the maximum likelihood problem, given x1, . . . , xn we want to find

arg max
Θ

n∏
i=1

p(xi; Θ) =
∑
i

log p(xi; Θ)

s.t. Θ � 0
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The problem in log determinant form then becomes

arg max
Θ

m

2
log det Θ− 〈Θ, Σ̂〉 (17.12)

Where Σ̂ is the empirical covariance matrix of X. This formulation doesn’t seem interesting
from a probability standpoint, since we would just have Σ = Σ̂. However, this formulation
becomes useful in cases where the number of samples is much less than the number of
dimensions or when we have a constraint on what the Gaussian should be, such as imposing
a prior on Θ.

17.4.4 Gaussian channel capacity

Given a channel y = x + v, with input x ∼ N (0,Σ) and additive noise v ∼ N (0, R),
where R is known,we want to find the Σ that maximizes the capacity of the channel. When
y, x, v ∈ Rn, the model can represent n parallel channels or one channel at n time instants
or n frequencies. The channel capacity is the maximum mutual information over Σ subject
to power constraints. Mutual information between x and y is given by [3]

1

2
(log det(Σ +R)− log det(R)) =

1

2
log det(I +R−1/2ΣR−1/2)

When our constraint is a limit on the average total power, E(xTx/n) = Tr(Σ)/n ≤ P , the
problem can be written as

max
1

2
log det(I +R−1/2ΣR−1/2) (17.13)

s.t. Tr(Σ) ≤ nP

Σ � 0

This is similar in form to the Waterfilling problem we saw in Lecture 9. Let the eigenvalue
decomposition of R be R = V ΛV T, we can introduce a new variable Σ̃ = V TΣV and rewrite
the problem as

max
1

2
log det(I + Λ−1/2Σ̃Λ−1/2) (17.14)

s.t. Tr(Σ̃) ≤ nP

Σ̃ � 0

The solution will have Σ̃ as a diagonal matrix since the off-diagonal elements do not
appear in the constraints but would decrease the objective.
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