
EE 381V: Large Scale Optimization Fall 2012

Lecture 1 — August 30

Lecturer: Caramanis & Sanghavi Scribe: Sarabjot Singh & Ahmed Alkhateeb

In this lecture we give the basic definition of a convex set, a convex function, and convex
optimization. As an application of these ideas, we derive the characterization of an optimal
solution to an unconstrained convex optimization problem.

1.1 Formulation of Convex Optimization Problems

A typical formulation of a convex optimization problem is as follows:

min : fo(x)

s.t. : fi(x) ≤ 0, i = 1, . . . ,m.

We also often write the problem with an abstract (convex) set constraint:

min : fo(x)

s.t. : x ∈ X ,

where fo is a convex function and X is a convex set.

1.1.1 Convex Sets

Definition 1. A set X is called a convex set if and only if the convex combination of any
two points in the set belongs to the set. In symbols:

X ⊆ Rn is convex ⇔ for any x1, x2 ∈ X , λx1 + (1− λ)x2 ∈ X ∀λ ∈ [0, 1]. (1.1)

Definition 2. A hyperplane, H is a set defined as

H = {x ∈ Rn : sTx = b}(s 6= 0), (1.2)

where b is the offset and s is the normal vector. If b = 0, H is a (n−1) dimensional subspace.

Definition 3. A halfspace, H+ is a set defined as

H+ = {x ∈ Rn : sTx ≤ b}(s 6= 0), (1.3)

where b is the offset and s is the normal vector.
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Figure 1.1. Example of convex sets

Definition 4. A polyhedron is an intersection of finite number of halfspaces and hyper-
planes. A polytope is a polyhedron that is also bounded. Thus, the positive orthant is a
polyhedron but not a polytope.

A very interesting set that turns out to be useful for many applications, and in general
comes up frequently in convex optimization, is the set Sn

+, of symmetric n×n matrices with
non-negative eigenvalues. As a simple exercise, we can show that this set is in fact convex.

Proof: We use the fact that a symmetric matrix M is in Sn
+ iff xTMx ≥ 0 ∀x ∈ Rn. Using

this, checking convexity becomes straightforward. For a convex combination of any two
matrices M1,M2 ∈ Sn

+ we have

xT (λM1 + (1− λ)M2)x = λxTM1x+ (1− λ)xTM2x

≥ 0

Hence, λM1 + (1− λ)M2 ∈ Sn
+ ∀λ ∈ [0, 1]. �

Definition 5. A subspace in Rn is a set which is closed under linear combination of the
constituent vectors, or

V = {w :
K∑
i=1

λivi = w, ∀λi ∈ R, vi ∈ V} (1.4)
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Remark 1. The nullspace of a m× n matrix A given by

null(A) = {v : Av = 0}

is a subspace. This can be shown by using the distributivity of matrix multiplication over
addition.

Remark 2. The range of a m× n matrix A given by

range(A) = {Av ∈ W}

is a subspace as
K∑
i=1

λiTvi = T

(
K∑
i=1

λivi

)
= Tv0 ∈ W ,

where v0 is defined as the
∑K

i=1 λivi.

Definition 6. An affine subspace in Rn is a set which is closed under affine combination of
the constituent vectors, or

V = {w :
K∑
i=1

λivi = w, ∀λi, s.t
K∑
i=1

λi = 1, vi ∈ V} (1.5)

Several operations preserve convexity. Here are a few:

• If C1 and C2 are two convex sets, then C1 ∩ C1 remains convex. In fact, the same holds
true for arbitrary intersections of convex sets.

Proof: Let x1, x2 ∈ C1 ∩ C1, and let x be a point on the line segment between x1 and
x2. Then, x lies in both C1 & C2 as they are convex. Consequently, x ∈ C1 ∩ C1. �

• If C1 and C2 are two convex sets, then their cartesian product is convex, i.e.

C1 × C2 =

{(
x
y

)
: x ∈ C1, y ∈ C2

}
is convex.

Proof: Let u, v ∈ C1 × C2 where u =

(
u1
u2

)
, v =

(
v1
v2

)
, and let w =

(
w1

w2

)
=

λu+ (1− λ) v. Now, as w1 ∈ C1 and w2 ∈ C2, then w ∈ C1 × C2.
�

Definition 7. A convex hull of a set C is the set of all convex combinations of points in C.
See Fig. 1.2 for an illustration.
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Figure 1.2. Convex hull

1.1.2 Convex functions

We give three definitions of convex functions: A basic definition that requires no differen-
tiability of the function; a first-order definition of convexity that uses the gradient; and a
second-order condition of convexity. We show that (for smooth functions) these three are
equivalent. Later in the course, it will be important to deal with non-differentiable functions.

First, we define the set of points where a function is finite.

Definition 8. The domain of a function f : Rn → R is denoted dom(f), and is defined as
the set of points where a function f is finite:

dom(f) = {x ∈ Rn : f(x) <∞}.

Definition 9. A function f : Rn → R is convex if for any x1, x2 ∈ dom(f) ⊆ Rn, λ ∈ [0, 1],
we have:

λf(x1) + (1− λ) f(x2) ≥ f (λx1 + (1− λ)x2) . (1.6)

This inequality is illustrated in Figure 1.3.

As a simple application of this definition, we can show that indeed, the feasible set of the
convex optimization problem written above is indeed convex. That is, the set {x : f(x) ≤ a},
is convex. This is called the level set of a function. It is convex for any value of a (note that
the empty set is convex by convention), and for any convex function f . We show this now.
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Figure 1.3. Convex functions

Proof: Basically, it is to be shown that if x1, x2 ∈ C then any convex combination λx1 +
(1− λ)x2 ∈ C. If x1, x2 ∈ C then

f(λx1 + (1− λ)x2)
(a)

≤ λf(x1) + (1− λ)f(x2) ∀λ ∈ [0, 1]

(b)

≤ λa+ (1− λ)a ∀λ ∈ [0, 1]

= a,

where (a) follows by using the convexity of f and (b) follows from using the definition of the
level set. �

We now give the first-order condition for convexity.

Definition 10. Suppose a function f : Rn → R is differentiable. Then it is convex if and
only if

f(y) ≥ f(x) +∇f(x)T (y − x) . (1.7)

Proposition 1. For differentiable functions, the two definitions above are equivalent.

Proof: Consider first a univariate function. Suppose a function f satisfies the derivative-free
definition of convexity. Then we know that for any x1, x2 ∈ dom(f), and any λ ∈ [0, 1],

f(x1 + λ(x2 − x1)) ≤ (1− λ)f(x1) + λf(x2).

Rearranging terms and dividing by λ, we obtain:

f(x2) ≥ f(x1) +
f(x1 + λ(x2 − x1))− f(x1)

λ
.
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Taking λ to zero, we obtain the first-order condition for convexity.
Conversely, suppose now that function f satisfies the first-order condition. Pick points

x1 < x2, and let x̄ = λx1 + (1− λ)x2 be some point in the convex hull (λ ∈ (0, 1)). Drawing
the picture of the first-order condition from x̄, and how both x1 and x2 are underestimated,
should immediately convey the intuition of the equivalence. To see it algebraically: the two
underestimates are:

f(x1) ≥ f(x̄) + f ′(x̄) · (x̄− x1),
f(x2) ≥ f(x̄) + f ′(x̄) · (x̄− x2).

Multiplying the first inequality by λ, the second by (1 − λ) and adding, we recover the
derivative-free condition.

For the multivariate case, we use the fact that if a function is convex along all line
segments, then it is convex, in which case this reduces to the above proof. �

We now give the final definition of convexity.

Definition 11. Suppose that a function f : Rn → R is twice differentiable. Then f is
convex iff its Hessian is positive semidefinite.

As an example, consider the function:

f(x) = ‖Ax− b‖22.

Expanding, we have f(x) = x>A>Ax− b>Ax− x>A>b+ ‖b‖22. The Hessian of this is A>A,
which is positive semidefinite, since for any vector x, x>(A>A)x = ‖Ax‖22 ≥ 0.

Proposition 2. The definition give above is equivalent to the previous two definitions. That
is, a twice differentiable function f is convex if

∇2f(x) ∈ Sn
+. (1.8)

Proof: One way to prove this is via Taylor’s theorem, using the Lagrange form of the
remainder. To prove that a function with positive semidefinite Hessian is convex, using a
second order Taylor expansion we have:

f (y) = f (x) +∇f(x)T (y − x) + (y − x)T ∇2f (x+ α (y − x)) (y − x) (1.9)

for some value of α ∈ [0, 1]. Now, since the Hessian is positive semidefinite,

(y − x)T ∇2f (x+ α (y − x)) (y − x) ≥ 0, (1.10)

which leads to
f (y) ≥ f (x) +∇f(x)T (y − x) , (1.11)
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which is the first-order condition of convexity. Hence, this proves that f (x) is convex. For
the reverse direction, showing that convexity implies positive semi definiteness of the Hessian,
again we can use Taylor’s theorem. However, there is a slightly delicate issue because of the
Hessian. For this, we need to use some properties of symmetric matrices, to claim that if for
some orthonormal basis {xi}, a matrix A satisfies x>Ax ≥ 0, then A is positive semidefinite.
This completes the proof. �

Now let us revisit the basic convex optimization problem we saw at the beginning of the
lecture:

min : fo(x)

s.t. : fi(x) ≤ 0, i = 1, . . . ,m.

If all functions are convex, then the feasible set is convex. The fundamental consequence
of convexity is that local optimality implies global optimality. This notion will prove ex-
tremely useful. In terms of analysis, it implies that we can characterize the optimal solution
of a convex optimization problem using only local conditions. In terms of algorithms, it
means that doing things that are locally optimal will result in a globally optimal solution.
See also the problem in Homework One.

1.1.3 Optimality Conditions: Unconstrained Optimization

We now give optimality conditions for unconstrained optimization. These are the familiar
first-order conditions of optimality for convex optimization. While simple, the condition is
extremely useful both algorithmically and for analysis.

Unconstrained optimization

The formulation of an unconstrained optimization problem is as follows

min : f(x)

where f : Rn → R is smooth and convex. In these problems, the necessary and sufficient
condition for the optimal solution xo is

∇f(x) = 0 at x = xo. (1.12)

The intuition here is simple: if there are no local directions of descent, then a point must be
locally optimal, which in turn (thanks to convexity) implies that it is globally optimal. We
can see more precisely that the condition ∇f(x0) = 0 implies global optimality by using the
first order conditions for convexity.

1-7



EE 381V Lecture 1 — August 30 Fall 2012

Proof: Recall that if f is convex, we have

f(y) ≥ f(x) +∇f(x)T (y − x) ∀y.

At x = xo, ∇f(xo) = 0 and hence this reduces to

f(y) ≥ f(xo) ∀y,

which indeed is the statement that xo is a global optimum. �

Note of course that this need not be unique. For uniqueness, we need a stronger version of
convexity. This will be addressed in the next lecture.

Constrained optimization

Next we consider a general constrained convex optimization problem.

min f(x)

s.t x ∈ X ,

where f : X → R is convex and smooth. The same intuition used above still applies here: a
point xo is globally optimal if it is locally optimal. Locally optimal means that there are no
directions of descent that are feasible, i.e., that stay inside the feasible set X . We make this
precise in the next lecture.
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