
EE 381V: Large Scale Optimization Fall 2012

Lecture 20 — November 8

Lecturer: Caramanis & Sanghavi Scribe: Jason Jo

20.1 Last time

In the previous lecture, we established convergence results for subgradient descent methods.
Furthermore we proved the existence of a sequence of step sizes {αk} such that we achieve

the optimal convergence rate of O
(

1√
k

)
where k denotes the iterate number.

20.2 Stochastic Subgradient Methods

We have previously covered various descent methods: gradient, coordinate, Newton’s Method,
etc. These methods were deterministic. Meaning that if we knew the previous iterate x(k),
we could determine the next iterate x(k+1) with absolute certainty. For various reasons we
want to introduce randomness into our descent methods. In general we have the following
two cases in which it may be advantageous to use random methods:

1. We may have a deterministic problem, but it may be extremely large scale and using
randomness makes it easier or tractable.

2. Or the problem inherently involves randomness in its formulation.

For the remainder of this lecture, we will focus on the first case and we will cover the second
case in the next lecture, Lecture 21. We note that for the first case, it will be crucial to
derive some sort of probabilistic control of the algorithm and obtain some sort of “with high
probability” convergence results.

20.2.1 Examples

1. Support Vector Machines. Recall we used Support Vector Machines to classify
points xi ∈ Rn with labels yi ∈ {+1,−1} for i ∈ [m] using a linear classifier.

In the above situation in which the data is linearly separable, we may pose the following
optimization problem:

minw
1

2
||w||22 (20.1)

s.t. yi(〈w, xi〉 − 1) ≥ 1 for all i

which we referred to as maximal margin classification.
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Figure 20.1. A linearly separable dataset and an example of a linear classifier.

But if the data is not linearly separable, then our convex optimization problem is
not feasible. The natural extension is to replace our constraint with a loss function
`(y, 〈w, x〉). Now we may pose the unconstrained optimization problem:

minw
λ

2
||w||22 +

1

m

m∑
i=1

`(yi, 〈w, xi〉) (20.2)

One common loss function used is the hinged loss function `(y, 〈w, x〉) = max(0, 1 −
y〈w, x〉). This is not a differentiable function and if we wish to use a descent method,
we can use the subgradient descent methods from the previous lecture. The λ term can
be interpreted as a tradeoff term between penalizing misclassifications and maximizing
the margin.

Depending on the type of loss function, descent methods may be prohibitively ex-
pensive, i.e. computationally slow. For example, if each data point xi ∈ Rn lives in
extremely high dimensional space, i.e. n � 1 or if we have too many samples m � 1
to process, the time to solve the convex optimization problem is very slow.

To make our problem tractable, instead of processing all the points, we will subsample
our data points in a uniformly random fashion. In particular, at each step k, we
will uniformly choose a subset of indices Sk ⊆ [m] and solve the smaller optimization
problem:

min
w

λ

2
||w||22 +

1

|Sk|
∑
i∈Sk

`(yi, 〈w, xi〉). (20.3)
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We then have the descent direction g̃(k) = λw(k) + 1
|Sk|
∑

i∈Sk ∇w`(yi, 〈w(k), xi〉) where

∇w`(yi, 〈w(k), xi〉) can be the subgradient if ` is not differentiable. And we have the
following Stochastic Subgradient Descent Algorithm for SVM:

w(k+1) = w(k) − ηkg̃(k),

for ηk step size chosen in some manner (maybe exact line search or backtracking line
search) to guarantee descent. For simple gradient descent, we would have had the
descent direction at iterate k:

f (k) := ∇wf = λw(k) +
1

m

m∑
i=1

∇w`(yi, 〈w(k), xi〉). (20.4)

To see how f (k) and g̃(k) are related, observe that:

E[g̃(k)|w(k)] = f (k). (20.5)

Exercise 1. Prove Equation (20.5).

The descent direction g̃(k) is referred to as a Noisy Unbiased Estimator as it agrees
on average with the deterministic object we are estimating. We note that while our
stochastic descent direction g̃(k) agrees with the deterministic descent direction f (k) in
expectation, there will be a variance in our estimates. The more samples we take in
each step, the lower the variance gets. However the more samples we take the longer
it takes per each iteration. Such is the tradeoff.

2. Random Coordinate Descent. We wish to minimize a function f(x), x ∈ Rn.
Random coordinate descent operates at each step k by choosing a coordinate index
i ∈ [n] uniformly random, and then making the following updates:

x
(k+1)
i = x

(k)
i − ηk∇if(x(k)), (20.6)

x
(k+1)
j = x

(k)
j for j 6= i. (20.7)

Since we are choosing the descent coordinate in a uniformly random fashion, we will
again obtain a noisy unbiased estimator.

3. minc∈C fc(xc), where we wish to minimize a sum of convex functions fc, c ∈ C which
each depends on a possible overlapping subset of variables xc. For example in network
capacity problems, we can define node capacity functions and there is no central func-
tion which knows everything. We can handle this optimization randomly by uniformly
choosing one of the convex functions to minimize and perform a descent method on
that, and iterate through.
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20.3 Convergence of Noisy Unbiased Subgradient Meth-

ods

In this section we will focus solely on unconstrained optimization problems.

Definition 1. g̃(x) is a Noisy Unbiased Subgradient (NUS) if:

E[g̃(x)|x] ∈ ∂f(x) a.s. (20.8)

Note that x itself can be random. Recall from our previous examples, we have other sources
of randomness as well. For example, for the SVM we randomly choose which data points to
include in our empirical loss function.

Definition 2. The Stochastic Subgradient Method is defined as:

x(k+1) = x(k) − αkg̃(x(k)), (20.9)

for some appropriately chosen step size αk.

We have the following convergence result:

Theorem 20.1. For f a convex function with minimal value f ∗ > −∞, if we have the
following variance bound:

E[||g̃(x)||2
∣∣x] ≤ G2, (20.10)

and initial error bound ||x(0) − x∗||2 ≤ R2 and fbest,k = mini≤k f(x(i)), then we have that:

E[fbest,k − f ∗] ≤
R2 +G2

∑k
i=0 α

2
i

2
∑k

i=0 αi

. (20.11)

Proof: Conditioning on x(k) we have the following:

E[||x(k+1) − x∗||2
∣∣x(k)] = E[||x(k) − αkg̃

(k) − x∗||2
∣∣x(k)]

= ||x(k) − x∗||2 − 2αkE
[
g̃(k)
∣∣x(k)]T (x(k) − x∗) + α2

kE
[
||g̃(k)||2

∣∣x(k)]
≤ ||x(k) − x∗||2 − 2αk(f(x(k) − f ∗) + α2

kG
2 by our hypotheses

Now we may take the expectations of both sides with respect to x(k) (which is a random
variable) to obtain:

E[||x(k+1) − x∗||2] ≤ E[||x(k) − x∗||2]− 2αk

(
E[f(x(k))]− f ∗

)
+ α2

kG
2. (20.12)
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Iteratively applying this bound yields:

E
[
||x(k+1) − x∗||2

]
≤ E

[
||x(0) − x∗||2

]
− 2

k∑
i=0

αi

(
E[f(x(i))]− f ∗

)
+G2

k∑
i=0

α2
i

≤ R2 − 2
k∑

i=0

αi

(
E[f(x(i))]− f ∗

)
+G2

k∑
i=0

α2
i

⇒ 2
k∑

i=0

αi

(
E[f(x(i))]− f ∗

)
≤ R2 +G2

k∑
i=0

α2
i − E

[
||x(k+1) − x∗||2

]
≤ R2 +G2

k∑
i=0

α2
i

Next observe that fbest,k := mini≤k f(x(i)) ≤ f(x(i)) for all i, therefore we have that:

E[fbest,k] ≤ E[f(x(i))]. (20.13)

Applying this inequality to our previous string of inequalities yields:

(E[fbest,k]− f ∗) 2
k∑

i=0

αi ≤ 2
k∑

i=0

αi

(
E[f(x(i))]− f ∗

)
≤ R2 +G2

k∑
i=0

α2
i ,

implying the desired inequality:

E[fbest,k]− f ∗ ≤ R2 +G2
∑k

i=0 α
2
i

2
∑k

i=0 αi

. (20.14)

And the conclusion holds. �

Recall from the previous lecture, we had the exact same bound for the deterministic
subgradient method, i.e. without the expectations. For a particular choice of the stepsizes
{αi} we can obtain the optimal convergence rate of O(1/

√
k). However all we have shown

is that we have proved this convergence rate in expectation, thus we may only expect it on
average.

Can we expect anything better? Of course we could run the algorithm multiple times and
do some sort of averaging process, but this sounds less than ideal. Observe that structurally
we have obtained a bound on the error in expectation. We may use the Markov Inequality
to obtain a bound in probability. A bound in probability is a stronger result than a bound
in error:
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Theorem 20.2. Markov Inequality. For any random variable X and any a > 0:

P[|X| ≥ a] ≤ E[|X|]
a

. (20.15)

Proof: Consider the scaled indicator function aI|X|≥a. One property of this function is that
aI|X|≥a ≤ X. Taking the expectation yields:

E[aI|X|≥a] ≤ E[X]

⇒ aE[I|X|≥a] ≤ E[X]

⇒ E[I|X|≥a] ≤
E[|X|]
a

⇔ P[|X| ≥ a] ≤ E[|X|]
a

.

�

Using the Markov Inequality, we immediately have the following corollary:

Corollary 20.3.

P[fbest,k − f ∗ ≥ ε] ≤ R2 +G2
∑k

i=0 α
2
i

2ε
∑k

i=0 αi

(20.16)

Therefore we may conclude that with high probability, we will obtain the solution in one
iteration of subgradient descent; we do not have to run subgradient descent numerous times
and do some sort of averaging process. Actually, the stronger a.e.-convergence can be shown
[Source?].

� While we can expect with high probability that our randomized method will have the
same error estimates as the corresponding deterministic methods, it is important to

note that we can only hope to obtain the O(1/
√
k) convergence rate when we choose the

descent step sizes {αi} appropriately. Thus the actual convergence rate in practice may be
far slower; this will vary depending on which problem we are attempting to solve.

20.4 Convergence Results for Random Coordinate De-

scent Method

In this section, we will quote results from Nesterov’s paper on Random Coordinate Descent
[Nesterov].

The Random Coordinate Descent algorithm is defined as:
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Algorithm: Random Coordinate Descent

Data: n is the dimensionality of our parameter x
Initialize x(0);
for k = 0, 1, . . . do

Uniformly choose a coordinate ik ∈ [n];

Set x
(k+1)
ik

= argminxik
f(x

(k)
\ik , xik) ;

Set x
(k+1)
\ik = x

(k)
\ik ;

end

For notational purposes we will define φk := E[f(x(k))]. We then have the following
theorem from [Nesterov]:

Theorem 20.4. If f(x) is a smooth function, x ∈ Rn with a uniform bound on the second
order partial derivatives:

∂2f

∂x2i
≤ L ∀i,

and we have the initial error bound ||x(0) − x∗||2 ≤ R2. Then we have the following conver-
gence result in expectation:

φk − f ∗ ≤
2n

k + 4
LR2. (20.17)

Contrast this convergence rate to the deterministic gradient descent convergence rate
when we assume an upper bound ∇2f � L̂I, we have the convergence rate:

f(x(k))− f ∗ ≤ 2L̂

k + 4
R2. (20.18)

How do these methods compare? How different can L and nL̂ be? Each diagonal entry
of ∇2f is bounded above by L. Because the trace of a symmetric matrix is equal to the
sum of the singular values, and we have furthermore since ∇2f is a symmetric semipositive
definite we have that:

L̂ = λmax

≤
n∑

i=1

λi because ∇2f � 0⇒ λi ≥ 0 ∀i,

=
n∑

i=1

∇2f(i, i) by our trace comment above

≤ nL.

Therefore, in general L̂ ≤ nL and we conclude that the random coordinate descent method
will have a slower convergence rate than the deterministic coordinate descent method. Of
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course the tradeoff is that each iterate is much simpler for the random coordinate descent
method.

Suppose f has better regularity/convexity properties. In particular if f is strongly convex,
we have the following convergence result:

Theorem 20.5. If f is strongly convex with parameters 0 < m ≤ M such that mI �
∇2f �MI, then we have the following convergence rate for the random coordinate descent
method:

φk − f ∗ ≤
(

1− m

nM

)k
(f (0) − f ∗). (20.19)

Let’s again compare the randomized method to its deterministic version. Recall for
the deterministic coordinate descent method under strong convexity assumptions has the
following convergence rate:

f(x(k))− f ∗ ≤
(

1− m

M

)k
(f0 − f ∗)

By comparing their corresponding convergence rates, it becomes clear that the random
coordinate descent method becomes an attractive option once the ratio cost per iterate of
the random method to the cost per iterate of the deterministic method becomes O( 1

n
). Then

this speed up in per iterate time will counter balance the slower linear convergence.
Similar to Stochastic Subgradient Methods, we may apply the Markov Inequality to pass

from convergence in expectation to convergence with high probability.

20.5 Next time

For the next lecture, we will consider the case of stochastic optimization methods when our
problem formation inherently involves randomness. Here the problem itself will be random
and may take the form:

minw Ew[f0(x,w)] (20.20)

s.t. E[fi(x,w)] ≤ 0 for i = 1, . . . ,m.

If each fi is a convex function in x for each w, the overall problem will be convex.
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