
EE 381V: Large Scale Optimization Fall 2012

Lecture 21 — November 13

Lecturer: Caramanis & Sanghavi Scribe: Abhishek Kr Gupta

21.1 Last Lecture

In the last lecture, we have studied stochastic subgradient methods and proved the con-
vergence of noisy unbiased subgradient (NUS) method. We have also seen the randomized
version of coordinate descent method and proved its convergence in expectation. Comparing
it with the deterministic version, we saw that the random coordinate descent method be-
comes an attractive option once the ratio cost per iterate of the random method to the cost
per iterate of the deterministic method becomes O

(
1
n

)
. Then this speed up in per iterate

time will counter balance the slower linear convergence.

21.2 Introduction

Recall the unconstrained optimization problem

min
x
f(x).

We have seen the following results depending on the assumption for f(x):

1. If f(x) is not smooth (for example: L1 norm) which means ∇f(x) is not continuous,
subgradient descent method gives the 1√

k
convergence.

2. If f(x) is smooth (e.g. ∇f(x) is L-Lipschitz continuous), gradient descent method
gives the 1

k
convergence.

There may be other methods (may be for particular functions) which can give better
performance. Consider the following example:

f(x) =
1

2
‖Ax− b‖22 + ‖x‖1 .

This is a type 1 problem described above, as the second term is not smooth. However,
the objective has a special form. It can be represented as sum of smooth and non -smooth
function. Also note that second term ‖x‖1 is “simple” in a sense that we describe precisely
below. In this case, it is conceivable that some tailored method might do better than the
generic guarantees offered by sub gradient descent. Indeed, this is the case. In this lecture,
we introduce what is known as the Proximal method, and show that it provides improved
guarantees. In the next lecture, we discuss ways to build accelerated gradient methods for
generic convex and smooth problems (e.g., we show that for a generic convex smooth function
it is possible to get O(1/k2), i.e., O(1/

√
ε) convergence.
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21.3 Proximal Map

Proximal method requires taking proximal map on each step which is defined as the following:
The proximal mapping or prox-operator of a closed function h(x) is defined as

Proxh(x) = arg min
u
h(u) +

1

2
‖u− x‖22. (21.1)

Note that h(x) is a convex function so the above problem [21.1] is a convex problem, and
in fact a strongly convex problem because of the added Euclidean norm term; therefore the
solution is unique. Also for the proximal method to be efficient, we need that h(x) should
be simple in the sense that solving the problem [21.1] should be easier and fast or may be
even analytical solutions are possible. This condition is required to ensure that each step is
not much costly. We will now see some example functions and their proximal maps.

21.3.1 Examples:

Constant h(x) = 0

If h(x) = 0, the proximal map is given as

Proxh(x) = arg min
u
h(u) +

1

2
‖u− x‖22

= arg min
u
‖u− x‖22 = x,

which is just identity map.

Convex Set Indicator function h(x) = IC(x)

Recall the definition of an Indicator function is given as

IC(x) =

{
0 x ∈ C
∞ x /∈ C

.

The proximal map is given as

Proxh(x) = arg min
u
IC(x) +

1

2
‖u− x‖22

= arg min
u
‖u− x‖22 , u ∈ C

= ProjC(x) = PC(x)

which is the same as projection over set C.
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L1 Norm h(x) = t ‖x‖1
Now consider the case when h(x) is L1 Norm. In that case, proximal map is given as

Proxh(x) = arg min
u
t ‖x‖1 +

1

2
‖u− x‖22.

The above term is separable in indices. Each ith coordinate can be optimized separately and
the ith coordinate is given as

Proxh(x)i = sgn(xi) [|xi| −min{|xi|, t}] .

This operator is known as Soft thresholding operator and is shown in Figure 21.3.1.

Figure 21.1. Soft Threshold Operator

21.3.2 Subgradient Characterization

We will now see some properties of proximal mapping from subgradient perspective. From
optimality conditions of minimization in the definition, we can see that u∗ is optimal point
of h(u) + 1

2
‖u− x‖22 only if 0 ∈ ∂h(x) + (u∗ − x).

In other words,

u∗ = Proxh(x) ⇐⇒ 0 ∈ ∂h(x) + (u∗ − x)

⇐⇒ x− u∗ ∈ ∂h(x)

⇐⇒ h(z) = h(u) + (x− u)T (z − u)∀z.

21.3.3 Properties

Proximal map has following properties:
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Scaling

If h = f(λx+ a), the proximal map of h can be given in terms of f as

Proxh(x) =
1

λ
[Proxλf (λx+ a)− a] .

Separable

If h(x1 + x2) = h1(x1) + h2(x2),

Proxh(x1 + x2) = Proxh1(x1) + Proxh2(x2).

Let us consider an example of L2 norm. let h(x) = ‖x‖22. Then proximal map is given as

Proxth(x) =
x

‖x‖2
(‖x‖2 − t).

21.4 Proximal Gradient Method

We will now deduce a new optimization method based on computing proximal map at each
update step. Consider the unconstrained optimization with objective split in two components

min f(x) where f(x) = g(x) + h(x),

where

• g(x) convex, differentiable, smooth

• h(x) closed convex with inexpensive prox-operator.

The update rule in the proximal gradient algorithm is given as

x+ = Proxth(x− t∇g(x)).

Here t > 0 is step size which can be either constant or determined by line search. Note
that if h(x) = 0, then this method reduces to a gradient descent algorithm. Also if h(x) =
IC(x), then this becomes projected gradient algorithm. [Refer to Sections above]

21.4.1 Interpretation

If we apply the definition of a proximal mapping to update rule, we get the following equation:

x+ = arg min
u
th(u) +

1

2
‖u− x+ t∇g(x)‖22

= arg min
u
h(u) +

1

2t
‖u− x+ t∇g(x)‖22

= arg min
u
h(u) + g(x) +∇g(x)T (u− x) +

1

2t
‖u− x‖22.
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As we can note that second term is simple quadratic local model of g(u) around x. So
x+ minimizes h(u) plus this quadratic local model of g(u) around x. Note that if h = 0, this
will be just gradient descent. In that case update rule is given by

x+ = x− t∇g(x)

= arg min
u
g(x) +∇g(x)T (u− x) +

1

2t
‖u− x‖22.

21.5 Convergence of Proximal gradient Method

In this section, we will see the convergence analysis of Proximal gradient method for fixed
step t. We assume the following for the analysis:

• Step size is less than 1
L

, i.e. t < 1
L

where L is the Lipschitz constant for gradient of g.
In other words, we can say that

‖∇g(x)−∇g(y)| ≤ L ‖x− y‖ .

• Optimum point exists and optimal function value f ∗ > −∞.

We will first define gradient mapping and prove some inequalities.

21.5.1 Gradient Mapping

We can rewrite the update rule as following

x+ = Proxth(x− t∇g(x))

= x− t1
t
(x− Proxth(x− t∇g(x)))

= x− tGt(x),

where Gt(x) is known as gradient mapping and defined as

Gt(x) =
1

t
(x− Proxth(x− t∇g(x))).

Claim 1: Gt(x) ∈ ∇g(x) + ∂h(x− tGt(x)).

Proof: Note that from the definition,

Gt(x) =
1

t
(x− Proxth(x− t∇g(x)))

⇒ x− tGt(x) = Proxth(x− t∇g(x)).

Now recall a basic property of the proximal mapping, that is essentially immediate from the
definition:

u = Proxh(x) ⇐⇒ x− u ∈ ∂h(u).
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Using this here, we get

x− t∇g(x)− x+ tGt(x) ∈ ∂h(x− tGt(x))

⇒ Gt(x) ∈ ∇g(x) + ∂h(x− tGt(x)).

�

Claim 2: If x+ is the update as defined above, the following inequality holds for all z:

f(x+) ≤ f(z)− t

2
‖Gt(x)‖22 + (Gt(x))T (x− z). (21.2)

Proof: Recall from Lecture 4, for a convex function with L-Lipschitz gradient,

g(y) ≤ g(x)−∇g(x)T (y − x) +
L

2
‖y − x‖22 .

Let y = x+ = x− tGt(x), the above can written as

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) + t2
L

2
‖Gt(x)‖22 .

For step size t ≤ 1/L,

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22

⇒ g(x+) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22 . (21.3)

Recall from the gradient map defination,

Gt(x)−∇g(x) ∈ ∂h(x− tGt(x)) = ∂h(x+).

From the definition of subgradient, we can say that

h(z) ≥ h(x+) + (Gt(x)−∇g(x))T (z − x+)

⇒ h(x+) ≤ h(z)− (Gt(x)−∇g(x))T (z − x+). (21.4)

Adding the above two inequalities (21.3) and (21.4), we get,

g(x+) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22

h(x+) ≤ h(z)− (Gt(x)−∇g(x))T (z − x+)

⇒ g(x+) + h(x+) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22

+h(z) + (Gt(x)−∇g(x))T (x+ − z)

⇒ g(x+) + h(x+) ≤ g(z) +∇g(x)T (x− z)− t∇g(x)TGt(x)

+
t

2
‖Gt(x)‖22 + h(z) + (Gt(x)−∇g(x))T (x+ − z)

⇒ g(x+) + h(x+) ≤ g(z) + h(z) +
t

2
‖Gt(x)‖22 + (Gt(x))T (x+ − z).
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We get the following inequality as claimed,

f(x+) ≤ f(z)− t

2
‖Gt(x)‖22 + (Gt(x))T (x− z).

�

21.5.2 Descent Method

We first show that proximal method is a descent method. The inequality (21.2) is true for
all z. So let z = x,

f(x+) ≤ f(x)− t

2
‖Gt(x)‖22 .

So each update give a new x which decreases the function value, So this is a descent method.

21.5.3 Convergence

If we put z = x∗ in (21.2), we get

f(x+)− f(x∗) ≤ − t
2
‖Gt(x)‖22 + (Gt(x))T (x− x∗)

=
1

2t

[
‖x− x∗‖2 − ‖x− x∗ − tGt(x)‖2

]
=

1

2t

[
‖x− x∗‖22 −

∥∥x+ − x∗∥∥2
2

]
f(x(i))− f(x∗) =

1

2t

[∥∥x(i−1) − x∗∥∥2
2
−
∥∥x(i) − x∗∥∥2

2

]
.

If we sum over all i ≤ k, the above can be written as∑
f(x(i))− f(x∗) =

1

2t

[∥∥x(0) − x∗∥∥2
2
−
∥∥x(k) − x∗∥∥2

2

]
≤ 1

2t

[∥∥x(0) − x∗∥∥2
2

]
.

Since f(x(i)) is a decreasing sequence,

f(x(k))− f(x∗) ≤ 1

k

∑
f(x(i))− f(x∗) ≤ 1

2tk

[∥∥x(0) − x∗∥∥2
2

]
= O(

1

k
),

which proves O( 1
k
) convergence.
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21.5.4 Line Search

Recall that we have assumed that t < 1
L

only at one place to prove the following inequality

g(x+ ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖22 (21.5)

But we generally don’t know about L. For that case, we can do a line search to find a t
which satisfies the above inequality (21.5). We will start at t = 1 and decrease it with a
factor of β.

So at each step, the step size taken tk is always between 1
L

and β
L

. So

tmin ≥
β

L

f(x(k))− f(x∗) ≤ 1

2tmink

[∥∥x(0) − x∗∥∥2
2

]
= O(

1

k
).

Therefore the convergence still remains of the order O( 1
k
) for the line search method as

well.
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