
EE 381V: Large Scale Optimization Fall 2012

Lecture 22 — November 15

Lecturer: Caramanis & Sanghavi Scribe: Namyoon Lee and Tianyang Bai

22.1 Recap

We briefly recap what was covered in the previous lecture.

22.1.1 Convergence Rate of Gradient Descent Method

Recall that to solve a convex optimization problem,

min f(x),

we found that gradient descent (and subgradient descent for non-smooth problems) achieved
certain performance guarantees, depending on the certain properties of the function f .
Specifically, we saw the following:

1. If f(x) is only known to be convex, using the subgradient descent method, the conver-
gence rate is O(1/

√
k), i.e., to achieve ε accuracy, we need O(1/ε2) iterations.

2. If f(x) is known to be convex and smooth (assuming L-Lipschitz gradient in the proof),
using the gradient descent method, the convergence rate is O(1/k), i.e., to achieve ε
accuracy, we need O(1/ε) iterations.

3. If f(x) is strongly convex and smooth, using the gradient descent method, we have the
following results:

||xk − x∗||2 ≤
(
κ− 1

κ+ 1

)k

||x0 − x∗||,

where κ = M
m

is the condition number of function f .

22.1.2 Lower Bound on the Iteration Times

Given a problem class and an algorithm, we have been able to provide a convergence analysis.
These are effectively upper bounds on the running times, or iterations required to achieve
some given sub optimality. It is also possible to discuss lower bounds. In order to do this, we
(briefly) describe the Information Complexity Gradient Oracle Model, first pioneered (to the
best of our knowledge) by Nemirovski and Yudin (see also the 2004 textbook by Nesterov).
This allows us to give algorithm-free lower bounds on the number of calls needed to an oracle

22-1

EE 381V Lecture 22 — November 15 Fall 2012

that provides function evaluation and a gradient or sub gradient. We note, however, that
these lower bounds are worst-case, over the corresponding class of functions.

In summary: the lower bounds are given in terms of the number of function and sub-
gradient evaluations, required to obtain an ε-optimal solution to any optimization problem
within the class.

An oracle is a function φ : S → I that answers any query x ∈ S by returning an element
φ(x) in an information set I. In our case, φ(x) = {f(x), ∂f(x)}, the function and subgradient
of f at x.

Specifically, at any given iteration t, the optimization method M queries at xt ∈ S, and
the oracle returns the information φ(xt, f) = {f(x), ∂f(x)}. The method M then uses the
information {φ(x1, f), φ(x2, f), ..., φ(xt, f)} to determine xt+1, the point at which the next
query will be made.

To achieve ε-optimal solution, we have the following results regarding the iteration (query)
times:

1. if f(x) is convex, the lower bound iteration times is O(1/ε2), i.e., O(1/
√
k) in terms of

convergence rate;

2. if f(x) is convex and smooth, the lower bound iteration times is O(1/
√
ε), i.e., O(1/k2)

in terms of convergence rate;

3. if f(x) is strongly convex and smooth with condition number κ = M
m

, then

||xk − x∗||2 ≤
(√

κ− 1√
κ+ 1

)k

||x0 − x∗||.

Note that in case 2 and case 3, a gradient descent method does not achieve the lower bound
convergence rate. Hence this motivates us to find “smarter” methods with an improved
convergence rate.

22.1.3 Methods with Momentum term

It turns out that the lower bounds given above are indeed achievable. The algorithms that
achieve them are essentially no more computationally demanding than the gradient and
sub gradient algorithms we have already seen. The key difference is the addition of what
has been come to be called a momentum term, whereby the next iterate xk+1 depends not
only on the gradient and previous point xk, but also on the point previous to that, xk−1.
This dependence comes through a momentum term βk(xk − xk−1) at iteration k + 1. Thus,
generically, the update looks like:

xk+1 = xk − tk∇f + βk(xk − xk−1).

There are three popular methods of the form above, one of which we have already seen in
detail:

22-2

EE 381V Lecture 22 — November 15 Fall 2012

1. FISTA: we will explore its convergence rate for f convex and smooth.

2. Heavy Ball: we will explore its convergence rate when f is strongly convex and smooth.

3. Conjugate gradient: recall that we had already considered this earlier in the class,
although at that point we did not explore its momentum interpretation, or acceleration
properties.

Exercise 1 Show that there is a momentum term in the non-linear conjugate gradient
method.

Proof: Recall that in the conjugate gradient method:

xk+1 = xk + αkpk, (22.1)

pk = −∇fk + βkpk−1. (22.2)

By (22.1), we have

pk−1 =
xk − xk−1

αk−1

. (22.3)

Substituting (22.2) and (22.3) for (22.1), we have that

xk+1 = xk − αk∇fk + αkβkpk−1

= xk − αk∇fk +
αkβk
αk−1

(xk − xk−1) .

�

22.1.4 Proximal Gradient Descent

Recall from last time the proximal operator of a closed convex function h is defined as

Proxh(x) = arg min
u
{h(u) + ||u− x||2}.

In the proximal gradient method, we assume

f(x) = g(x) + h(x),

where g(x) and h(x) are convex functions and h(x) possibly non-smooth function. Then,
the update is

x+ = Proxth(x− t∇g(x))

= arg min
u

{
h(u) + g(x) +∇g(x)T(u− x) +

1

2t
||u− x||22

}
,

where intuitively, g(x) + ∇g(x)T(u − x) + 1
2t
||u − x||22 can be viewed as the quadratic ap-

proximation of g(u) given g(x).

22-3

EE 381V Lecture 22 — November 15 Fall 2012

22.2 Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA)

In this lecture, we introduce a class of non-descent algorithm called FISTA for solving a
non-smooth convex optimization problem.

22.2.1 Algorithm

Let us consider the following problem:

min
x
f(x),

where f(x) = g(x) + h(x). Here, g(x) and h(x) are convex functions and h(x) possibly
non-smooth function. To solve this problem, we use FISTA algorithm. Basically, the general
step of FISTA is of the form

x(k) = Proxtkh(y − tk∇g(y)), (22.4)

where y = x(k−1)+ k−2
k+1

(
x(k−1) − x(k−2)

)
, tk is a step-size, and initial condition is x(0) = x(−1).

We can re-write algorithm in 22.4 into an equivalent form as

x(k) = Proxtkh(y − tk∇g(y)),

where y = (1 − θk)x(k−1) + θkv
(k−1), θk = 2

k+1
v(k), v(k−1) = x(k−2) + 1

θk−1
(x(k−1) − x(k−2)),

and v(0) = x(0).

22.2.2 Interpretation by Comparison with Proximal Gradient Method

From an algorithm perspective, the main difference between FISTA and the proximal gra-
dient algorithm introduced in the previous lecture is that the Proxtkh(·) operator is not em-
ployed on the previous point x(k−1), but rather at the point y which exploits a specific linear
combination of the previous two points

{
x(k−1),x(k−2)

}
, i.e., we use two steps of memory at

each iteration. Thus, each iteration of FISTA algorithm can be interpreted as a proximal
mapping using extrapolated point y as shown in Fig.22.1. Here, one thing to notice is that
x(k) is feasible in dom h but y may be infeasible in dom h because of extrapolation process.
From a computational complexity point of view, the additional required computation for
FISTA is clearly marginal. This is because the main computational effort at each iteration
in both proximal gradient method and FISTA remains the same: The Proxtkh(·) operator
requires most computation efforts at each step.

22.3 Convergence Analysis

In this lecture we will prove the convergence of FISTA algorithm. The following Theorem is
the main result for the convergence.

22-4

EE 381V Lecture 22 — November 15 Fall 2012

y

Proximal mapping

Figure 22.1. In FISTA xk+1 is the proximal mapping of y, one linear combination of xk and xk−1; while
in proximal gradient, xk+1 is just the proximal mapping of xk.

Theorem 22.1.

ti
θ2i

(
f(x(i))− f ∗) +

1

2
‖v(i) − x∗‖ ≤ 1− θi

θ2i
ti
(
f(x(i−1))− f ∗) +

1

2
‖v(i−1) − x∗‖ (22.5)

Before providing proof for Theorem 22.1, let us first consider two key corollaries used for
proof.

Corollary 22.2. Let us consider a smooth and convex function g(x) with L-Lipschitz con-
dition, i.e., ‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖. If t < 1

L
, then

g(x+) ≤ g(y) +∇g(y)T (x+ − y) +
1

2t
‖x+ − y‖22.

Proof: This proof is done by the definition of convexity of g(x). �

Corollary 22.3. h(x+) ≤ h(z) +∇g(y)T (z− x+) + 1
t
(x+ − y)T (z− x+)

Proof: If u = Proxh(x),

⇐⇒ x− u ∈ ∂h(x)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z− u) ∀z.

⇐⇒ h(u) ≤ h(z) +
1

t
(w − u)T (u−w) ∀w and ∀z. (22.6)

Recall that x+ = Proxth(y − t∇g(y)). Therefore, from 22.6, we have

h(x+) ≤ h(z) +
1

t
(y − t∇g(y)− x+)T (x+ − z)

= h(z) +∇g(y)T (z− x+) +
1

t
(x+ − y)T (z− x+).

This completes the proof. �

22-5

EE 381V Lecture 22 — November 15 Fall 2012

Now, we are ready to prove Theorem 22.1 by using Corollaries 22.2 and 22.3.

Proof: Since f(x) = g(x) + h(x), the upper bound of f(x+) is given by

f(x+) ≤ h(z) + g(y) +∇g(y)T (z− y) +
1

t
(x+ − y)T (z− x+) +

1

2t
‖x+ − y‖22,

≤ h(z) + g(z) +
1

t
(x+ − y)T (z− x+) +

1

2t
‖x+ − y‖22, ∀z

= f(z) +
1

t
(x+ − y)T (z− x+) +

1

2t
‖x+ − y‖22. ∀z (22.7)

Since the inequality in 22.7 holds for all z, we can compute convex combination of upper
bounds for 1) z = x and 2) z = x∗, which is

f(x+)− f ∗ − (1− θ)(f(x)− f ∗)

= f(x+)− θf ∗ − (1− θ)f(x)

≤ 1

t
(x+ − y)T (θx∗ + (1− θx+)) +

1

2t
‖x+ − y‖22.

By plugging the definition of y = (1− θ)x + θv and v+ = x + 1
θ
(x+ − x), we have

f(x+)− f ∗ − (1− θ)(f(x)− f ∗)

≤ 1

2t

[
‖y − (1− θ)x− θx∗‖22 − ‖x+ − (1− θ)x− θx∗‖22

]
=

θ2

2t

[
‖v − x∗‖22 − ‖v+ − x∗‖22

]
.

If the inequality (22.2) holds at iteration i, then we have

ti
θ2i

(
f(x(i))− f ∗) +

1

2
‖v(i) − x∗‖22 ≤

1− θi
θ2i

ti
(
f(x(i−1))− f ∗) +

1

2
‖v(i−1) − x∗‖22,

which completes the proof. �

22.3.1 Analysis for Fixed Step Size

For a fixed step size ti = t = 1
L

, substituting (1− θi)/θ2i ≤ 1/θ2i−1 for Theorem 22.1 , we have
that

t

θ2k

(
f(x(k))− f ∗) +

1

2
‖v(k) − x∗‖22 ≤

1− θ1
θ21

t
(
f(x(0))− f ∗) +

1

2
‖v(0) − x∗‖22

=
1

2
‖x(0) − x∗‖22.

Therefore,

f(x(k))− f ∗ ≤ θ2k
2t
‖x(0) − x∗‖22 =

2L

(k + 1)2
‖x(0) − x∗‖22. (22.8)

From the inequality (22.8), we conclude that FISTA algorithm reaches f(x(k))−f ∗ ≤ ε after
O(1/

√
ε) iterations with the fixed step size.

22-6

EE 381V Lecture 22 — November 15 Fall 2012

22.3.2 Analysis for Backtracking Line Search

In general cases, L is difficult to obtain. Therefore, we have to consider alternative ways to
choose step size ti. Line search method is a good candidate for selecting a reasonable step
size when we do not know L. The exit condition plays an important role in characterizing
line search method. Here, we use the exit condition, which according to Corollary 22.2 is

g(x+) ≤ g(y) +∇g(y)T (x+ − y) +
1

2t
‖x+ − y‖22).

We select step size t(k) by keep reducing as t(k) = βt(k−1) where β < 1 until the exit condition
is satisfied. Hence, in the backtracking line search case, we have

tk ≥ min{1, β/L}, ∀k ∈ N+

Therefore,

f(x(k))− f ∗ ≤ θ2k
2 min{1, β/L}

‖x(0) − x∗‖22 (22.9)

we conclude that with backtracking line search FISTA algorithm still reaches f(x(k))−f ∗ ≤ ε
after O(1/

√
ε) iterations.

22.3.3 From a Lyapunov Function Point of View

We interpret the convergence proof for Theorem 22.1 from a Lyapunov function perspective.
Recall that FISTA algorithm belongs to a class of non-descent algorithm. Therefore, we
cannot show that ‖f(x(k)) − f(x∗)‖ is monotonically decreasing as in the gradient descent
algorithms. In order to prove the convergence of FISTIA algorithm, we considered a type of
Lyapunov functions that includes two terms: 1)

∣∣f(x(k))− f ∗
∣∣ and 2) ‖v(k) − x∗‖. Instead

looking at ‖f(x(k))−f(x∗)‖, we examined and showed that one specific linear sum of the two
terms (we can view such linear combination as the ”Lyapunov function” of FISTA method.)
is monotonically decreasing. We will see this type of convergence proof in the next lecture
with more details.

22-7

