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24.1 Mirror Descent
Earlier, we motivated mirror descent as a way to improve the convergence rate of sub-
gradient descent with respect to the dimension of the problem. Recall that the bound on
the convergence of sub-gradient descent is given by

f (x?best)− f ? ≤
L ·R√
k + 1

,

where L is the Lipschitz constant of the function f with respect to ‖·‖2 and R is the distance
of the initial guess x0 from the optimal point x?: ‖x0 − x?‖2. Also, recall that the sub-
gradient update is given by

x+ = ProjX (x− γtg)

= arg min
u∈X

[〈γg − Oω (x) , u〉+ ω (u)] ,

where g ∈ ∂f (x) and ω (u) = 1
2
‖u‖2

2 is the “distance generating function” (DGF) that is
continuous, differentiable, and strongly convex with respect to ‖·‖2 . The main idea of mirror
descent is to replace ω(u) = 1

2
‖u‖2 with some other DGF so that the bounds are replaced

by L → Lf and R → Rf where Rf is the “size of set” as measured by the new Bregman
divergence DGF ω (·).

f (x?best)− f ? ≤
Lf ·Rf

√
k + 1

,

Note that ω (·) should be α-strongly convex with respect to the norm ‖·‖ used.

24.1.1 Analysis of Convergence

In order to analyze the convergence of mirror descent, we’ll first consider the Lyapunov
function (‖xk − x?‖2) used in the Euclidean case for sub-gradient descent. Then we’ll discuss
how the equation will change for mirror descent.

The key inequality for the convergence analysis of sub-gradient descent is a guaranteed
decrease in the Lyapunov function, which is given, for any u ∈X , by

1

2
‖x− u‖2

2 −
1

2
‖x+ − u‖2

2 ≥ γ 〈g, x− u〉 − 1

2
γ2 ‖g‖2

2 . (24.1)
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Recall from last lecture that the Bregman divergence of is given by

D (u, v) = ω (u)− ω (v)− 〈Oω (v) , u− v〉 .

Therefore, the analog to the Lyapunov key inequality in (24.1) for mirror descent, can be
formed by replacing ‖u− v‖2

2 by the D(u, v) and can be reformulated, for some iteration t,
as

D (u, xt)−D (u, xt+1) ≥ γt 〈gt, xt − u〉 −
1

2α
γ2
t ‖gt‖

2
? , (24.2)

(For w(u) = 1
2
‖u‖2

2, 24.2 this is exactly what we had in 24.1.)
Eq. 24.2 can be rewritten as

[〈Oω (xt) , xt − u〉 − ω (xt)]︸ ︷︷ ︸
Hu(xt)

− [〈Oω (xt+1) , xt+1 − u〉 − ω (xt+1)]︸ ︷︷ ︸
Hu(xt+1)

≥ γt 〈gt, xt − u〉 −
1

2α

∑
γ2
t ‖gt‖

2
? . (24.3)

To complete the convergence analysis, recall, for any u ∈X and for some iteration t,

f (u) ≥ f (xt) + 〈gt, u− xt〉
γt (f (xt)− f (u)) ≤ γt 〈gt, xt − u〉 .

Then, summing (24.3) from t = 0 to t = T forms a telescoping sum that yields

T∑
t=0

γt 〈gt, xt − u〉 ≤ Hu (x0)−Hu (xT )︸ ︷︷ ︸
Θ

+
1

2α

∑
γ2
t ‖gt‖

2
?∑

γt (f (xt)− f (u))︸ ︷︷ ︸
f(xTbest)≤f(xt)

≤

(
f
(
xTbest

)
− f (u)

)︸ ︷︷ ︸
Let u=x?

∑
γt ≤ Θ +

1

2α

∑
γ2
t ‖gt‖

2
?

f
(
xTbest

)
− f ? ≤

Θ + 1
2α

∑
γ2
t ‖gt‖

2
?∑

γt
,

where Θ is the upper bound on ‖x? − x0‖2
2 = diamX , or generally the “size of X measured

by D (·, ·),” the Bregman divergence. f(xTbest) represents the closest that f(·) gets to f ? over
the entire time interval.

Now, consider a specific value for the step size γt at each iteration t,

γt =

√
Θ · α

‖gt‖? ·
√
t
.
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Given this step size, it is possible to show that the error in the optimal function value
εT , f

(
xTbest

)
− f ? can be bounded as follows:

εT ≤ O (1)

√
ΘLf‖·‖√
2
√
T
.

Note that when using the l2-norm L‖·‖ = L‖·‖2 and for the DGF w(·) = 1
2
‖·‖2, we recover

an upper bound that is exactly what we had for subgradient descent.

24.1.2 Simplex Mirror Descent versus Subgradient Descent

A natural question to ask is: when does the convergence rate of mirror descent exceed the
convergence rate of standard subgradient descent. Here’s one scenario: Let the feasible set
be the simplex set scaled by k: X ∈ ∆+

n (k), let the distance generating function beω (x) =∑
xi ln (xi) and let our norm be the l1-norm , ‖·‖ = ‖·‖1. For these parameters, the mirror

descent update is easy. The modulus of strong convexity with respect to the l1-norm is
α = O(1)/R2 and the upper bound Θ ≤ O (1) ln (n). Thus, for this scenario, the upper
bound on the convergence rate is

εT ≤ O
(√

ln (n)
) LF‖·‖1R√

T
.

Now that we have a convergence bound for Mirror Descent with a simplex set, we can
compare this to the bound for subgradient descent, i.e. using the Euclidean norm. We
consider the following ratio comparing the convergence error of the two methods:

εMD−Simplex

εSD
=

O
(√

ln (n)
)
LF
‖·‖1

R
√
T
.

L‖·‖2 ·R√
T

(24.4)

=
O
(√

ln (n)
)

1︸ ︷︷ ︸
(I)

· maxX ‖x− y‖1

maxX ‖x− y‖2︸ ︷︷ ︸
(II)

·
Lf‖·‖1
Lf‖·‖2︸ ︷︷ ︸
(III)

(24.5)

We can break apart Eq. 24.4 into three terms so that we can classify them as either favoring
Mirror Descent or Subgradient descent.

• (I) Always Favors subgradient descent (i.e. the Euclidean norm) since the numerator
is ≥ 1

• (II) This term represents the error in the initial guess. This always favors subgradient
descent since the l1-norm-based numerator is at worst equal to

√
n, where n is the

24-3



EE 381V Lecture 24 — November 27 Fall 2012

dimension of the system and at best is 1. The denominator is always 1 since the set for
subgradient descent is the Euclidean ball. Consequently this ratio is always between 1
and
√
n:1 ≤ ratio ≤

√
n

• (III) Favors Mirror Descent with a simplex set over subgradient descent with a Eu-
clidean set ( 1√

n
≤ ratio ≤ 1)

From this analysis we can make the following conclusions:

1. If our set X is a Euclidean ball and our function f is sensitive to O (1) coordinate and
subgradient descent much better by a factor of

√
n ln (n)

2. If our setX is a simplex and our function f is sensitive to O (n) coordinates, then
Mirror Descent is better by a factor of:

√
n√

ln(n)

24.2 Algorithms that use the Dual
Recall the concept of duality:

The primal of the problem is

min
x

f(x)

subject to h(x) ≤ 0

Ax = b

The Lagrangian for the problem is:

L λ≥0(x, λ, ν) = f(x) + λTh(x) + ν(Ax− b)

The dual objective of the problem is

g(λ, ν) = min
x

L (x, λ, ν)

The solution to the dual is
λ?, ν? = arg max

λ≥0,ν
g(λ, ν)

from which we can recover the optimal solution to the primal by:

x? = argmin
x

L (x, λ?, ν?)
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24.2.1 Primal and Dual Decomposition

Oftentimes, it becomes possible to exploit the problem structure to parallelize the solution
for faster processing. However during parallelizing we often have to deal with one of two
complications:

• Coupled variables

• Coupled constraints

24.2.1.1 Primal Decomposition

The primal decomposition master problem given a coupled variable can be posed as follows:

min
y

φ1(y) + φ2(y)

where φ1 and φ2 are the subproblems defined as follows:

φ1(y) = minx1 f1(x, y)

φ2(y) = minx2 f2(x, y)

The master problem can then be solved by iterating between the master problem and the
individual subproblems. The master problem is always feasible, meaning that the constraints
are always met during the minimization process

24.2.1.2 Dual Decomposition

Similar to primal decomposition, it is possible to parallelize the dual minimization problem
by breaking it into subproblems. For following primal master problem,

min
x1y1x2y2

f1(x1, y1) + f2(x2, y2)

subject to y1 = y2

the Lagrangian can can be formed as follows

L (x1, y1, x2, y2) = f1(x1, y1) + f2(x2, y2) + λ(y1 − y2)

and then split into two subproblems as follows

subproblem 1 minx1y1 f1(x1, y1) + λy1

subproblem 2 minx2y2 f2(x2, y2)− λy2
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The Lagrangian multiplier is used to enforce the primal constraint and can be updated
using the following update equation

λ+ = λ− α(y2 − y1)

where α is the step size. This update equation is effectively gradient ascent on the
dual w.r.t λ. The dual can then be solved by iterating between the subproblems, the update
equation. Unlike primal decomposition, dual decomposition can be infeasible at times during
the minimization process, as the coupled variable can be different in each subproblem. This
concludes coupled variables. Next lecture will review coupled variables and introduce coupled
constraints.
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