
EE 381V: Large Scale Optimization Fall 2012

Lecture 25 — November 29

Lecturer: Caramanis & Sanghavi Scribe: Jeff Mahler and Zhichao Shu

25.1 Introduction

Recall the concept of duality from previous lectures. Given a constained optimization prob-
lem:

min
x

f(x)

subject to h(x) ≤ 0

Ax = b.

The Lagrangian for this problem is:

L(x, λ, µ) = f(x) + λTh(x) + µ(Ax− b),

from which we define the dual objective:

g(λ, µ) = min
x
L(x, λ, µ).

When we have strong duality between the primal and dual problems, we can recover the
primal optimum from the dual. Letting λ∗, µ∗ = argmax g(λ, µ), the optimum of the primal
is

x∗ = argmin
x

L(x, λ∗, µ∗).

In this lecture we introduce the Primal and Dual Decomposition, motivated by using
the above relationship between the primal and dual problem to obtain a faster or parallel
solution to an optimzation problem. This lecture will cover four topics:

1. Coupled variables (e.g. SVM)

2. Coupled constraints (e.g. Network Rate Control)

3. Augmented Lagrangian

4. Alternating Direction Method of Multipliers
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25.2 Coupled Variables

Consider the unconstrained optimization problem:

min
x1,x2,y

f1(x1, y) + f2(x2, y).

We call y the coupling variable for the problem and x1, x2 the local variables for the
subproblems. Note that for a fixed y this problem is separable since f1 does not depend on
x2 and f2 does not depend on x1. Therefore we can solve for the optimal values of f1 and f2
in parallel.

25.2.1 Primal Decomposition

Fixing the value of y, we have the two subproblems:

subproblem 1 : min
x1

f1(x1, y)

subproblem 2 : min
x2

f2(x2, y),

with optimal values φ1(y), φ2(y), respectively. Thus the original problem is equivalent to the
master problem

min
y
φ1(y) + φ2(y)

called the primal decomposition of the original objective. We can solve the master problem
using subgradient descent or Newton’s method (if φi are differentiable), solving each of the
two subproblems on every iteration. If the subproblems are solved in parallel or happen to
be sufficiently easier to solve than the original problem, then this method may be faster.

25.2.2 Dual Decomposition

We can also introduce local versions y1, y2 of the coupled variable y to get the constrained
optimization problem:

min
x1,x2,y1,y2

f1(x1, y1) + f2(x2, y2)

subject to y1 = y2.

The Lagrangian for this problem is:

L(x1, x2, y1, y2, ν) = f1(x1, y1) + f2(x2, y2) + νT (y1 − y2).

This equation is separable, so we can break it up into two subproblems minimizing (x1, y1)
and (x2, y2) separately:

subproblem 1 : min
x1,y1

f1(x1, y1) + νTy1

subproblem 2 : min
x2,y2

f2(x2, y2)− νTy2,
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with optimal values g1(ν), g2(ν), respectively. The master dual problem is

max
ν
g(ν) = g1(ν) + g2(ν),

called the dual decomposition of the original objective. We can solve this master problem us-
ing subrgradient ascent using the subgradient y2−y1 of −g(ν), giving the following algorithm:

Choose initial ν0.
Repeat:

1. Solve subproblems 1 and 2 to obtain y1, y2.
2. Update νk+1 = νk − αk(y2 − y1).

One useful interpretation of the dual decomposition, borrowed from Prof. Stephen S.
Boyd at Stanford University, is to consider y1 the resources consumed by the first subproblem,
y2 the resources supplied by the second subproblem, and ν the price of resources. With this
interpretation, the master algorithm is adjusting the prices at each iteration to ensure that
supply equals demand (y1 = y2) rather than allocating resources directly.

Example 1 - SVM. Consider the problem of classifying a huge number of data points
using a Support Vector Machine (SVM):

min
w

1

N

N∑
i=1

l(xi, yi, w) + r(w),

where l(x, y, w) is the loss function and r(w) constrains the separation of the hyperplane and
the support vectors. We can rewrite this unconstrained problem as a separable constrained
optimization problem by breaking up the constraints into the sets S1 and S2:

[min
w1

1

N

∑
i∈S1

l(xi, yi, w1) +
1

2
r(w1)]

+

[min
w2

1

N

∑
i∈S2

l(xi, yi, w2) +
1

2
r(w2)]

subject to w1 = w2.

Using the dual decomposition and algorithm as described above, we can iteratively classify
the sets S1 and S2 in parallel and update the dual variable ν on each iteration.

25.3 Coupled Constraints

Consider the constrained optimization problem with coupled constraints:

min
x,y

f(x) + g(y)

subject to Ax+By = b.
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25.3.1 Primal Decompostion

We can once again decompose the primal into two subproblems by choosing a value t ∈ Rm:

min
x

f(x)

subject to Ax = t

min
y

g(y)

subject to By = b− t,

which have optimal values φ1(t) and φ2(t), respectively. Once again we can form a master
problem φ1(t) + φ2(t) and minimize with respect to t. Repeatedly solving the subproblems
in parallel and updating t will solve the original objective.

25.3.2 Dual Decompostion

Taking the Lagrangian of the original optimization problem we have

L(x, y, ν) = f(x) + g(y) + νT (Ax+By − b),

which can be separated in x and y to form the subproblems:

subproblem 1 : min
x
f(x) + νTAx

subproblem 2 : min
y
g(y) + νTBy.

This can be solved using the same dual decomposition algorithm used earlier with the sub-
gradient Ax+By − b, giving the update νk+1 = νk − αk(Ax+By − b).

Example 2 - Network Rate Control. Consider the problem of allocating rates of
traffic flow x in a network:

maximize
x

∑
j

Uj(xj)

subject to Rx � C,

where each Uj is concave, R is a matrix where Ri,j = 1 if flow j passes over link i and Ri,j = 0
otherwise and C is the capacity of each link. The Lagrangian for this problem is:

L(x, ν) =
∑
j

Uj(xj) + νT (Rx− C)

=
∑
j

(Uj(xj) +
∑
l∈Rj

νlxj)− νTC.

Thus the Lagrangian is a sum of j decoupled subproblems. Using the dual decomposition
algorithm, given an initial ν we can solve the optimal xj for each subproblem in parallel and
update ν as νk+1 = νk + αk(C −Rx) on each iteration.
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25.3.3 Limitations

Though the dual decomposition may yield a faster or parallel solution to optimization prob-
lems, it is limited by the fact that for a convex optimization problem:

min
x1,x2,y1,y2

f1(x1, y1) + f2(x2, y2)

subject to y1 = y2,

we cannot guarantee that y
(k)
1 − y

(k)
2 → 0 as k → ∞ in general, so the solution to the dual

decomposition may not be the solution to our original problem. This is due to the fact that
a general convex optimization problem may have multiple optimal solutions. However, if the
objective is strictly convex, then it has an unique minimizer and therefore y

(k)
1 − y

(k)
2 → 0 as

k →∞. This motivates the Augmented Lagrangian method.

25.4 Augmented Lagrangian

Consider the following constrained problem:

min f(x)

s.t. Ax = b.

The Lagrangian of the problem is:

L(x, λ) = f(x) + λT (Ax− b).

The Augumented Lagrangian of the problem is:

AugL(x, λ, ρ) = f(x) + λT (Ax− b) + ρ
2
||Ax− b||22.

25.4.1 Algorithm

x(k+1) = arg min
x
L(x, λ(k)),

λ(k+1) = λ(k) + ρ(Ax(k+1) − b)

This method is not vanilla gradient ascent on L(x, λ) on Augmented Lagrangian, but these
updates will get to the optimum of the original L(x, λ). In order to prove the convergence
of this method, it is useful to first introduce the Proximal Point Algorithm.
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25.4.2 Proximal Point Algorithm

Consider the unconstrained optimization problem:

min f(x)

Update x using the following equation:

x(k) = arg min
u

[f(u) + 1
2t(k)
||u− x(k−1)||22]

We can assume that for large t(k), the problem is ”hard” to solve; for small t(k), the problem
is ”easy”.

Next we will show the convergence of the proximal point algorithm, the procedure is very
similar to what we did for proximal gradient algorithm.

It is easy to see that x(k) =Proxt(k)f (x
(k−1)), for simplicity, we write this as: x+ =Proxtf (x).

Define Gt(x) = 1
t
(x−Proxtf (x)), then we have x+ = x− tGt(x).

Claim 25.1. Gt(x) ∈ ∂f(x− tGt(x))

Proof: Notice that x− tGt(x) = x+ =Proxtf (x); and recall a basic property of the proximal
mapping, which is immediate from the definition:

u ∈Proxh(x)⇔ x− u ∈ ∂h(u)

Thus we have:

x− tGt(x)− x ∈ ∂f(x− tGt(x))
⇒ Gt(x) ∈ ∂f(x− tGt(x))

�

Claim 25.2.

f(x+) ≤ f(z) +Gt(x)T (x− z)− t

2
||Gt(x)||22 (25.1)

holds for all z.

Proof: Recall that Gt(x) ∈ ∂f(x − tGt(x)) = ∂f(x+), from the definition of subgradient,
we have:

f(x+) ≤ f(z) +Gt(x)T (x+ − z)

= f(z) +Gt(x)T (x− z) +Gt(x)T (x+ − x)

= f(z) +Gt(x)T (x− z)− t||Gt(x)||22

≤ f(z) +Gt(x)T (x− z)− t

2
||Gt(x)||22

�
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Theorem 25.1. f(x
(k)
best)− f ∗ ≤

||x(0)−x∗||22
2
∑k

i=1 t
(i)

Proof: Put z = x∗ in (25.1), we can get:

f(x+)− f ∗ ≤ Gt(x)T (x− x∗)− t

2
||Gt(x)||22

=
1

2t
[||x− x∗||22 − ||x− x∗ − tGt(x)||22]

=
1

2t
[||x− x∗||22 − ||x+ − x∗||22]

t(i)(f(x(i))− f ∗) ≤ 1

2
[||x(i−1) − x∗||22 − ||x(i) − x∗||22] (25.2)

Sum (25.2) over all i ≤ k, we have:

k∑
i=1

t(i)(f(x(i))− f ∗) ≤ 1

2
[||x(0) − x∗||22 − ||x(k) − x∗||22]

⇒
k∑
i=1

t(i)(f(x(i))− f ∗) ≤ 1

2
[||x(0) − x∗||22

⇒
k∑
i=1

t(i)(f(x
(k)
best)− f

∗) ≤ 1

2
[||x(0) − x∗||22

⇒f(x
(k)
best)− f

∗ ≤ ||x
(0) − x∗||22

2
∑k

i=1 t
(i)

�

Back to Augmented Lagrangian, it can be shown that Augmented Lagrangian is just
proximal point algorithm on −q(λ):

λ(k+1) = arg min
u

[−q(u) + 1
2ρ
||u− λ(k)||22].

Thus we have:

q(λ∗)− q(λ(k)) ≤ ||λ(0)−λ∗||
2kρ

.

25.4.3 Augmented Lagrangian VS. simple Dual decomposition

Plus: Augmented Lagrangian has faster convergence rate with strict convexity.
Minus: Augmented Lagrangian destroys decoupling:

f(x) + g(y) + λT (Ax+By − b) + ρ
2
||Ax+By − b||22.

We have the cross product of x and y in ||Ax + By − b||22 and the above expression can no
longer be decoupled.
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25.5 Alternating Direction Method of Multipliers (ADMM)

x(k+1) = arg min
x
Lρ(x, y

(k), λ(k)),

y(k+1) = arg min
y
Lρ(x

(k+1), y, λ(k)),

λ(k+1) = arg max
λ
Lρ(x

(k+1), y(k+1), λ)

Thus method can restore simple problems for x, y minimization via alternation.

25.6 Homework problem

Sparse + Low Rank matrix decomposition

M = L∗ + S∗,

where L∗ is a low rank matrix and S∗ is a sparse matrix.
We can decompose the matrix by solving:

min ||L||∗ + r||s||1
s.t. L+ S = M.
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