
EE 381V: Large Scale Optimization Fall 2012

Lecture 26 — December 4

Lecturer: Caramanis & Sanghavi Scribe: Tao Huang & Arda Sisbot

26.1 Introduction

This lecture will cover a specific algorithm for parallelizing sub-gradient descent. The result
is that any subgradient descent, which is not serial can be parallelized. For many problems
in machine learning for example, the problem structure will help us parallelize. What can
we expect from parallelizing?

Remember the following result:
1. if f a convex function, O(1√

k
) convergence rate;

2. if f strongly convex - O(log(k)√
k

) convergence rate, much faster but still not linear conver-
gence.
For problems that are decomposable, the idea here is that subproblems can be parallelized.
Even laptops have multiple cores and it has great potential in terms of speedup.

The upgrade takes the form x+ = x − tg. If x+, are serial, then there is not a natural
structure to parallelize them. If you have a convex problem, you know that the number of
updates is 1

ε2
and the best you can get by using n parallel machines is 1

nε2
.This is the best

possible speedup due to parallelizing on n machines. This bound is computed ignoring any
possible modifications to parallelize the algorithm.

Multicore systems have significant performance advantages, including (1) low latency and
high throughput shared main memory (a processor in such a system can write and read the
shared physical memory at over 12GB/s with latency in the tens of nanoseconds); and (2)
high bandwidth off multiple disks (a thousand-dollar RAID can pump data into main mem-
ory at over 1GB/s). The high rates achievable by multicore systems move the bottlenecks in
parallel computation to synchronization (or locking) amongst the processors. Thus, to en-
able scalable data analysis on a multicore machine, any performant solution must minimize
the overhead of locking. Locking can be bad in terms of speedup due to parallelizing. In
some cases locking is necessary. There are some cases where it is not.

Proposal: When the data access is sparse, meaning that individual updating steps only
modify a small part of the decision variables. Memory overwrites are rare and they introduce
barely any error into the computation when they do occur.

26-1

EE 381V Lecture 26 — December 4 Fall 2012

Hogwild!:
Run Stochastic gradient descent in parallel without locks, processors are allowed equal access
to shared memory and are able to update individual components of memory at will.

26.2 Sparse Separable Cost Function

The goal of Hogwild! is to minimize sparse separable cost function f : X ⊆ Rn → R of the
form:

f(x) =
∑
e∈E

fe(xe) (26.1)

Here e denotes a small subset of {1, · · · , n} and xe denotes the values of the vector x on
the coordinates indexed by e. The key observation that underlies the lock-free approach is
that the natural cost functions associated with many machine learning problems of interest
are sparse in the sense that |E| and n are both very large but each individual fe acts only
on a very small number of components of x. That is, each subvector xe contains just a few
components of x.

The cost function [26.1] induces a hypergraph G = (V,E) whose nodes are the individual
components of x. Each subvector xe induces an edge in the graph e ∈ E consisting of some
subset of nodes.

26.2.1 Example

Sparse SVM. Fit a support vector machine to some data pairs E = {(z1, y1), · · · , (z|E|, y|E|)}
where z ∈ Rn and y ∈ {+1,−1} is a label for each (z, y) ∈ E.

min
x

|E|∑
i=1

max(1− yi〈x, zi〉, 0) + λ‖x‖2
2, (26.2)

and we know a priori that zi are very sparse. Let ei ⊆ {1, ..., n} denote the non-zero
components in zi and du denote the number of training examples with non-zero in component
u (u = 1, 2 · · · , n). Then we can rewrite [26.2] as

min
x

|E|∑
i=1

[
max(1− yi〈xei , zei〉, 0) + λ

∑
u∈ei

x2
u

du

]
(26.3)

Matrix Completion. In the matrix completion problem, we are provided entries of a low-
rank, nr × nc matrix Z (rank(Z) = r, r << nr, nc) from the index set E. The goal is to
reconstruct Z from the sparse sampling of data. L is nr × r, and denote its u the row Lu, R

26-2

EE 381V Lecture 26 — December 4 Fall 2012

is nc × r and Rv is the vth row of R. Estimate of Z is obtained from:

min
(L,R)

∑
(u,v)∈E

(
LuR

T
v − Zuv

)2
+
µ

2
‖L‖2

F +
µ

2
‖R‖2

F (26.4)

To put the problem in form [26.1], we rewrite [26.4] as:

min
(L,R)

∑
(u,v)∈E

{
(
LuR

T
v − Zuv

)2
+

µ

2|Eu,·|
‖L‖2

F +
µ

2|E·,v|
‖R‖2

F}, (26.5)

where Eu,· = {v : (u, v) ∈ E} and E·,v = {u : (u, v) ∈ E}.

Inference on Graphs. Maximum Likelihood problem, maxxfX|Y (x|Y = y), with R.v. X,
value x ∈ Rn.

Figure 26.1. Example graph, given this graph, x1 is independent to x3, x4 given x2, x5, x6

fX(x) = 1
Z

exp
∑

e∈E φefe(xe). Maximization of this function will be minimization of a
convex problem.

26.2.2 Quantify “Sparsity”

In the preceding examples, the number of components involved in a particular term fe is
a small fraction of the total number of entries. We formalize this notion by defining the
following statistics of the hypergraph G:

Ω = max
e∈E
|e| (26.6)

∆ = max
1≤v≤n

|{e ∈ E : v ∈ e}|
|E|

(26.7)

ρ = max
e∈E

|{ê ∈ E : ê ∩ e 6= ∅}|
|E|

, (26.8)

where Ω is the size of hyper-edges, ∆ is the maximum fraction of edges that intersect
any variable, ρ determines the maximum fraction of edges that intersect any given edge.

26-3

EE 381V Lecture 26 — December 4 Fall 2012

26.3 Algorithm

26.3.1 Computing Setup

Assume a shared memory model with p processors. The decision variable x is accessible
to all processors. Each processor can read x, and can contribute an update vector to x.
The vector x is stored in shared memory, and we assume that the componentwise addition
operation is atomic, that is

xv ←[xv + a

can be performed atomically by any processor for a scalar a and v = {1, 2, · · · , n}. Atomic
locks do not require any kind of additional structure.
Let bv denote one of the standard basis in Rn, Pv the Euclidean projection matrix onto the
vth coordinate, i.e., Pv = bvb

T
v . Let Ge(x) ∈ Rn denote a gradient or subgradient of the

function fe multiplied by |E|, then,

Ge(x) ∈ |E|∂fe(x).

Here, (Ge)v = 0,∀v /∈ e.

26.3.2 Algorithm, Hogwild!

Each processor runs the following algorithm,
Algorithm:
1. loop
2. Sample e ∈ E uniformly at random
3. Read current state xe evaluate Ge(x)
4. For (v ∈ e), do xv ←[xv − γbTvGe(x), with fixed step size γ.
5. end loop

Note that as a consequence of the uniform random sampling of e from E, we have

E[Ge(xe)] ∈ ∂f(x)

26.3.3 Theoretical Analysis

To make the analysis tractable, we assume that we update with the following “sampling
with replacement” procedure: each processor samples an edge e uniformly at random and
computes a subgradient of fe at the current value of the decision variable. Then it chooses
an v ∈ e uniformly at random and updates

xv ← [xv − γ|e|bTvGe(x)

Assumptions of analysis:

26-4

EE 381V Lecture 26 — December 4 Fall 2012

. fe convex

. f has L-Lipshitz Gradient

. f is m-strongly convex (γ < 1/m)

. ‖Ge(x)‖2 ≤M , ∀x , ∀e

. τ , bound on the lag between when a gradient being computed and when it being written
to memory.
We are going to measure how much time speedup we are going to get by implementing
algorithm.

Theorem 26.1. For any ε > 0 , θ ∈ (0, 1), let

γ =
ϑεm

2LM2Ω(1 + 6ρτ + 4τ 2Ω∆1/2)
(26.9)

Define D0 := ‖x0 − x∗‖2, and let k be an integer satisfying

k ≥ 2LM2Ω(1 + 6ρτ + 6τ 2Ω∆1/2) log(LD0/ε)

ϑεm2
(26.10)

Then after k component updates of x, we have E[f(xk)− f ∗] < ε

Proof: The proof here is an outline. From strong convexity of f(x), we have

(x− x′)T∇f(x) ≥ f(x)− f(x′) +
m

2
‖x− x′‖2,∀x ∈ X.

By setting x′ = x∗, we have

(x− x∗)T∇f(x) ≥ m

2
‖x− x∗‖2,∀x ∈ X. (26.11)

Similar to definition of Pv, let Pe denote the projection on the components indexed by e.
Let k(j) the time is the state of the decision variable’s counter when the update to xj was
read, j − k(j) ≤ τ . We have

xj+1 = xj − γ|ej|PvjGej(xk(j)). (26.12)

By subtracting x∗ from both sides, taking norms and we have

1

2
‖xj+1 − x∗‖2

2 =
1

2
‖xj − x∗‖2

2 − γ|ej|(xj − xk(j))
TPvjGej(xj)−

γ|ej|(xj − xk(j))
TPvj(Gej(xk(j) −Gej(xj))−

γ|ej|(xk(j) − x∗)TPvjGej(xk(j)) +
1

2
γ2|ej|2‖PvjGej(xk(j))‖2 (26.13)

Let aj = 1
2
E[‖xj − x∗‖2

2]. By taking expectations of both sides and using ‖Ge(xe)‖2 ≤ M
almost surely for all x ∈ X, we obtain

aj+1 ≤ aj − γE[(xj − xk(j))
TGej(xj)]− γE[(xj − xk(j))

T (Gej(xk(j))−Gej(xj))]

−γE[(xk(j) − x∗)TGej(xk(j))] +
1

2
γ2ΩM2. (26.14)

26-5

EE 381V Lecture 26 — December 4 Fall 2012

Denote e[i] := (e1, e2, · · · , ei, v1, v2, · · · , vi), that is, the tuple of all edges and vertices selected
in updates 1 through i. xl depends on e[l−1] but not on ej or vj for any j ≥ l. First bound
the third expectation in [26.14]. Since xk(j) is independent of ej we have, also using [26.11],

E[(xk(j) − x∗)TGej(xk(j))] = E[(xk(j) − x∗)T∇f(xk(j))]

≥ mak(j) (26.15)

The first expectation in [26.14],

E[(xj − xk(j))
TGej(xj)] = E[(xj − xk(j))

T∇f(xj)]

≥ E[f(xj)− f(xk(j))] +
m

2
E[‖xj − xk(j)‖2] (26.16)

Moreover, the difference between f(xj) and f(xk(j)) can be estimated by

E[f(xk(j))− f(xj)] =

j−1∑
i=k(j)

∑
e∈E

E[fe(xi)− fe(xi+1)]

≤ γ

|E|

j−1∑
i=k(j)

∑
e∈E

E[Ge(xi)
TGei(xi)]

≤ γτρM2 (26.17)

Here we use

fe(xi)− fe(xi+1) ≤ 1

|E|
Ge(xi)

T (xi − xi+1) =
γ

|E|
Ge(xi)

TGei(xi).

So we have
E[(xj − xk(j))

TGej(xj)] ≥ −γτρM2 +
m

2
E[‖xj − xk(j)‖2] (26.18)

The second expectation in [26.14],

E[(xj − xk(j))
T (Gej(xk(j))−Gej(xj))] = E

 j−1∑
i=k(j),ei∩ej 6=∅

γ|ei|Gei(xk(i))
T (Gej(xk(j))−Gej(xj))

≥ −E

 j−1∑
i=k(j),ei∩ej 6=∅

γ|ei|‖Gei(xk(i))‖‖Gej(xk(j))−Gej(xj)‖

≥ −E

 j−1∑
i=k(j),ei∩ej 6=∅

2ΩM2γ

≥ −2ΩM2γρτ (26.19)

26-6

EE 381V Lecture 26 — December 4 Fall 2012

Combining all there bounds, we have

aj+1 ≤ aj −mγ(ak(j) +
1

2
E[‖xj − xk(j)‖2]) +

M2γ2

2
(Ω + 2τρ+ 4Ωρτ) (26.20)

Using Jensen’s Inequality and Cauchy-Schwartz, we could bound

ak(j) +
1

2
E[‖xj − xk(j)‖2] = aj − E

 j−1∑
i=k(j)

γ|ei|Gei(xk(i))
TPvi(xk(j) − x∗)

≥ aj − τγΩM∆1/2(

√
2a

1/2
j + τγΩM) (26.21)

Thus

aj+1 ≤ (1−mγ)aj + γ2(
√

2mΩMτ∆1/2)a
1/2
j +

1

2
M2γ2Q (26.22)

where
Q = Ω + 2τρ+ 4Ωρτ + 2τ 2Ω2∆1/2

With mγ < 1, find the steady state, which means solving the equation

a∞ = (1−mγ)a∞ + γ2(
√

2mΩMτ∆1/2)a1/2
∞ +

M2γ2

2
Q

Then

a∞ =
M2γ2

2

(
Ωτ∆1/2 +

√
Q/(mγ) + Ω2τ 2∆

)2

≤ M2γ

2m

(
Ωτ∆1/2 +

√
Q+ Ω2τ 2∆

)2

= C(τ, ρ,∆,Ω)
M2γ

2m
(26.23)

For ρ and ∆ sufficiently small,C(τ, ρ,∆,Ω) ≈ 1. Since the square root is concave, we can
linearize [26.22]about the fixed point a∞ to yield

aj+1 ≤ (1−mγ(1− δ))(aj − a∞) + a∞ (26.24)

here, δ =
(

1 +
√

1 + Q
mγΩ2τ2∆

)−1

≤
(

1 +
√

1 + Q
Ω2τ2∆

)−1

Now, since ∇f is Lipschitz, we have

f(x) ≤ f(x′) +∇f(x′)T (x− x′) +
L

2
‖x− x′‖2 (26.25)

Setting x′ = x∗, it gives f(x)− f ∗ ≤ L
2
‖x− x∗‖2, hence

E[f(xk)− f ∗] ≤ Lak (26.26)

To ensure the left hand side to be less than ε, it suffices to guarantee that ak ≤ ε/L. Let

B = C(τ, ρ,∆,Ω)
M2γ

2m

26-7

EE 381V Lecture 26 — December 4 Fall 2012

By [26.23], a∞ ≤ γB.
Choosing γ satisfying [26.9], with this choice, we automatically have γ ≤ ε

2LB
. Let cr =

m(1− δ), if we want to have (1− crγ)ka0 ≤ ε/2, we need to have k ≥ log(2a0/ε)
γcr

, substituting
γ with its bound, we see

k ≥ LM2 log(LD0/ε)

εm2
· C(τ, ρ,∆,Ω)

1− δ
(26.27)

iterations suffice to achieve ak ≤ ε/L. Now, observe that

C(τ, ρ,∆,Ω)

1− δ
≤ 2Ω(1 + 6τρ+ 6τ 2Ω∆1/2). (26.28)

since (1 +
√

1 + x)3/
√

1 + x ≤ 8 + 2x is true for all x ≥ 0. Plugging the bound back to
[26.27] completes the proof. �

In the case that τ = 0, this reduces to precisely the rate achieved by the serial SGD, the
convergence rate is O(log(k)

k
). A similar rate is achieved if τ = o(n1/4) as ρ and ∆ are typically

both o(1/n). In our setting, τ is proportional to the number of processors, and hence as long
as the number of processors is less n1/4, we get nearly the same recursion as in the linear
rate.

26-8

