
EE 381V: Large Scale Optimization Fall 2012

Lecture 2 — September 3

Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye

2.1 Overview of the last Lecture

The focus of the last lecture was to give some basic key definitions: convex sets; convex
functions; and the basic setting for convex optimization. The key ideas introduced is the
simple notion underlying the power of convexity: convexity ⇒ local = global. Finally, the
last lecture used these basic definitions to provide our result: a characterization of the
optimal solution to an unconstrained optimization of a smooth convex objective function:
x∗ is an optimal solution iff ∇f(x∗) = 0.

2.2 Overview of this Lecture

One of the main results of this lecture, is to extend the characterization above to the con-
strained optimization case. We see that this characterization is precisely what the (first
order) KKT conditions express. Along the way, we define two important sets: the Tangent
Cone and its polar, the Normal Cone, of a convex set at a point. Finally, we begin our
discussion of separation, by talking about projection onto convex sets.

2.3 Convex Modeling

Before we proceed to the main results and definitions of this section, we continue introducing
examples of utilizing convex optimization to model problems. We try to use the following
examples to show how to understand, find and exploit a convex model for certain practical
problems, and to practice “optimization as a way of thinking about a problem.”

2.3.1 Max Flow and Min Cut

Consider a directed graph G = (V,E), shown in Figure 2.1, where V denotes the set of the
graph’s vertices, and E denotes the set of edges. The capacity of link e is denoted by ce.
Given a source vertex, denoted as vs, and a destination vertex, denoted as vt, one may ask
about the max throughput, or max flow from source to destination; alternatively, one might
consider finding the bottleneck on the graph limiting throughput from the source to think
sink. It turns out that the tightest bottleneck is equivalent to computing the maximum flow.
We will understand this better in a future class when we discuss duality.
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Figure 2.1. Max flow problem on a directed graph.

3 3 1 2 3

Figure 2.2. Simplest example showing max flow and bottleneck.

Let’s begin with the simplest case, as shown in Figure 2.2. Obviously, the bottleneck is
the middle edge with capacity 1, and it determines the max flow at the same time. This
result is not limited to such simple graph. Indeed, in general, on a directed graph, max flow
= min cut.

We will turn to the proof of this result later in this course, and now only concern ourselves
with how to formulate the max flow problem as a convex optimization. We need to define
the decision variables, the constraints, and the objective function.

• The decision variables are the amounts of flow that passes across edge e ∈ E, denoted
by fe.

• The constraints of the flow maximization problem are straightforward: each flow is
nonnegative and cannot exceed the capacity. Moreover, flow-conservation dictates
that the amount of flow into any node equals the amount of flow out of that node.
Using In(v) to denote the set of edges flowing into node v, and similarly Out(v) the
set of edges flowing out of a node v, we can write the constraints as follows:

0 ≤ fe ≤ Ce, ∀e ∈ E, (2.1)∑
e∈In(v)

fe =
∑

e∈Out(v)

fe, ∀v ∈ V, (2.2)

∑
e∈Out(vs)

fe =
∑

e∈In(vt)

fe, (2.3)

where (2.1) is the natural condition of flows; (2.2) is the balance between inflow and
outflow for a certain vertex; (2.3) is the flow balance over the whole graph, or also can
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be considered as adding a surplus edge from destination to source, as shown in Figure
2.1.

Note that all equality conditions are linear, therefore, we have the following optimization
problem:

max
∑

e∈Out(vs)

fe

s.t. Af = 0

0 ≤ fe ≤ Ce, ∀e ∈ E.

(2.4)

Here, we have used f to denote the vector of all flows. The matrix A describes the linear
equations representing conservation of flow, i.e. (2.2) and (2.3). Thus, the columns of A
correspond to the edges of the graph, and the rows to a node. An entry in A is ‘+1’ if the
edge is incident and an “in-node” for node v, it is ‘−1’ if it is incident and an out-node, and
it is ‘0’ otherwise. The objective function is linear and hence convex.

2.3.2 Optimal Inequalities in Probability

Now consider a totally different problem. Assume X is a real valued random variable. Given
the following moment constraints:

µi = E[X i], i = 1, 2, 3, 4, 5. (2.5)

The question is how to find an lower bound and upper bound for P {X ∈ [2, 3]}?
There may be many methods for finding the bounds. Here, we give an optimization view:

• The decision variable is the density of X, denoted by fX(x). Note that unlike the
previous problem, now we have infinitely many decision variables.

• Combining with the given constraints, an optimization problem is formulated as follow:

min

∫ 3

2

fX(x)dx

s.t. fX(x) ≥ 0, ∀ x ∈ R,∫
fX(x)dx = 1,∫
xifX(x)dx = µi, i = 1, 2, 3, 4, 5.

(2.6)

This is an optimization problem with infinitely many variables, but other than the non
negativity constraints, only 6 other constraints. This is called a semi-infinite optimization
problem. Facing this optimization problem, and in particular the infinite variables, one may
ask when does this formulation make sense, and in particular, does it accurately describe the
initial problem. Next, we have to also ask when can we solve it via reasonable computational
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techniques. Answers come from “duality” and duality comes from local optimality, as we will
understand better in future lectures. In fact, it turns out that we can solve the univariate
problem exactly and easily, and we can approximate multivariate problems to arbitrary
precision, by solving convex optimization problems.

2.4 Characterizing Optimal Solutions

We now turn to obtaining a characterization of the optimal solution to a constrained convex
optimization problem, with a smooth convex objective function. We will begin with some
further concepts related to convex sets.

For almost all that we do we need some notion of distance. This is needed, in order to
talk about closed and open sets, convergence, limits, etc.

Definition 1. A metric is a mapping d(·, ·) : X × X → R+ that satisfies: d(x, y) ≥ 0 with
equality iff x = y; d(x, y) = d(y, x), and d(x, z) + d(z, y) ≥ d(x, y).

Using this, we can give a simple definition of open and closed sets.

Definition 2. (Open Sets) A set C ⊆ Rn is called open if ∀x ∈ C, ∃ε > 0 such that
Bε(x) ⊆ C.

Example 1. The unit sphere without boundary in Rn is an open set: B1(0) = {x : ‖x‖ <
1}.

Example 2. The set of all n× n symmetric matrices with strictly positive eigenvalues, Sn+,
is an open set.

Definition 3. (Closed Sets) A set C ⊆ Rn is called closed if xn ∈ C, xn → x̄ ⇒ x̄ ∈ C.

It is useful to have basic familiarity with these definitions, and to be able to manipulate
them. As an example, we prove the following.

Proposition 1. A set is closed iff its complement is open.

Proof: We first prove that if C is closed, then Cc must be open. To this end, assume Cc

is not open. Then there exists x ∈ Cc such that for any ε > 0, Bε(x) * Cc. Let {εn} be
a sequence such that ε → 0, then we can find a sequence of points {xn} in Bε(x) ∩ C such
that xn → x. Note that xn ∈ C and C is closed, so x ∈ C, which contradicts our initial
assumption x ∈ Cc.

Conversely, suppose C is open. We show Cc is closed. Assume Cc is not closed. Then
there exist a sequence xn ∈ Cc such that xn → x with x ∈ C. Since C is open, there exists
ε > 0 such that Bε(x) ⊆ C. Thus the convergence assumed is impossible. �

Definition 4. (Interior) A point x ∈ C is an interior point of C, denoted by x ∈ IntC, if
∃ε > 0 such that Bε(x) ⊆ C.
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The distinction between an interior point and a boundary point, is important for opti-
mization, since no constraints are active at an interior point. The notion of relative interior
is particularly important in convex analysis and optimization, because many feasible sets
are often expressed using an intersection with an affine space that is not full dimensional.
We do not go into the details here, but simply give the basic idea through a picture. For
a point to be in the interior of a set, the set must contain a small ball around that point.
Relative interior replaces this with the requirement that the set contain the intersection of a
ball around the point and the affine hull of the set itself. Figure 2.3 illustrates this idea. The
shaded circular shape lies in three dimensions, but its affine hull is only two dimensional, and
hence it can have no interior. However, the notion of relative interior recovers the intuitive
notion of “interior” of the shape, recognizing that it is really a two-dimensional object.

Figure 2.3. Interior and relative interior.

Recall the definition of convex hull. Figure 2.4 shows the convex hull of 8 points in 2D
space. Note that some points are in the interior of the convex hull, while some others are at
the “corner”. We define these corner points as extreme points.

Figure 2.4. Extreme points.
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Definition 5. (Extreme Points) Let C ∈ Rn be a convex set. A point x ∈ C is called an
extreme point if @x1, x2 ∈ C, x1 6= x2 such that x = (x1 + x2)/2.

Example 3. The extreme points of the unit ball, B1(0) = {x ∈ Rn | ‖x‖2 ≤ 1}, are the
points of unit magnitude. For a more interesting example, consider the set of positive
semidefinite (symmetric) matrices with spectral norm at most one. The set of extreme
points is the set of rank one unit norm matrices.

As shown in Figure 2.4, any point in the interior always lies in a triangle with vertices
as extreme points. That is, any point in the convex hull of the extreme points can always
be expressed as a convex hull of at most three extreme points. This is in general true for
convex sets in n dimensions.

Theorem 2.1. (Carathéodory’s Theorem) Given a convex set C ∈ Rn, every point
x ∈ C can be described as a convex combination of at most (n+ 1) extreme points of C.

Proof: Denote the convex hull of set C as conv(C). By the definition of conv(C), for
∀x ∈ C, ∃λ1, · · · , λk ∈ R+, and x1, · · · , xk ∈ C such that

x =
k∑
i=1

λixi, (2.7)

where
∑k

i=1 λi = 1, and λi ≥ 0,∀1 ≤ i ≤ k. Note that k > n + 1 and without loss of
generality λi > 0, otherwise there is nothing to prove.

Consider the (n+ 1) homogeneous linear equations in k > (n+ 1) variables {µ1, · · · , µk}:

k∑
i=1

µixi = 0︸ ︷︷ ︸
n equations

,
k∑
i=1

µi = 0︸ ︷︷ ︸
1 equations

. (2.8)

Since k > n+1, there exists a solution {µi} to these equations, other than the trivial all-zeros
solution. In particular, since

∑
i µi = 0, there must be at least one strictly positive µi. Let

α ∈ R be

α
4
= min

1≤i≤k

{
λi
µi

: µi > 0

}
=
λj
µj
, (2.9)

where j = arg mini

{
λi
µi

: µi > 0
}

and then define λ̂i = λi − αµi. Then we have λ̂i ≥ 0 with

one λ̂j = 0. Thus, we get

k∑
i=1

λ̂ixi =
k∑
i=1

(λi − αµi)xi =
k∑
i=1

λixi + 0 = x, (2.10)
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k∑
i=1

λ̂i =
k∑
i=1

(λi − αµi) =
k∑
i=1

λi = 1, (2.11)

and
λ̂j = λj − αµj = 0. (2.12)

Therefore, x is described as an affine combination of at most k − 1 points in C. The above
procedure can be repeated until one obtains a representation for x in terms of a convex
combination of at most n+ 1 points in C. �

Remark 1. Many interesting properties of convex sets related to discrete and geometry
follow from similar proof ideas. For the interested reader, we refer to Helly and Radon’s
theorems.

Last lecture we gave the definition of a convex cone. We repeat the definition here.

Definition 6. (Convex Cone) A set K ⊆ Rn is called a convex cone, if x1, x2 ∈ K
implies that λ1x1 + λ2x2 ∈ K, ∀λ1, λ2 ≥ 0.

Figure 2.5. Example of convex cone in 3D.

Definition 7. (Polar Cone) Let K ⊆ Rn be a cone. Then the polar cone of K, denoted
by K◦, is described by

K◦ = {x ∈ Rn : 〈x, v〉 ≤ 0, ∀v ∈ K}. (2.13)

Example 4. (R2
+)◦ = R2

−.

Example 5. (Sn+)◦ = −Sn+.

Exercise 1. If K is a closed convex cone, then K◦◦ = K.

Definition 8. (Feasible Directions) Let C ⊆ Rn be a nonempty set, and let x ∈ C. Then
the set of all feasible directions of C at x, denoted by FC(x), is defined as follows

FC(x) = {d : ∃ε > 0, such that x+ εd ∈ C} . (2.14)
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Figure 2.6. Example of cone and its polar cone in 2D.

Definition 9. (Tangent Cone) Let C ⊆ Rn be a nonempty set, and let x ∈ C. Then the
tangent cone of C at x, denoted by TC(x), is defined as follows

TC(x) = closure(FC(x)). (2.15)

Definition 10. (Normal Cone) Let C ⊆ Rn be a nonempty, convex set, and let x ∈ C.
Then the normal cone of C at x, denoted by NC(x), is defined as follows

NC(x) = {s : 〈s, y − x〉 ≤ 0, ∀y ∈ C} . (2.16)

Figure 2.7. Example of tangent cone and normal cone.

Theorem 2.2. Let C ∈ Rn be a nonempty, convex set, and let x ∈ C. Then the normal
cone of C at x is the polar cone of the tangent cone of C at x. That is,

NC(x) = (TC(x))◦. (2.17)
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Proof: Let s ∈ NC(x). Then for any d ∈ fC(x), there exists ε > 0 such that x + εd ∈ C.
Hence,

〈s, d〉 =
1

ε
〈s, x+ εd− x〉 ≤ 0.

For any d̂ ∈ TC(x), there exists a sequence dn such that dn ∈ FC(x) and dn → d̂. As
〈s, dn〉 ≤ 0, we have 〈s, d̂〉 ≤ 0, which means s ∈ (TC(x))◦, i.e. NC(x) ⊆ (TC(x))◦.

On the other hand, let s ∈ (TC(x))◦. Then 〈s, d〉 ≤ 0 for ∀ d ∈ TC(x). For any y ∈ C,
because C is convex, there exists d̂ ∈ TC(x) and α > 0 such that y = x + αd̂. Hence, we
have that

〈s, y − x〉 = α〈s, d̂〉 ≤ 0.

Thus, s ∈ Nc(x), i.e. (TC(x))◦ ⊆ NC(x). �

Having these concepts in hand, let’s turn to how to relate these to the characterization
of an optimal solution for an optimization problem. Consider a general convex optimization
given by

min f(x)

s.t. x ∈ X.
(2.18)

By convexity, local and global optimality are equivalent. Thus, intuitively, x∗ is optimal iff
no descent directions are feasible, where descent direction v at x∗ means 〈∇f(x∗), v〉 ≤ 0.
Thus, if x∗ is optimal, we have

〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ X

⇐⇒ 〈−∇f(x∗), x− x∗〉 ≤ 0, ∀x ∈ X

⇐⇒ −∇f(x∗) ∈ (TX(x∗))◦

⇐⇒ −∇f(x∗) ∈ NX(x∗)

⇐⇒ 0 ∈ ∇f(x∗) +NX(x∗)

(2.19)

This result is a general optimal condition, we will see how it is related to our earlier
result for unconstrained optimization. We also show through example, that this is precisely
the geometric condition that the first-order KKT conditions are attempting to express.

• For an unconstrained optimization problem, min : f(x), we can consider X = Rn.
Note that for any x ∈ X, NX(x) = {0}. Therefore our optimality condition becomes
0 ∈ ∇f(x∗) + {0}, or simply ∇f(x∗) = 0, which coincides with previous result.

• For constrained optimization problem, consider the following example, illustrated in
Fig. 2.8:

min f(x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0.

(2.20)
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Figure 2.8. Example of optimal condition.

Note that in this case, X = {x : g1(x) ≤ 0, g2(x) ≤ 0}, and the normal cone at the
point x∗ is simply given by NX(x∗) = cone(∇g1(x∗),∇g2(x∗)). So the optimal condition
becomes

0 = ∇f(x∗) + λ1∇g1(x∗) + λ2∇g2(x∗). (2.21)

This is exactly the first order KKT condition for optimality. In order to derive the KKT
condition, we relied on the fact that the normal cone at x∗ could be expressed using
the gradients of the constraint functions. As we will see later, while this is commonly
the case, it is not always so. This is why some problems, even though convex, may fail
to have Lagrange multipliers.

2.5 Projection and Separation

We now discuss some properties of projection and separation. Using these definitions, in
the next lecture we will show that any closed convex set is equal to the intersection of all
half-spaces that contain it. This means that if a point x does not belong to a convex set C,
then there is a hyperplane with proves this, i.e., there is a half space that contains C but
does not contain the point. Note that this is not the case for non-convex sets.

The first result that will be quite useful for this, is obtaining a variational characterization
of projection. This is quite familiar for projection onto an affine manifold. Indeed, we have:

Proposition 2. Let V be an affine set, and let x be some point not in V . Then the point
v∗ ∈ V is the solution to

min
v∈V

: ‖x− v‖,

if and only if
〈x− v∗, v − v∗〉 = 0, ∀v ∈ V.

Proof: This follows immediately from the Pythagorean Theorem: For any point v ∈ V , we
have

‖v − x‖22 = ‖v − v∗‖22 + ‖v∗ − x‖22.

�
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Something similar holds when we replace the affine set V with a general (closed) convex set
C. First we define the notion of projection onto a convex set.

Definition 11. (Projection) Let C ⊆ Rn be a closed convex set. For x ∈ Rn, the pro-
jection of x on C, denoted by ProjC(x), is defined as follows

ProjC(x)
4
= arg min

y∈C
‖x− y‖. (2.22)

Figure 2.9. Examples of projection.

Proposition 3. (Uniqueness of Projection) Let C ⊆ Rn be a closed convex set. For
x ∈ Rn, the projection ProjC(x) is unique.

Proof: Let x1, x2 be projections of x on C, i.e., ProjC(x) = x1 and ProjC(x) = x2, with
x1 6= x2. We will use the following equation

‖a+ b‖2

2
= ‖a‖2 + ‖b‖2 − ‖a− b‖

2

2
(2.23)

to obtain a contradiction. Setting a = x1 − x and b = x2 − x, we have

1

2
‖x1 − x+ x2 − x‖2 = ‖x1 − x‖2 + ‖x2 − x‖2 −

1

2
‖x1 − x2‖2. (2.24)

This implies

‖x1 − x+ x2 − x
2

‖2 < 1

2
‖x1 − x‖2 +

1

2
‖x2 − x‖2. (2.25)

Using that ‖x1 − x‖ = ‖x2 − x‖, we have

‖x1 + x2
2

− x‖2 < ‖x1 − x‖2. (2.26)

Since C is convex, the point x1+x2
2

lies in C and is not equal to x1 or x2. So the above
inequality contradicts with x1 and x2 are both projections. �

Definition 12. (Strictly Convex) A function f is said to be strictly convex if the
following holds

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2),∀x1 6= x2, λ ∈ (0, 1). (2.27)

2-11



EE 381V Lecture 2 — September 3 Fall 2012

Proposition 4. (Unique Solution) If function f is strictly convex, and C ⊆ Rn is a closed
convex set, then the optimization problem

min f(x)

s.t. x ∈ C
(2.28)

has a unique solution if it has any solutions. It is guaranteed to have a solution as long as
the convex function f has compact sub-level sets (or as long as the intersection of C with
one sub-level set of f is compact).

Proof: The last assertion follows by Weierstrass’s theorem. Next, we show that if the
problem has a solution, it is unique: assume to the contrary that x1 and x2 are both optimal
solutions to (2.28). Then we have x1+x2

2
∈ C, due the convexity of set C. By strictly

convexity of f , we have

f(
x1 + x2

2
) <

1

2
f(x1) +

1

2
f(x2) = f(x1) = f(x2). (2.29)

This contradicts that x1 and x2 are optimal solutions. �

Therefore, this provides a more general proof of uniquess, since the objective function
defining projection is indeed strictly convex.

In the next lecture we show that the solution to the projection optimization problem
must satisfy a variational property very similar to the affine case.
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