
EE 381V: Large Scale Optimization Fall 2012

Lecture 3 — September 06

Lecturer: Caramanis & Sanghavi Scribe: Samer Chucri & Somsubhra Barik

3.1 Topics covered

• Projection onto a Convex Set

• Separation of Convex Sets

• Unconstrained Optimization : Gradient Descent

In the last lecture, we began our discussion of projection onto a convex set. We review
and then complete that discussion in the next section. After that, we use this to develop the
notion of separation – a fundamental concept in convex analysis and convex optimization –
and then use this to obtain what is known as an “outer description” of closed convex sets.

Finally, in the last section of this lecture, we began our foray into algorithms for convex
optimization, and begin our discussion of Gradient Descent. However, it makes more sense
for these notes to postpone this discussion until Lecture 4, in order to keep the topics together
and more coherent.

3.2 Projection onto Convex Sets

Recall from the last lecture, that we defined the projection of a vector ∈ Rn onto a hyperplane
H to be that vector given by

v∗ = arg min
v∈H
‖x− v‖2.

Note that we could in principle define this minimization with respect to any distance function.
But the Euclidean norm, ‖ · ‖2, used here, results in a “projection” which justifies its name,
namely, the solution is characterized by an orthogonality condition: The vector v∗ is the
solution iff

〈x− v∗, v∗ − v〉 = 0 ∀v ∈ H.

Recall that we proved this in the last lecture, using the Pythagorean Theorem.
Next, we define the projection onto a given convex set X ⊆ Rn analogously, using the

same optimization problem:

ProjX (x)
4
= arg min

v∈X
‖x− v‖. (3.1)
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Recall that in the last lecture, we showed that this is well-defined, namely, that as long as
X is convex, then ProjX (x) is unique. Note that this is not the case in general. For instance,
if X is the sphere {x : ‖x‖2 = 1}, then every point in X is equidistant to the origin. We
recap the statement of this result here. After showing uniqueness, we prove a variational
characterization of the optimal solution, similar to the orthogonality condition for projection
onto an affine manifold given above.

We prove uniqueness by proving something more general: the minimization of a strictly
convex function has a unique minimizer. We repeat the definition of strong convexity given
in the last lecture, as well as the statement of the uniqueness result.
Definition 1: A function f : Rn → R is called strictly convex if and only if for any
x1, x2 ∈ Rn such that x1 6= x2 and λ ∈ (0, 1),

f(λx1 + (1− λx2)) < λf(x1) + (1− λ)f(x2).

Strict convexity can be also characterized by the first order gradient condition:

f(x2) > f(x1) + 〈∇f(x1), x2 − x1〉.

Geometrically, this means that the straight line segment joining any two points on the
function lies strictly above the function except for its endpoints. See, e.g., Fig. 3.1. For
twice differentiable functions, you can check that a function is strictly convex as long as
the Hessian, ∇2f , is positive definite (strictly positive eigenvalues). Thus, in particular, the
squared Euclidean distance function, f(x) = ‖x− y‖22, is strictly convex.

f 1x 

f 2x 

x1 x2

Figure 3.1. This graph shows two functions: f1(x) is convex but not strictly so, where as f2(x) is a strictly
convex function.
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Proposition 1. If X ⊆ Rn is a convex set and the function f : Rn → R is strictly convex,
then the problem

min f(x)

s.t. x ∈ X

has a unique solution if it has any solutions (proved in the previous lecture).

Proposition 2. Let X ∈ Rn be a closed and convex set and let x 6∈ X . Then a solution to
the problem in (3.1) exists and is unique.

Remark 1. As mentioned in the last lecture, X is required to be closed in the proposition
to ensure that the solution to the minimization problem (3.1) is contained in X . Otherwise,
if X is open (e.g., X = {x : ‖x‖2 < 1}), then the projection of x 6∈ X onto X will be a
point on the boundary of X defined by XB = {x : ‖x‖2 = 1} where XB 6⊆ X . Also, in order
for the solution to exist, we need an additional condition. Requiring that the intersection of
X with a sub-level set of f to be compact, suffices. For an example where existence of an
optimal solution can fail, consider the convex function f(x) = 1/x, and the closed convex
set X = R+.

Now we can prove the variational characterization of projection.

Proposition 3. For any x 6∈ X , v∗ = ProjX (x) if and only if 〈x−v∗, v−v∗〉 ≤ 0, ∀v ∈ X .

The statement is illustrated in Fig. 3.2.

Figure 3.2. Projection onto a Convex Set
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Proof: (⇒) Let v∗ = ProjX (x) for a given x 6∈ X , that is, suppose that v∗ is the unique
solution to the optimization problem. Let v ∈ X be such that v 6= v∗. Let α ∈ (0, 1). Since
X is convex, (1 − α)v∗ + αv = v∗ + α(v − v∗) ∈ X . By the (assumed) optimality of v∗, we
must have:

‖x− v∗‖2 ≤ ‖x− (v∗ + α(v − v∗))‖2

= ‖x− v∗‖2 + α2‖v − v∗‖2 − 2α〈x− v∗, v − v∗〉
⇒ 〈x− v∗, v − v∗〉 ≤ α

2
‖v − v∗‖2. (3.2)

Now, note that (3.2) holds for ∀α ∈ (0, 1). Since the RHS of (??) can be made arbitrarily
small for a given v, the LHS cannot be strictly positive. Thus we conclude, as desired:

〈x− v∗, v − v∗〉 ≤ 0, ∀v ∈ X .

(⇐) Let v∗ ∈ X be such that 〈x − v∗, v − v∗〉 ≤ 0, ∀v ∈ X . We show that it must be the
optimal solution. Let v ∈ X and v 6= v∗.

‖x− v‖2 − ‖x− v∗‖2 = ‖x− v∗ + (v∗ − v)‖2 − ‖x− v∗‖2

= ������‖x− v∗‖2 + ‖v − v∗‖2 − 2〈x− v∗, v − v∗〉 −������‖x− v∗‖2

> 0.

Hence, v∗ is the optimal solution to the optimization problem, and thus v∗ = ProjX (x) by
definition. �

3.3 Separation of Convex Sets

We use the projection result to obtain an outer representation of convex sets.
We show that closed convex sets can have dual representations as intersection of half

spaces as shown in Figure 3.3. Note that non-convex sets (closed or not) do not have a
similar representation. It is straightforward to see this by a picture, e.g., see Fig. 3.4. To
prove such an impossibility result, recall that the intersection of any (finite or not) collection
of convex sets is again convex. See also Fig. 3.4

The first step to showing this, is demonstrating that if X is a closed convex set, and x 6∈ X ,
then there is a simple “proof” or “certificate” or this fact: there is a hyperplane so that X lies
on one side, and x on the other. Recall that for a hyperplane H = {x : 〈s, x〉 = b}, positive
and negative halfspaces are defined as H+ = {x : 〈s, x〉 ≥ b} and H− = {x : 〈s, x〉 ≤ b}. The
interior of H+ is defined as Int(H+) = {x : 〈s, x〉 > b}. Int(H−) is defined similarly.

Proposition 4. Let X be a closed convex set and x 6∈ X . Then, there exists a hyperplane
H such that X ⊆ H− and x ∈ int(H+).
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Figure 3.3. Alternative representation of Convex Sets: Intersection of half spaces

Proof: Let v∗ = ProjX (x). By Proposition 3, we have that since v∗ is the projection, it
must satisfy:

〈x− v∗, v − v∗〉 ≤ 0, ∀v ∈ X
⇒ 〈x− v∗, v〉 ≤ 〈x− v∗, v∗〉,

i.e., every v ∈ X satisfies 〈s, v〉 ≤ b, where, s = x−v∗ is the normal vector and b = 〈x−v∗, v∗〉
is the intercept of some hyperplane H = {x : 〈s, x〉 = b}. Hence, X ⊆ H−.
Again, v∗ ∈ X because X is closed. Since x 6∈ X ,

‖x− v∗‖2 = 〈x− v∗, x− v∗〉 > 0

⇒ 〈x− v∗, x〉 > 〈x− v∗, v∗〉

i.e., x satisfies 〈s, x〉 > b with s and b as defined above. Hence, x ∈ int(H+). �

We can now use this to show that if X is a closed convex set, it is the intersection of all
half-spaces that contain it. We give one relevant definition:

Definition 1. Given a set X , a hyperplane H such that X ⊆ H+ or X ⊆ H− is called a
supporting hyperplane.

Corollary 3.1. Let X ⊆ Rn be a closed convex set. Then, X =
⋂

H−⊇X
H−, i.e., X is the

intersection of all such halfspaces containing X .

Proof: The “⊆” inclusion is immediate: X is a subset of all such half spaces H−, hence
X ⊆

⋂
H−⊇X

H−.
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S

Figure 3.4. A non-convex set S cannot be described as an intersection of half-spaces. Only cl(Conv(S)),
the closed convex hull, can be recovered from the outer description.

For the reverse inclusion, consider any point x 6∈ X . We show that this x is excluded
from

⋂
H−⊇X

H− (thus we are effectively proving that the complement of the LHS is contained

in the complement of the RHS). Since X is closed and convex, and x 6∈ X , we can apply
our previous result to conclude that there is a hyperplane Hx such that X ⊆ H−x , while
x ∈ intH+

x . But then by definition, the hyperplane Hx is included in the intersection making
up the right hand side, and therefore x 6∈

⋂
H−⊇X

H−, which is precisely what we needed to

show. �

We complete this portion of the lecture by defining several notions of separation. Let X1

and X2 be nonempty convex subsets of Rn.

Definition 2. The sets X1 and X2 are said to be properly separated if there exists a hyper-
plane H such that,

X1 ⊆ H−,
X2 ⊆ H+ and

X1 ∪ X2 ⊆ H
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Definition 3. The sets X1 and X2 are said to be strictly separated if there exists a hyper-
plane H such that

X1 ⊆ Int(H−) and

X2 ⊆ Int(H+)

Definition 4. The sets X1 and X2 are said to be strongly separated if there exist a hyper-
plane H and ε > 0 such that

X1 + Bε(0) ⊆ Int(H−) and

X2 + Bε(0) ⊆ Int(H+) (3.3)

where, Bε(0) = {z ∈ Rn : ‖z‖ < ε}. In other words, an open ball of radius ε around any
x ∈ X1 will be contained in interior of H− and similarly for X2. See Fig. (3.5))

Figure 3.5. Strong Separation of convex sets

Example: Let X1 = {(x1, x2) ∈ R2 : x1 < 0, x2 > 1/|x1|} and X2 = {(x1, x2) ∈ R2 : x1 >
0, x2 > 1/x1}. Then the hyperplane H = {x1 = 0} strictly separates X1 and X2 but not
strongly (see Figure (3.6))

3.4 Unconstrained optimization via descent method

At this point, we transitioned into discussion algorithms, and in particular, descent methods.
The scribing for this part of the class is postponed until Lecture 4, where it will be more
coherent and cohesive.
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Figure 3.6. X1 and X2 are strictly but not strongly separated by H.
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