
EE 381V: Large Scale Optimization Fall 2012

Lecture 4 — September 11

Lecturer: Caramanis & Sanghavi Scribe: Gezheng Wen, Li Fan

4.1 Gradient Descent

The idea relies on the fact that −∇f(x(k)) is a descent direction.

Algorithm description

x(k+1) = x(k) − η(k)∇f(x(k)) (4.1)

One important parameter to control is the step sizes η(k) > 0. Too small values of η(k) will
cause our algorithm to converge very slowly. On the other hand, too large η could cause our
algorithm to overshoot the minima and diverge.
Intuitively, at each iterate, we would like to ensure that the next step taken by this algorithm
results in a smaller function value at the next iterate.

Definition: A function f : Rn → R is called L-Lipschitz if and only if

‖∇f(x)−∇f(y)‖2 ≤ L||x− y||2, ∀x, y ∈ Rn (4.2)

We denote this condition by f ∈ CL, where CL is the class of L-Lipschitz functions.

Lemma 4.1. If f ∈ CL, then |f(y)− f(x)− 〈∇f(x), y − x〉 | ≤ L
2
||y − x||2

Proof: Refer text. �

Theorem 4.2. If f ∈ CL and f ∗ = min
x
f(x) > −∞, then the gradient descent algorithm

with fixed step size satisfying η < 2
L

will converge to a stationary point.

Proof: Let x+ = x− η∇f(x). Using lemma (4.1), we can write

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+
L

2
‖x+ − x‖2

= f(x)− η‖∇f(x)‖2 +
η2L

2
‖∇f(x)‖2

= f(x)− η(1− η

2
L)‖∇f(x)‖2

This leads to:

4-1

EE 381V Lecture 4 — September 11 Fall 2012

‖∇f(x)‖2 ≤ 1

η(1− ηL
2

)
(f(x)− f(x+))

⇒
N∑
k=1

‖∇f(x(k))‖2 ≤ 1

η(1− η
2
L)

(f(x(0))− f(x(N))

≤ 1

η(1− η
2
L)

(f(x(0))− f ∗)

This implies that lim
k→∞
∇f(x(k)) = 0. 1 �

Suppose that the function f(x) is convex. The above automatically implies that x(k) con-
verges to an optimum x∗. Now, the natural next question is how fast this happens. For this,
two natural metrics are: how fast do the following decrease to 0:

• f(x(k))− f ∗

• ‖x(k) − x∗‖

Note that if we only impose that f be convex, we cannot ensure an upper bound on these
two metrics. Examples are functions which are really flat at their minima (Figure 4.1).

Figure 4.1. Visualize convex function: (left)descent direction (right)a ’flat’ convex function

1One can actually show that ∇f(x(k)) goes to 0 as c√
k

, where the constant c depends on x(0)

4-2

EE 381V Lecture 4 — September 11 Fall 2012

Figure 4.2. Sublevel sets for functions f0, f1, and f3

Sublevel Set

A sublevel set SL is defined as: SL = {x : f(x) ≤ L}. We note that this set is convex.
Sublevel sets show if the gradient of the function f(x) is steep or flat in a given direction
of descent and also if the gradients are asymmetric in different directions. Sublevel sets are
convenient for visualizing convex functions.

For example, in Figure (4.2), f0(x) has flat gradients while f1(x) has steeper gradients.
Again, f3(x) has different gradients in different directions as shown in the figure.

Fixed Step Size:

Some gradient descent methods tend to use fixed step size for simplicity but the choice of
appropriate step sizes is not easy. As shown in Figure (4.3), a too small η will cause the
algorithm to converge very slowly. On the other hand, a too large η could cause the algorithm
to overshoot the minima and diverge.

Figure 4.3. (left)a too small step size that leads to slow convergence; (right)a too large step size that leads
to divergence

4-3

EE 381V Lecture 4 — September 11 Fall 2012

4.1.1 Strong Convexity and implications

Definition: If there exist a constant m > 0 such that ∇2f � mI for all x ∈ S, then the
function f(x) is a strongly convex function on S.

When m = 0, we recover the basic inequality characterizing convexity; for m > 0, we obtain
a better lower bound on f(y) than that from convexity alone. The value of m reflects the
shape of convex functions. Typically as shown in Figure (4.4) , a small m corresponds to a
‘flat’ convex function while a large m corresponds to a ‘steep’ convex function.

Figure 4.4. A strongly convex function with different parameter m. The larger m is, the steeper the
function looks like.

Lemma 4.3. If f is strongly convex on S, we have the following inequality:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2 (4.3)

for all x and y in S.

Proof: For x, y ∈ S, we have

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x)

for some z on the line segment [x, y]. By the strong convexity assumption, the last term on
the righthand side is at least m

2
‖y − x‖22 �

Strong convexity has several interesting consequences. We will first show that the inequality
can be used to bound f(x) − f ∗, which is the suboptimality of the point x, in terms of
‖∇f(x)‖2. The righthand size is a convex quadratic function of y (for fixed x). Setting the

4-4

EE 381V Lecture 4 — September 11 Fall 2012

gradient with respect to y equal to zero, we find that ỹ = x − (1/m)∇f(x) minimizes the
righthand side. Therefore we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2

≥ f(x) + 〈∇f(x), ỹ − x〉+
m

2
‖ỹ − x‖2

= f(x)− 1

2m
‖∇f(x)‖2

Since this holds for any y ∈ S. we have

f ∗ ≥ f(x)− 1

2m
‖∇f(x)‖2 (4.4)

This allows us to realize how fast you get to a minimum as a function of gradient. If the
gradient is small at a point, then the point is nearly optimal.

Similarly, we can also derive a bound on ‖x− x∗‖2, the distance between x and any optimal
point x∗, in terms of ‖∇f(x)‖2:

‖x− x∗‖2 ≤
2

m
‖∇f(x)‖22 (4.5)

where x∗ = arg min
x

f(x).

To see this, we apply (4.3) with y = x∗ to obtain:

f ∗ = f(x∗) ≥ f(x)+ < ∇f(x), x∗ − x > +
m

2
‖x∗ − x‖22

≥ f(x)− ‖∇f(x)‖2‖x∗ − x‖2 +
m

2
‖x∗ − x‖22,

where we use the Cauchy-Schwarz inequality in the second inequality. Since f ∗ ≤ f(x), we
must have

−‖∇f(x)‖2 − ‖x∗ − x‖2 +
m

2
‖x∗ − x‖22 ≤ 0,

from which (4.5) follows. One consequence of (4.5) is x∗ is unique and the solution locates
within a ball of radius of ‖∇f(x)‖2 around the optimal solution.

4.1.2 Upper Bound on ∇2f(x)

The inequality (4.3) implies that the sublevel sets contained in S are bounded, so in par-
ticular, S is bounded. Therefore the maximum eigenvalue of ∇2f(x), which is a continuous
function of x on S, is bounded above on S. And there exists a constant M such that
∇2f(x) �MI for all x ∈ S.

4-5

EE 381V Lecture 4 — September 11 Fall 2012

Lemma 4.4. For any x, y ∈ S, if ∇2f(x) �MI for all x ∈ S then

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
M

2
‖y − x‖2 (4.6)

Proof: The proof is analogous to the proof of (4.3). �

4.1.3 Condition Number

From the strong convexity inequality (4.3)and the inequality (4.6), we have:

mI � ∇2f(x) �MI (4.7)

for all x ∈ S. The ratio k = M/m is thus an upper bound on the condition number of the
matrix ∇2f(x), i.e., the ratio of its largest eigenvalue to its smallest eigenvalue.
When the ratio is close to 1, we call it well-conditioned. When the ratio is much larger than
1, we call it ill-conditioned. When the ratio is exactly 1, it is the best case that only one
step will lead to the optimal solution (i.e., there is no wrong direction).

It must be kept in mind that constants m and M are known only in the rare cases, so the the
inequality cannot be used as a practical stopping criterion. It can be considered as conceptual
stopping criterion; it shows that if the gradient of f at x is small enough, then the difference
between f(x) and f ∗ is small. If we terminate an algorithm when ‖∇f(xk)‖2 ≤ η, where η

is chosen small enough to be smaller than (mε)
1
2 , then we have f(xk) − f ∗ ≤ ε, where ε is

some positive tolerance.

Though these bounds involve the (usually) unknown constants m and M , they establish that
the algorithm converges, even if the bound on the number of iterations required to reach a
given accuracy depends on constants that are unknown.

See in text for the discussion about condition number of shape of level sets.

Theorem 4.5. Gradient descent for a strongly convex function f and step size η = 1/M
will converge as

f(x∗)− f ∗ ≤ ck(f(x0)− f ∗), (4.8)

where c ≤ 1− m
M

.

Since we usually do not know the value of M , we do line search. The following sections
introduce the two line search methods: exact line search and backtracking line search. The
proof of (4.5) is also provided.

4-6

EE 381V Lecture 4 — September 11 Fall 2012

Figure 4.5. Exact Line Search

4.1.4 Exact Line Search

The optimal line search method is exact line search, in which η is chosen to minimize f along
the ray {x− η∇f(x)}, as shown in Figure (4.5)

Algorithm (Gradient descent with exact line search)

1. Set iteration counter k = 0, and make an initial guess x0 for the minimum

2. Compute ∇f(x(k))

3. Choose η(k) = arg min
η
{f
(
x(k) − η∇f(x(k))

)
}

4. Update x(k+1) = x(k) − η(k)∇f(x(k)) and k = k + 1.

5. Go to 2 until ‖∇f(x(k))‖ < ε

An exact line search is used when the cost of the minimization problem with one variable is
low compared to the cost of computing the search direction itself. However, the algorithm
is not very practical.

Convergence Analysis

f(x+) ≤ f(x− 1

M
∇f(x))

≤ f(x)− 1

M
‖∇f(x)‖22 +

M

2
(

1

M
)2‖∇f(x)‖22

= f(x)− 1

2M
‖∇f(x)‖22

⇒

f(x+)− f ∗ ≤ f(x)− f ∗ − 1

2M
‖∇f(x)‖22 (4.9)

4-7

EE 381V Lecture 4 — September 11 Fall 2012

Recall the analysis for strong convexity:

‖∇f(x)‖22 ≥ 2m(f(x)− f(y))

Thus, the following inequality holds:

f(x+)− f ∗ ≤
(

1− m

M

)
(f(x)− f ∗) (4.10)

Thus we see that |f(x(k))− f ∗| decreases by at least a constant factor in every iteration,
converging to 0 geometrically fast. This is commonly called linear convergence (as the log-log
plot is linear).

4.1.5 Backtracking Line Search

In (unconstrained) optimization, the backtracking line search strategy is used as part of a
line search method, to compute how far one should move along a given search direction.
Usually it is undesirable to exactly minimize the function in the generic line search algo-
rithm. One way to inexactly minimize is by finding an that gives a sufficient decrease in the
objective function f : Rn → R.

Backtracking line search is very simple and quite effective, and it depends on two constants
α, β with 0 < α < 0.5, 0 < β < 1. It starts with unit step size and then reduces it by the
factor β until the stopping condition f(x− η∇f(x)) ≤ f(x)− αη‖∇f(x)‖2. Since −∇f(x)
is a descent direction and −‖∇f(x)‖2 < 0, so for small enough step size η, we have:

f(x− η∇f(x)) ≈ f(x)− η‖∇f(x)‖2 < f(x)− αη‖∇f(x)‖2, (4.11)

which shows that the backtracking line search eventually terminates. The constant α can be
interpreted as the fraction of the decrease in f predicted by linear extrapolation that we we
will accept.

The backtracking condition is illustrated in figure, which shows that the exit inequality holds
for η ≥ 0 in an interval [0, η0]. It follows that the backtracking line search stops with a step
size η that satisfies: η = 1, or η ∈ (βη0, η0].

Algorithm

1. Set iteration counter k = 0. Make an initial guess x0 and choose initial η = 1.

2. Update ηk = βηk

3. Go to 2 until f(xk − ηk∇f(xk)) ≤ f(xk)− αηk‖∇f(xk)‖2.

4. Calculate xk+1 = xk − ηk∇f(xk) and update k = k + 1.

4-8

EE 381V Lecture 4 — September 11 Fall 2012

Figure 4.6. Backtracking line search

5. Go to 1 until ‖∇f(x(k))‖ < ε

The parameter α is typically chosen between 0.01 and 0.3, meaning that we accept a decrease
in f between 1% and 30% of the prediction based on the extrapolation. The parameter β
is often chosen to be between 0.1 (which corresponds to a very crude search) and 0.8(which
corresponds to a less crude search).

Convergence Analysis

Claim: η ≤ 1
M

always satisfies the stopping condition.

Proof: Recall:

f(x+) ≤ f(x)− η‖∇f(x)‖2 +
η2M

2
‖∇f(x)‖2

With the assumption that η ≤ 1
M

, the inequality implies that:

f(x+) ≤ f(x)− η

2
‖∇f(x)‖2

⇒

η ≥ β

M

So overall,

η ≥ min(1,
β

M
) (4.12)

f(x+) ≤ f(x)− αmin(1,
β

M
)|∇f(x)‖2 (4.13)

4-9

EE 381V Lecture 4 — September 11 Fall 2012

Now, we subtract f∗ from both sides to get:

f(x+)− f ∗ ≤ f(x)− f ∗ − αmin(1,
β

M
)‖∇f(x)‖22,

and combines with ‖∇f(x)‖22 ≥ 2m(f(x)− f ∗) to obtain:

f(x+)− f ∗ ≤ (1− αmin(1,
β

M
)(f(x)− f ∗),

where

c = 1− 2mαmin{1, β
M
} < 1 (4.14)

�

In particular, f(xk) converges to f ∗ at least as fast as a geometric series with an exponent
that depends (at least in part) on the condition number bound M

m
. As before with exact line

search, the convergence is at least linear (but with a different factor).

4-10

