
EE 381V: Large Scale Optimization Fall 2012

Lecture 5 — September 13

Lecturer: Caramanis & Sanghavi Scribe: Debarati Kundu & Tejaswini Ganapathi

5.1 Topics covered

• Recap of definitions and theorems taught in the previous lecture

• Coordinate Descent Method

• Steepest Descent Method

In the last lecture, the gradient descent algorithm was elaborated, along with the intro-
duction of the concept of strong convexity and its implications. Moreover, the convergence
rate was analyzed for exact line search and backtracking line search methods. In this lecture,
after a brief recap, two new descent methods were introduced, namely, Coordinate Descent,
and the method of Steepest Descent.

5.2 Recap of previous lecture

Definition: f ∈ C1,1
L , if ‖∇f(x)−∇f(y)‖2 ≤ ‖x− y‖2.

Theorem 5.1. For any f ∈ C1,1
L (not necessarily convex), such that f ∗ = min

x
f(x) > −∞,

the gradient descent algorithm with η < 2
L
will converge to a stationary point.

Definition of Strong Convexity: The objective function f is said to be strongly convex
with m > 0, M > 0 if mI � ∇2f �MI, ∀x.

Lemma 5.2. For such an f ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
M

2
‖y − x‖2

(5.1)

Theorem 5.3. The gradient descent algorithm for a strongly convex function f with step
size η = 1

M
will converge as

f(x(k))− f ∗ ≤ ck(f(x(0))− f ∗)
(5.2)

where c = 1− m
M
. This rate of convergence is known as linear convergence.
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In general, the value of M is not known. Hence, line search is done in order to determine
where the next iterate would be. For exact line search, c = 1 − m

M
. For backtracking line

search, c = 1−min{2mα, 2βαm
M
} < 1.

Aside: For a descent method, convexity of the function and continuity of the second deriva-
tive guarantees the existence of M if m exists.

5.3 Coordinate Descent Method

Coordinate descent belongs to the class of several nonderivative methods used for minimizing
differentiable functions. Here, cost is minimized in one coordinate direction in each iteration.
The order in which coordinates are chosen may vary in the course of the algorithm.

Let the minimization be carried out over n variables. In the case where the order is
cyclical, given x(k), the i-th coordinate of x(k+1) can be determined by:

xj
(k+1) = xj

(k), j 6= i

xi
(k+1) = arg min

ξ∈R
f(x

(k)
\i , ξ)

(5.3)

The minimization over the variable i can be done using gradient descent method with a fixed
stepsize η:

xi
(k+1) = xi

(k) − η ∂f
∂xi

(x(k))

(5.4)

Figure 5.1. Illustration of coordinate descent method

Figure 5.1 illustrates the algorithm. The method can also be used for the minimization of
f , subject to upper and lower bounds on the variables xi, x ∈ {1, · · · , n}. The minimization
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over ξ ∈ R in the previous equation is replaced by minimization over the appropriate interval
in the previous equation.

5.3.1 Advantages of coordinate descent

An important advantage of coordinate descent is that it is well suited for parallel computation.
In particular, suppose that there is a subset of coordinates xi1 , xi2 , · · · , xim , which are not

coupled through the cost function. That is f(x) can be expressed as
m∑
r=1

fir(x), where for

each r, fir(x) does not depend on the coordinates xis ,∀s 6= r. Then m coordinate descent
iterations

x
(k+1)
ir

= arg min
ξ∈R

f(x(k) + ξeir), r = 1, · · · ,m

(5.5)

independently and in parallel. Thus is problems with special structure where the set of coor-
dinates can be partitioned into p subsets with the above mentioned independence property,
one can perform a full cycle of coordinate descent iterations in p parallel steps (as opposed
to n), assuming the availability of sufficient number of parallel processors.

A second advantage of the coordinate descent method lies in the fact that it can be very
useful in cases where the actual gradient of the function is not known.

5.3.2 Disadvantage of coordinate descent

The coordinate descent method may not reach the local minimum even for a convex function,
as shown in Figure 5.2. The algorithm may get stuck at a non-stationary point (labelled by
’X’ in the figure) if the level curves of a function are not smooth. An example of this type
of function is f(x1, x2) = max(x1, x2).

5.3.3 Convergence of Coordinate Descent

The coordinate descent method generally has similar convergence properties to steepest
descent. For continuously differentiable cost functions, it can be shown to generate sequences
whose limit points are stationary.

Lemma 5.4. Suppose ∇f(x) is continuous and for every x and i, f(x\i, ξ) has a unique
minimum ξ∗, and is monotonic between xi and ξ. Then cyclic coordinate descent with exact
line search will reach stationary point. (Proposition 2.7.1, Bertsekas).

Proof: Let

z
(k)
i = (x

(k+1)
1 , · · · , x(k+1)

i , x
(k)
(i+1), · · · , x

(k)
n )

(5.6)
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Figure 5.2. Disadvantage of coordinate descent method

By Equation 5.3, we can write

f(x(k)) ≥ f(z
(k)
1 ) ≥ f(z

(k)
2 ) ≥ · · · ≥ f(z

(k)
n−1) ≥ f(x(k+1)),∀k (5.7)

Let x̄ = (x̄1, · · · , x̄n) be a limit point of the sequence x(k). Let x ∈ X, where X is a
closed set. Hence, x̄ ∈ X. Equation 5.7 indicates that the sequence f(x(k)) converges to
f(x̄). Now, it is to be shown that x̄ minimizes f over X.

Let {x(kj)|j = 0, 1, · · · } be a subsequence of {x(k)} that converges to x̄. We first show

that {x(kj+1)
1 −x(kj)1 } converges to zero as j →∞. Assume the contrary, or equivalently, that

{z(kj)1 −x(kj)} does not converge to zero. Let γ(kj) = ‖z(kj)1 −x(kj)‖. By possibly restricting to
a subsequence of {kj}, we may assume that there exists some γ̄ > 0 such that γ(kj) ≥ γ̄ for

all j. Let s
(kj)
1 =

z
(kj)

1 −x(kj)

γ(kj)
. Thus z

(kj)
1 = x(kj) + γ(kj)s

(kj)
1 , ‖s(kj)1 ‖ = 1, and s

(kj)
1 differs from

zero only along the first coordinate direction. s
(kj)
1 belongs to a compact set and therefore

has a limit point s̄1. By restricting to a further subsequence of {kj}, we can assume that

s
(kj)
1 converges to s̄1.

Let us fix some ε ∈ [0,1]. Now, 0 ≤ εγ̄ ≤ γ(kj). Therefore, x(kj) + εγ̄s
(kj)
1 lies on the

segment of the line joining x(kj) and x(kj) + γ(kj)s
(kj)
1 = z

(kj)
1 , and belongs to X, because X is

convex. Using the fact that z
(kj)
1 minimizes f over all x that differ from x(kj) along the first

coordinate direction, we obtain,

f(z
(kj)
1 ) = f(x(kj) + γ(kj)s

(kj)
1 ) ≤ f(x(kj) + εγ̄s

(kj)
1 ) ≤ f(x(kj))

(5.8)

Since f(x(k)) converges to f(x̄), Equation 5.7 shows that f(z
(k)
1 ) also converges to f(x̄).

Now we can take the limit as j →∞, to obrain f(x̄) ≤ f(x̄+εγ̄s̄1) ≤ f(x̄). We conclude that
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f(x̄) = f(x̄ + εγ̄s̄1), for every ε ∈ [0,1]. Since γ̄s̄1 6= 0, this contradicts the hypothesis that
f is uniquely minimized when viewed as a function of the first coordinate direction. This

contradiction establishes that x
(kj+1)
1 − x(kj)1 converges to zero. In particular, z

(kj)
1 converges

to x̄.
From Equation 5.3, we have

f(z
(kj)
1 ) ≤ f(x1, x

(kj)
2 , · · · , x(kj)n ),∀x1

(5.9)

Taking the limit as j →∞, we obtain

f(x̄) ≤ f(x1, x̄2, · · · , x̄n),∀x1
(5.10)

Using the conditions for optimality over a convex set, we conclude that

∇1f(x̄)′(x1 − x̄1) ≥ 0,∀x1
(5.11)

where ∇if denotes the gradient of f with respect to the component xi.

Let us now consider the sequence {z(kj)1 }. It has been already shown that z
(kj)
1 converges

to x̄. By similar arguments, it can be shown that x
(kj+1)
2 −x(kj)2 → 0 and ∇2f(x̄)′(x2− x̄2) ≥

0,∀x2. Continuing inductively, we obtain ∇if(x̄)′(xi − x̄i) ≥ 0,∀xi, i ∈ {1, · · · , n}. Adding
this inequalities, we conclude that ∇f(x̄)′(x− x̄) ≥ 0 for every x ∈ X. Hence proved. �

5.3.4 Method of selecting the coordinate for next iteration

Different methods have been proposed for the selection of the coordinate, on which the next
descent iteration would be performed. Some of the well known methods are:

• Cyclic Coordinate Descent: This method has been described already, where at
each iteration, line search is done along one coordinate direction at the current point.
The different coordinate directions are used cyclically in course of the algorithm.

• Greedy Coordinate Descent: In this method, at each iteration, the coordinate
direction i, i ∈ 1, · · · , n along which line search is to be done is chosen in a greedy
manner by the following maximization problem:

i∗ = arg max
i

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣
(5.12)

But this method is intensive computationally because at each iteration, finding the
coordinate direction that maximizes the gradient of the function at the point is done
in linear time.
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• (Uniform) Random Coordinate Descent: This algorithm belongs to the broader
class of stochastic gradient descent algorithms. In this case, the coordinate direction i,
along which the line search is to be done is chosen uniformly randomly over i, · · · , n.
For a constant step size η, the rule for updating the position in the next iteration is
given by:

x+ = x− η(
∂f

∂xi
)ei

(5.13)

Now, computing the expectation of the position in the next iteration,

E[x+] = x− η

n
∇f(x)

(5.14)

We will study the performance of stochastic gradient descent later in the class.

5.4 Steepest Descent Method

The gradient descent method takes many iterations to converge for certain starting points,
when the function has elongated level sets and the descent direction is slowly varying. The
steepest descent method aims at choosing the best descent direction at each iteration.

Given a norm ‖ · ‖, a normalized steepest descent direction is defined as follows:

∆xnsd = arg min
v
{< ∇f(x), v >, s.t. ||v|| ≤ 1} (5.15)

Figure 5.3. Illustration of a function having elongated level sets with slowly varying descent direction

Iteratively, the algorithm follows the following steps:

• Calculate direction of descent, ∆xnsd

• Calculate step size, t

• x+ = x+ t∆xnsd
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5.4.1 Steepest Descent for l2, l1 and l∞ norms

• ||·||2
If we impose the constraint ||v||2 ≤ 1 in Equation 5.15, then the steepest descent
direction coincides with the direction of −∇f(x), and the algorithm is the same as
gradient descent.

∆xnsd =
−∇f(x)

||∇f(x)||2

• ||·||1
For ||x||1 =

∑
i |xi| , a descent direction is as follows,

∆xnsd = −sign
(
∂f(x)

∂xi∗

)
ei∗

i∗ = arg max
i

∣∣∣∣ ∂f∂xi
∣∣∣∣

In the above set of equations, ei is the standard basis corresponding to index i. Figure
5.4 geometrically illustrates this concept.

Figure 5.4. Geometric illustration of the normalized steepest descent direction for l1 norm

• ||.||∞
For ||x||∞ = arg max

i
|xi| , a descent direction is as follows,
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Figure 5.5. Geometric illustration of the normalized steepest descent direction for l∞ norm

∆xnsd = sign(−∇f(x))

Figure 5.5 geometrically illustrates this solution.

Aside: Dual Norm
Dual norm of ||.|| is defined as,

||z||∗ = sup{< z, x >, s.t., ||x|| = 1}

Therefore,

||.||2 ⇐⇒ ||.||2
||.||1 ⇐⇒ ||.||∞

and,

< ∇f(x),∆xnsd >= ||∇f(x)||∗

5.4.2 Rate of Convergence under strong convexity

Fact: Any norm can be bounded by ||.||2, i.e., ∃γ&γ̃ ∈ (0, 1] such that, ||x|| ≥ γ ||x||2 and
||x||∗ ≥ γ ||x||2
Theorem 5.5. If f is strongly convex with respect to m and M , and ||.|| has γ, γ̃ as
above then steepest descent with backtracking line search has linear convergence with rate
c = 1− 2mαγ̃2 min{1, βγ

M
}

Proof: Will be proved in the next lecture �

5.5 References

1. Nonlinear Programming, Dimitri P. Bertsekas, MIT.

5-8


