
EE 381V: Large Scale Optimization Fall 2012

Lecture 6 — September 18

Lecturer: Caramanis & Sanghavi Scribe: Yuhuan Du, Zheng Lu

6.1 Topics Covered

• Convergence Analysis for Steepest Descent

• Newton’s Method

In the last lecture, we talked about coordinate descent method and steepest descent method.
We also started the discussion of the convergence analysis for steepest descent and we will
finish this part in this lecture. After some comments on the steepest descent convergence
theorem, we will introduce a new method: Newton’s Method.

6.2 Steepest Descent

Given a norm || · ||, the normalized steepest descent direction is defined as:

∆xnsd = arg min
v
{〈∇f(x), v〉, s.t. ||v|| = 1}.

It is also convenient to consider a steepest descent step ∆xsd that is unnormalized :

∆xsd = ∆xnsd||∇f(x)||∗,

where ||z||∗ = sup
v
{〈z, v〉, s.t. ||v|| = 1}.

Then the algorithm can be defined as:

xt+1 = xt + η∆xsd,

where η represents the step size.

6.2.1 Convergence for BTLS (Backtracking Line Search)

Fact: For any norm || · ||and its dual || · ||∗, there exists finite, positive constants γ and γ̃,
such that for all x

||x|| ≥ γ||x||2, ||x||∗ ≥ γ̃||x||2
(see A.1.4 in textbook).
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Theorem 6.1. Suppose f is a strongly convex function with mI � ∇2f(x) � MI. Then
by using steepest descent method with BTLS, we can get

f(x(k))− f ∗ ≤ ck(f(x(0))− f ∗)

where c = 1− 2mαγ̃2 min{1, βγ2
M
}.

Proof: First we want to show η = γ2

M
always satisfies the BTLS exit condition. To show

this, we need to show

f(x+
γ2

M
∆xsd) ≤ f(x)− 1

2

γ2

M
||∇f(x)||2∗.

By the property of strong convexity, we have

f(x+) = f(x+ η∆xsd)

≤ f(x) + η〈∇f(x),∆xsd〉+
M

2
||η∆xsd||22

= f(x)− η||∇f(x)||2∗ +
M

2
η2||∇f(x)||2∗||∆xnsd||22.

Since ||∆xnsd||22 ≤ 1
γ2
||∆xnsd||2 = 1

γ2
, we have

f(x+) ≤ f(x)− η||∇f(x)||2∗ +
Mη2

2γ2
||∇f(x)||2∗.

Letting η = γ2

M
, we get

f(x+
γ2

M
∆xsd) ≤ f(x)− 1

2

γ2

M
||∇f(x)||2∗.

Knowing η = γ2

M
always satisfies the exit condition, we can say

η ≥ min

{
1,
βγ2

M

}
.

By the exit condition of BTLS, we can get

f(x+) ≤ f(x)− αη||∇f(x)||2∗

= f(x)− αmin

{
1,
βγ2

M

}
||∇f(x)||2∗

≤ f(x)− αmin

{
1,
βγ2

M

}
γ̃2||∇f(x)||22

≤ f(x)− αmin

{
1,
βγ2

M

}
γ̃22m(f(x)− f ∗).
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Equivalently,

f(x+)− f ∗ ≤ f(x)− f ∗ − 2mαγ̃2 min

{
1,
βγ2

M

}
(f(x)− f ∗).

So

c = 1− 2mαγ̃2 min

{
1,
βγ2

M

}
.

�

Comments on the Theorem
The good thing is obvious: this theorem proves linear convergence for any norm || · || and
sufficiently well-conditioned strongly convex function f .

However, does this theorem give a better rate for poorly-conditioned functions and some
good norm? The answer is NO.

Let us see some examples.

Example 1. Steepest Descent for || · ||1
Suppose we use || · ||1 to find the steepest descent direction. We know the dual for || · ||1 is
|| · ||∞, and it is easy to show that for x ∈ Rn

||x||1 ≥ ||x||2, (We get equality when only one xi is non-zero. )

||x||∞ ≥
1√
n
||x||2. (We get equality when x1 = x2 = ... = xn. )

Therefore, γ = 1, γ̃ = 1√
n
. Compared with the convergence rate in gradient descent with

BTLS, where c = 1 − 2mαmin
{

1, β
M

}
, the introduction of γ and γ̃ makes the convergence

rate c for steepest descent even bigger, which means a slower convergence rate.

Thus, according to the theorem, we cannot get a better rate for any functions in this case.

Example 2. Change of Coordinates
For some poorly-conditioned functions, for example f(x1, x2) = x21 + 10x22, we hope to con-
vert it into a well-conditioned problem by changing coordinates and then using the gradient
descent method to solve it.

Specifically, let x = Ay and g(y) = f(Ay). Then∇g(y) = AT∇f(Ay),∇2g(y) = AT∇2f(Ay)A.

We want to make sure g(y) is a well-conditioned function so that gradient descent works well
for g(y).
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We know mI � ∇2f(x) �MI, so if ∇2f(x) = P � 0 is a constant matrix, which means f(x)

is a multi-variable quadratic function like the function mentioned above, by letting A = P−
1
2

we can get ∇2g(y) = I. So if we use gradient descent for g(y), we can get the best descent
direction and best convergence rate. Specifically,

y+ = y − η∇g(y)

= y − ηAT∇f(Ay),

Ay+ = Ay − ηAAT∇f(Ay)

x+ = x− ηAAT∇f(x).

This is the same as using steepest descent method for f(x) with the definition of norm shown
below:

||x||Q = (xTQx)
1
2 ,

where Q = (AAT )−1 = P = ∇2f(x).

This means using steepest descent method with this norm definition can get the best con-
vergence rate.

However, if we analyse the convergence rate for this method using the theorem above, we
have

mI �Q �MI,

xTQx ≥ m||x||22,

xTQ−1x ≥ 1

M
||x||22,

i.e.

γ =
√
m,

γ̃ =
1√
M
.

Applying the theorem directly, the convergence rate for the steepest descent with BTLS is

c = 1− 2mαmin

{
1

M
,
βm

M2

}
.

This is even worse than gradient descent with BTLS whose convergence rate is

c = 1− 2mαmin

{
1,
β

M

}
.

Now we can conclude that the theorem above is not useful for better rate.
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6.3 Newton’s Method

In the last section we have seen that if the objective function f is quadratic and strongly
convex, then its Hessian ∇2f is a constant positive definite matrix, and we can use the
change of coordinate method to bring the condition number to 1 before doing gradient de-
scent. We also showed that the change of coordinate method is actually equivalent to the
steepest descent method with norm || · ||∇2f .

Now what if the objective function f is not quadratic but still strongly convex? One conse-
quence is that the Hessian ∇2f(x) will vary at different x, which means if we still want to
use the change of coordinate method, the norm || · ||∇2f(x) is going to be different at each
step. This gives us an intuition on the Newton step.

6.3.1 The Newton Step

Definition 1. For a strongly convex objective function f , the Newton step at x is defined
as the steepest descent direction using norm || · ||∇2f(x) :

∆xnt(x) = −∇2f(x)−1∇f(x).

The Newton step can be interpreted in the following three ways.

Interpretation 1. As we have already discussed, the Newton step is the steepest descent
direction using the norm corresponding to the best change of coordinate method locally at
every single step.

Interpretation 2. The Newton step minimizes the best (locally) quadratic approximation.
Fig. 6.1 exhibits this idea. Suppose we are minimizing the function f and currently we are
at x. We use a quadratic function f̃ to approximate f locally at x. Then we end up with

f̃(x+ ∆x) ≈ f(x) +∇f(x)T∆x+
1

2
∆xT∇2f(x)∆x.

Minimizing the right hand side of the above equation with respect to ∆x yields

∆x = −∇2f(x)−1∇f(x),

which is nothing but the Newton step defined earlier.

Interpretation 3. The Newton step at x is the first order approximation solution to the
equation ∇f(x+ ∆x) = 0. Recall that for any non-linear function φ, the first order approx-
imation at x is

φ(x+ ∆x) ≈ φ(x) + φ′(x)∆x.

So φ(x+ ∆x) = 0 yields
∆x ≈ −φ′(x)−1φ(x).
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Figure 6.1. The quadratic fit problem. We use a quadratic function f̃ to approximate f locally at x.

Replacing φ with ∇f , we obtain

∆x ≈ −∇2f(x)−1∇f(x),

which is the Newton step.

6.3.2 Algorithm for Newton’s Method

We give an outline of the algorithm for Newton’s method as follows,

Repeat the following three steps.

1. Compute the Newton step ∆xnt(x) = −∇2f(x)−1∇f(x);

2. Choose step size η by backtracking line search (BTLS) or other line search methods;

3. Update x+ = x+ η∆xnt(x).

Note in the above algorithm, we did not give a stopping rule. This will be discussed in the
next lecture.

6.3.3 Basic Properties of Newton’s Method

In Subsection 6.3.1, Interpretation 1 of the Newton step implies that under Newton’s method,
one cannot do any better using change of coordinate method at any step, since Newton’s
method is already doing the best. This point can be further verified by the idea of affine
invariance.

Definition 2. Consider a descent algorithm which starts at x(0), and updates as x(k), k =
1, 2, .... Then we apply an arbitrary affine transformation A to get x(0) = Ay(0), and use the
same descent algorithm on y(0) to get updates y(k), k = 1, 2, .... If we have

{x(0) = Ay(0)} ⇒ {x(k) = Ay(k),∀k},∀A,
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then the descent algorithm is said to be affine invariant.

One consequence of affine invariance is that the sequences {x(k)}k and {y(k)}k are equivalent
(under constant linear transformation) and thus have the same convergence behavior. As a
result, for an affine invariant descent algorithm, any change of coordinates only changes the
original updating sequence to an equivalent one and thus cannot improve the performance
of the descent algorithm. Hence we obtain the following proposition.

Proposition 1. Any affine invariant descent algorithm cannot be further improved by any
change of coordinate method.

One basic property of Newton’s method is that it is affine invariant.

Proposition 2. Newton’s method is affine invariant.

Proof: Suppose the objective function is f , which is strongly convex. Newton’s method
starts at x(0) and updates as x(k), k = 1, 2, .... For an arbitrary affine transformation A,
take x(0) = Ay(0). Applying Newton’s method on y(0) yields y(k), k = 1, 2, .... Define
g(y) = f(Ax), then we have

∇g(y) = AT∇f(Ay),

∇2g(y) = AT∇2f(Ay)A.

We use induction to prove x(k) = Ay(k),∀k. Note we already have x(0) = Ay(0). As induction
hypothesis, suppose x(n) = Ay(n), then we have

Ay(n+1) = Ay(n) − ηA∇2g(y(n))−1∇g(y(n))

= Ay(n) − ηA(AT∇2f(Ay(n))A)−1AT∇f(Ay(n))

= Ay(n) − ηAA−1(∇2f(Ay(n)))−1∇f(Ay(n))

= x(n) − η(∇2f(x(n)))−1∇f(x(n))

= x(n+1).

Thus by induction we have proved x(k) = Ay(k),∀k, which implies Newton’s method is affine
invariant. �

Propositions 1 and 2 imply that Newton’s method cannot be further improved by a change
of coordinates, which is consistent with Interpretation 1 in Subsection 6.3.1.

In fact, we can also check that the gradient descent method is NOT affine invariant by a
similar approach as the proof to Proposition 2.

Proposition 3. Gradient descent method is not affine invariant.
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Proof: Suppose the objective function is f , which is strongly convex. Gradient descent
starts at x(0) and updates as x(k), k = 1, 2, .... For an arbitrary affine transformation A, take
x(0) = Ay(0). Applying gradient descent on y(0) yields y(k), k = 1, 2, .... Define g(y) = f(Ax),
then we have

∇g(y) = AT∇f(Ay),

Note that
x(1) = x(0) − η∇f(x(0)),

and that

Ay(1) = Ay(0) − ηA∇g(y(0))

= Ay(0) − ηA(AT∇f(Ay(0)))

= x(0) − ηAAT∇f(x(0)).

Thus in general we have
x(1) 6= Ay(1).

As a result, gradient descent is not affine invariant. �

Proposition 3 implies that it is possible to improve gradient descent using change of coordi-
nate method, which is consistent with our earlier results.

At the end of this lecture, we state the outline of some basic results regarding the conver-
gence behavior of Newton’s method. More details will be discussed next time.

Fact. If objective function f : Rn → R satisfies:

1. smooth and strongly convex, and

2. L-Lipschitz Hessian, i.e., ||∇2f(x) − ∇2f(y)||op ≤ L||x − y||2, where || · ||op is the
operator norm defined by ||A||op = sup||v||2=1 ||Av||2,

then Newton’s method converges with different convergence behaviors in two phases:

1. if start far from x∗, then convergence is linear on linear scale, i.e. f(xk)− f ∗ is linear
w.r.t. k;

2. if start close to x∗, then convergence is so-called quadratic convergence, i.e., log log(f(xk)−
f ∗) is linear w.r.t. k.

Fig. 6.2 shows a typical convergence plot for Newton’s method.
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Figure 6.2. A typical convergence plot for Newton’s method. There are two phases of different convergence
behaviors: linear phase and quadratic phase.
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