
EE 381V: Large Scale Optimization Fall 2012

Lecture 7 — September 20

Lecturer: Caramanis & Sanghavi Scribe: Ye Wang & Ryan Buckley

7.1 Introduction and Newton Decrement

In the previous lecture we covered the steepest descent method and Newton’s method, and
we noted that Newton’s method is affine invariant. In this lecture, we discuss the Newton
decrement and the convergence of Newton’s method.

Recall that the typical stopping criterion for the steepest descent method, ‖∇f(x)‖2 ≤ ε,
is not affine invariant. Since the Newton step is affine invariant, we would like the Newton
stopping condition to be affine invariant as well. To that end, we introduce the Newton
decrement.

Definition 1. The Newton decrement at x, denoted by λ(x), is defined as

λ(x) = ‖∇f(x)‖∇2f(x)−1 =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
. (7.1)

Note that we can express the Newton decrement in terms of the Newton step. Recall that
∆xnt is defined to be

∆xnt = −∇2f(x)−1∇f(x). (7.2)

Therefore,
λ2(x) = −∇f(x)T∆xnt. (7.3)

We can apply the definition of the Newton step once more to see that

λ2(x) = ∆xTnt∇2f(x)∆xnt. (7.4)

A typical stopping condition for Newton’s method is

λ2(x)

2
≤ ε. (7.5)

We now prove the affine invariance of this stopping criterion.

Proposition 1. λ2(x) is affine invariant.

Proof: Consider an affine change of coordinates with a nonsingular T ∈ Rn×n and some
z ∈ Rn. Define f̂(y) = f(Ty + z). If x = Ty + z, then

∇f̂(y) = T T∇f(x), ∇2f̂(y) = T T∇2f(x)T , and ∇2f̂(y)−1 = T−1∇2f(x)−1T−T .
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Hence,

λ2(y) = ∇f̂(y)T∇2f̂(y)−1∇f̂(y)

= ∇f(x)TTT−1∇2f(x)−1T−TT T∇f(x)

= ∇f(x)T∇2f(x)−1∇f(x)

= λ2(x).

So the value of λ2 is unaffected by an affine change of variables. �

7.2 Outline of Convergence Analysis

We make two major assumptions in this section:

1. f is strongly convex, such that mI � ∇2f(x) �MI.

2. ∇2f(x) is Lipschitz continuous with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2 ∀x, y. (7.6)

Note that the norm on the left is the spectral norm, defined in Boyd §A.1.5. L can
be interpreted as a bound on the third derivative of f . The smaller L is, the better f
can be approximated by a quadratic. Since each step of Newton’s method minimizes
a quadratic approximation of f , the performance of Newton’s method will be best for
functions with small L.

The iterations of Newton’s method fall into two phases:

• Phase I: the “global” or “damped” phase

• Phase II: the “local” or “quadratic” phase

In the convergence proof, we show that there exist η and γ with 0 < η ≤ m2/L and γ > 0
such that:

• If ‖∇f(x(k)‖2 ≥ η then we say we are in the damped convergence phase, and

f(x(k))− f(x(k+1)) ≥ γ, (7.7)

i.e. each step brings us closer to the optimal value by at least γ.

• If ‖∇f(x(k))‖2 < η then we say we are in the quadratic convergence phase. The step
size in backtracking line search will be t = 1, and

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

. (7.8)
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By applying this inequality over l steps and using ‖∇f(x)‖2 < η ≤ m2/L, we have

L

2m2
‖∇f(x(k+l))‖2 ≤

((
L

2m2
‖∇f(x(k))‖2

)2
)l

≤
(

1

2

)2l

. (7.9)

So ‖∇f(x(k+l))‖2 converges to 0 very quickly. Since f is strongly convex, we can write

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 (7.10)

≥ f(x)− 1

2m
‖∇f(x)‖22, (7.11)

for all y. Finally,

f(x(k+l))− f ∗ ≤ 1

2m
‖∇f(x(k+l))‖22 ≤

2m3

L2

(
1

2

)2(l+1)

. (7.12)

7.3 Proof for damped convergence phase (7.7)

Proposition 2. There exist constants η, γ such that if ‖∇f(x)‖2 ≥ η then f(x)−f(x+) ≥ γ.

Proof: Suppose ‖∇f(x)‖2 ≥ η. By strong convexity,

f(x+) = f(x+ t∆xnt) ≤ f(x) + t∇f(x)T∆xnt +
M‖∆xnt‖22

2
t2.

Applying strong convexity to (7.4) gives

λ2(x) = ∆xTnt∇2f(x)∆xnt ≥ m‖∆xnt‖22.

By applying this and (7.3), we have

f(x+ t∆xnt) ≤ f(x)− tλ2(x) +
M

2m
t2λ2(x).

If we set the step size to t̂ = m
M

, we see that

f(x+ t̂∆xnt) ≤ f(x)− 2m

M
λ2(x) ≤ f(x)− αt̂λ2(x) = f(x) + αt̂∇f(x)T∆xnt,

showing that t̂ satisfies the backtracking line search exit condition. At worst, therefore, we
exit backtracking line search with t = β m

M
. Then

f(x+)− f(x) ≤ −αtλ2(x)

≤ −αβ m
M
λ2(x)

≤ −αβ m
M

‖∇f(x)‖22
M

,
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where the last inequality holds because

λ2(x) = ∇f(x)T∇2f(x)−1∇f(x) ≥ ‖∇f(x)‖22
M

.

Recall our supposition of phase I convergence:

‖∇f(x)‖2 ≥ η.

Thus

f(x+)− f(x) ≤ −αβ m

M2
η2 = −γ,

or finally, f(x)− f(x+) ≥ γ. �

7.4 Proof for Quadratic Convergence Phase (7.8)

Proposition 3. If ‖∇f(x)‖2 < η then backtracing line search selects unit step sizes (t = 1)

and L
2m2‖∇f(x+)‖2 ≤

(
L

2m2‖∇f(x)‖2
)2

.

Proof: We first assume that backtracking line search will accept unit steps and prove the
inequality, then we prove that unit step sizes hold.

Suppose ‖∇f(x)‖2 < η and t = 1. Recall from (7.2) that ∇f(x) = −∇2f(x)∆xnt, so

‖∇f(x+)‖2 = ‖∇f(x+)−∇f(x)−∇2f(x)∆xnt‖2.

By applying the fundamental theorem of calculus, we have

≤
∥∥∥∥∫ 1

0

(∇2f(x+ t(x+ − x))−∇2f(x))∆xnt dt

∥∥∥∥
2

≤
∫ 1

0

‖∇2f(x+ t∆xnt)−∇2f(x)‖2 ‖∆xnt‖2 dt.

After applying the Lipschitz condition, we obtain

≤
∫ 1

0

L‖t∆xnt‖2 ‖∆xnt‖2 dt

=
L

2
‖∆xnt‖22

=
L

2
‖∇2f(x)−1∇f(x)‖22

≤ L

2m2
‖∇f(x)‖22.
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This completes the proof of the inequality. Now we prove that in the quadratic phase of
convergence, backtracking line search will select the step size t = 1. Recall that for t = 1 to
satisfy the backtracking line search exit condition, we need that

f(x+ ∆xnt) ≤ f(x) + α∇f(x)T∆xnt.

Let us define a function f̃(t):

f̃(t) = f(x+ t∆xnt)

f̃ ′′(t) = ∆xTnt∇2f(x+ t∆xnt)∆xnt.

By the Lipschitz condition,

|f̃ ′′(t)− f̃ ′′(0)| ≤ Lt‖∆xnt‖2‖∆xnt‖22 = Lt‖∆xnt‖32.

Since each factor on the right is nonnegative, we can drop the absolute value and move the
f̃ ′′(0) term:

f̃ ′′(t) ≤ f̃ ′′(0) + Lt‖∆xnt‖32.

By applying strong convexity to (7.4), we see that λ2(x) ≥ m‖∆xnt‖22. We raise this identity
to the 3/2 power and substitute to obtain

f̃ ′′(t) ≤ f̃ ′′(0) + Lt
λ3(x)

m3/2
.

Now note that f̃ ′′(0) = λ2(x) and substitute:

f̃ ′′(t) ≤ λ2(x) + Lt
λ3(x)

m3/2
.

Integrate both sides with respect to t:

f̃ ′(t) ≤ f̃ ′(0) + tλ2(x) + Lt2
λ3(x)

2m3/2
.

Now substitute f̃ ′(0) = ∇f(x)T∆xnt = −λ2(x) and integrate again:

f̃(t) ≤ f̃(0)− tλ2(x) +
t2

2
λ2(x) + Lt3

λ3(x)

6m3/2
.

Recall our supposition that ‖∇f(x)‖2 < η and that we have specified η to be such that
η ≤ m2/L. Remember also that for backtracking line search, the 0 < α < 0.5. Therefore

‖∇f(x)‖2 < η ≤ m2/L ≤ 3(1− 2α)m2/L.
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Now suppose that t = 1 to obtain

f̃(1) = f(x+ ∆xnt) ≤ f(x)− 1

2
λ2(x) +

L

6m3/2
λ3(x) (7.13)

= f(x)− λ2(x)

(
1

2
− Lλ(x)

6m3/2

)
. (7.14)

Since mI � ∇2f(x) � MI, the inverse of the Hessian must also be strongly convex, with
I/M � ∇2f(x)−1 � I/m. This combined with (7.1) gives

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2 ≤ ‖∇f(x)‖2
m1/2

.

Hence,

λ(x) <
3(1− 2α)m2/L

m1/2
= 3(1− 2α)m3/2/L,

so

α <
1

2
− Lλ(x)

6m3/2
.

Substituting this expression for α into (7.14) gives

f(x+ ∆xnt) < f(x)− λ2(x)α

= f(x) + α∇f(x)T∆xnt.

This proves that a step size t = 1 satisfies the exit condition for backtracking line search. �
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