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Lecturer: Caramanis & Sanghavi Scribe: Srinadh B, Anish Mittal

8.1 Newton’s method

8.1.1 Convergence

In the last class we have seen the two phases of Newton’s method and the convergence proof.
Newton’s method can be also viewed as steepest descent with coordinate change at each
step. In this method at each step the direction is determined by the Newton step and the
magnitude can be determined by using back tracking line search(BTLS). The Newton step
is 4xnt = −∇2f−1(x)∇f(x).
Assumptions:

1. f is strongly convex.
mI ≤ ∇2f(x) ≤MI. (8.1)

2. L-Lipschitz hessian.
||∇2f(x)−∇2f(y)||op ≤ L||x− y||2. (8.2)

Under the above two assumptions on the function f it has been shown in the last lecture
that Newton’s method converges in two distict phases. First phase is a damped phase with
slow convergence and the second phase has quadratic convergence and hence very fast.

The transition to second phase happens when ||∇f(x)|| < η where η < m2/L. When
||∇f(x)|| < η making t = 1 results in quadratic convergence. But in practice we rarely can
compute the values m and L. Luckily BTLS chooses t = 1 automatically little after the
threshold at η < 3(1 − 2α)m2/L. Alternately one can show that quadratic convergence is
attained when ||x− x+|| ≤ 2m

3L
.

8.1.2 Drawbacks of the analysis

While the Newton’s method is affine invariant as noticed in previous lectures the conver-
gence analysis is not. This is because of the constants in the assumptions m, M and L are
not affine invariant. So we need a new set of assumptions that are affine invariant. Also
we cannot compute the values of m and L in general and all the bounds on the number of
steps for convergence are practically useless. We seek bounds that don’t depend on such
unknown constants. Self-Concordant functions as we will see in the coming sections don’t
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suffer these problems and are of huge practical significance because of their ubiquitous nature.

Consider the Lipschitz continuity of the hessian

||∇2f(x)−∇2f(y)|| ≤ L||x− y||.

Note that on the LHS, hessian is a matrix and the norm used is the operator norm.

Definition 1. The third derivative of f

∇3f(x)[u]
4
= lim

α→0

1

α
(∇2f(x+ αu)−∇2f(x)), (8.3)

is a tensor with one more dimension than the hessian and evaluating it at vector u gives
∇3f(x)[u] a matrix. The Lipschitz assumption implies that

∇3f(x)[u] ≤ lim
α→0

1

α
L||αu|| = L||u||.

Therefore
vT∇3f(x)[u]v ≤ L||u||||v||2. (8.4)

Proposition 1. In the above equation 8.4 the LHS is affine invariant whereas the RHS is
not.

Proof: Let there be a linear transformation of variables with the invertible matrix A. Let
φ(x) = f(Ax), x = Ax̃, v = Aṽ and u = Aũ. Then

ṽTφ
′′′

(x̃)[ũ]ṽ = ṽT lim
α→0

1

α
(∇2φ(x̃+ αũ)−∇2φ(x̃))ṽ

= (A−1v)T lim
α→0

AT
1

α
(∇2f(Ax̃+ αAũ)−∇2f(Ax̃))A(A−1v)

= vT (A−1)TAT lim
α→0

1

α
(∇2f(x+ αu)−∇2f(x))AA−1v

= vT lim
α→0

1

α
(∇2f(x+ αu)−∇2f(x))v

= vTf
′′′

(x)v.

This shows that LHS is affine invariant. Now applying the affine transform to RHS gives

L||ũ||||ṽ||2 = L||A−1u||||A−1v||2, (8.5)

which is clearly not equal to L||u||||v||2. Hence RHS is not affine invariant.
�
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To make this definition affine invariant replace the 2 norm with an affine invariant norm
||.||∇2f(x). Doing that and replacing v with u gives

uT∇3f(x)[u]u ≤ L(uT∇2f(x)u)
3
2 . (8.6)

In the 1-dimensional case this gives

∇3f(x) ≤ L(∇2f(x))
3
2 . (8.7)

This motivates the definition of self-concordant functions.

8.2 Self-Concordant functions

Definition 2. A convex function f : R → R is called self-concordant (S-C) if

|f ′′′(x)| ≤ 2(f
′′
(x))

3
2 . (8.8)

The number 2 can be replaced with any positive constant and is there just for simplicity. To
see that let a function f be self-concordant for some positive constant k

|f ′′′(x)| ≤ k(f
′′
(x))

3
2 . (8.9)

Now consider f̃(x) = k2

4
f(x). This function satisfies the S-C property with constant 2.

|f̃ ′′′(x)| =
k2

4
|f ′′′(x)|

≤ k3

4
(f
′′
(x))

3
2

=
k3

4
(

4

k2
f̃
′′
(x))

3
2

= 2(f̃
′′
(x))

3
2 .

Thus if a function satisfies 8.9 with some positive constant k it can be scaled to satisfy 8.8
and become S-C with constant 2.

Definition 3. A function f : Rn → R is S-C if f̃(t) = f(x+ tv) is S-C along all directions
v ∈ Rn.

8.2.1 Examples

The functions below are S-C on their respective domains.

1. f(x) = − log(x). dom f = {x ∈ R : x > 0}.
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Proof:

f
′
(x) =

−1

x
, f
′′
(x) =

1

x2
, f
′′′

(x) =
−2

x3
.

|f ′′′(x)| = 2

x3
= 2(

1

x2
)
3
2 = 2f

′′
(x)

3
2 .

�

2. f(x) = − log(aTx− b). dom f = {x ∈ Rn : aTx− b > 0}.

Proof: To show this function is S-C we need to show it is S-C along each line in its
domain. Let f̃(t) = − log(aTx+ aTvt− b). dom f̃ = {t ∈ R : aTx+ aTvt− b > 0}.

f̃
′
(t) =

−aTv
(aTx+ aTvt− b)

, f̃
′′
(t) =

(aTv)2

(aTx+ aTvt− b)2
, f̃
′′′

(t) =
−2(aTv)3

(aTx+ aTvt− b)3

|f̃ ′′′(t)| = 2(aTv)3

(aTx+ aTvt− b)3
= 2(f̃

′′
(t))

3
2 .

Note that this result is true for all values of v and hence f is S-C. �

3. f(x) = −
∑M

i=1 log(aTi x− bi). dom f = {x ∈ R : aTi x− bi > 0∀i.}

This function is just sum of S-C functions, so it is S-C. Look at the proposition 2 below.

4. f(x) = − log(det(X)). dom f = {X : X is a positive definite matrix (Sn++)}.

Proof: To show this function is S-C we need to show it is S-C along each line in it’s
domain. Let f̃(t) = − log(det(X + tV )), where V ∈ Sn is a symmetric n × n matrix.
f̃(t) can be rewritten as follows.

f̃(t) = − log(det(X + tV )) (8.10)

= − log(det(X
1
2 (I + tX

−1
2 V X

−1
2 )X

1
2 )) (8.11)

= − log(det(X))− log(det(I + tX
−1
2 V X

−1
2 )) (8.12)

= − log(det(X))−
n∑
i=1

log(1 + tλi), (8.13)

where λi are eigenvalues of X
−1
2 V X

−1
2 . 8.11 follows from the fact that X is positive

definite matrix. 8.12 follows from the fact that det(AB) = det(A) det(B). 8.13 follows
from the fact that det(A) =

∏n
i=1 λi(A). Thus f̃(t) is sum of S-C functions hence it is

also S-C. This proof doesn’t depend on V and is true for all V , hence f(X) is S-C. �

Proposition 2. Sum of S-C functions is S-C.
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Figure 8.1. An example of barrier function, −1
t log(−x + .5) plotted for different values of t.

Proof: Let f1(x) and f2(x) be S-C.

|(f1 + f2)
′′′

(x)| = |f ′′′1 (x) + f
′′′

2 (x)|
≤ |f ′′′1 (x)|+ |f ′′′2 (x)|
≤ 2(f

′′

1 (x))
3
2 + 2(f

′′

2 (x))
3
2

≤ 2((f1 + f2)
′′
(x))

3
2 .

The last inequality is true because f
′′
1 (x) and f

′′
2 (x) are greater than 0 because of convexity

and since (a+ b)
3
2 ≥ a

3
2 + b

3
2 , when a, b ≥ 0. �

Exercise: Read the rules for combining S-C functions to get a S-C function back from
the book.

Definition 4. F is called a barrier function on its domain if ∀xk → x ∈ ∂(dom F ),
F (xk)→∞,

where ∂(Q) means the boundary of the set Q.

Proposition 3. Self concordant functions are a barrier of their domain.

Definition 5. F is a S-C barrier if F is S-C and ||∇f(x)||2∇2f(x)−1 < α.

8.2.2 Convergence

We have seen convergence results for Newton’s method in the previous section with various
unknown constants m and L. Below is a convergence result in the case of S-C functions and
this result does not depend on any unknown constants.

Theorem 8.1. If f is self concordant with constant L = 2, we are guaranteed to be in the
region of quadratic convergence as long as

λf (x)
4
= ||∇f(x)||∇2f−1(x) <

3−
√

(5)

2
= λ. (8.14)
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8.2.3 Summary

1. Linear functions are S-C.

2. S-C functions are barriers for their domain.

3. Sums of S-C functions is S-C.

4. S-C functions are easy to optimize by the Newton’s method.

8.3 Interior point method

So far we have seen how to solve an unconstrained optimization problem using various descent
methods. In this section we will get a brief idea of how Newton’s method with S-C function’s
barrier property can be used to solve constrained optimization problems. In particular we
will see an example of the interior point methods. Consider the linear program(LP), a
constrained convex optimization problem

min 〈c, x〉
s.t. Ax = b,

x ≥ 0.

On a side note the generalization of this LP to matrix scenarios gives rise to semi-definite
program(SDP).

min 〈C,X〉
s.t. 〈Ai, X〉 = bi,∀i,

X � 0,

where 〈A,B〉 is the trace innerproduct between two matrices defined as =
∑

i,j Ai,jBi,j and
X � 0 denotes that X has to be a positive semi-definite matrix.

Let the feasible set determined by the constraints be Q. Let

x∗ = arg minx : 〈c, x〉 s.t. x ∈ Q. (8.15)

Now define a S-C function F such that the domain of F is Q. Converting it to an uncon-
strained problem let

xt = arg minx : t 〈c, x〉+ F (x), (8.16)

where t ≥ 0. Since a S-C function is also a barrier function x will always lie in Q. It is also
easy to see that as t → ∞, xt → x∗. This is an interior point method. So to solve 8.15 we
solve 8.16 by increasing t at each iteration. Let f(x, t) = t 〈c, x〉+ F (x).

1. xk is the newton step in kth iteration.
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Figure 8.2. An example of central path followed by interior path method for solving an LP with the
logarthmic barrier function. The solid lines represent the halfspace constraints. The dotted lines are contours
of the objective. x∗ is the optimal point and x∗(10) is the value at 10th iteration. The central path converges
to x∗ as t→∞.

2. update t+ = t+4.

3. xk+1 is obtained via Newton’s method initialized at xk for f(x, t+).

The path followed by xk is called central path.
One important question is whether Newton’s method converges for this new function

f(x, t). It doesn’t satisfy the hessian Lipschitz assumption required for convergence because
the S-C function F (x) is not Lipschitz. But since f(x, t) is sum of two S-C functions it is
also S-C and by theorem 8.1 Newton’s method converges.

For faster convergence we want 4 as big as possible while still in the quadratically
convergent phase/region.

Lemma 8.2. If λ2f (x) = ||∇f(x)||2∇2f(x)−1 is uniformly bounded on the domain of f, t in-

creases linearly i.e. t+ = t+4 where 4 ∼ O(t), hence doubling t each time.
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