
EE 381V: Large Scale Optimization Fall 2012

Lecture 9 — September 27

Lecturer: Caramanis & Sanghavi Scribe: Alan Bernstein, Lark Kwon Choi

Note that the main reference for this lecture is Nocedal & Wright (Chapter 5 and 6).

9.1 Topics Covered Last Time

• Newton’s Method

• Self-Concordant functions

In the last lecture, we covered Newton’s Method and Self-Concordant functions, which
are used as barrier functions for constrained optimization. This lecture considers Newton’s
Method for large scale problems.

9.2 Newton Method for Large Scale Optimization

The Newton step, ∆xnt, is a solution to the minimization of a quadratic approximating
function f̂(x+ ∆xnt):

f̂(x+ ∆xnt) , f(x) +∇f(x)T∆xnt + ∆xTnt∇2f(x)∆xnt.

and also the solution to the linear system:

∇2f(x)∆xnt = ∇f(x).

The idea behind adapting Newton’s Method comes from steepest descent, where the step
direction is determined using a different norm, || · ||B,

∆xsd = −B∇f(x),

where B is some positive definite matrix. Now, in Newton’s method, a new, optimal, norm
is chosen at each time step:

∆xk = −Bk∆f(x).

Note that for Bk = ∇2f(xk)
−1, the optimal choice, this is equivalent to the Newton step.

But this choice requires computing and inverting the Hessian; is there a better choice that
converges faster than a fixed-norm approach, but is computationally cheaper than an opti-
mal approach?
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There are many variable metric methods for solving this problem. These use a different
norm at each step, to avoid calculation of second derivatives and simplify the calculation of
the search direction. The basic idea of variable metric methods is to iteratively construct a
good approximation to the inverse Hessian by building a sequence of matrices. Among many
methods, this lecture focuses on two main ideas:

1. Conjugate Gradient
The conjugate gradient method is used to solve large linear system of equations and
nonlinear optimization problems (linear and nonlinear conjugate gradient methods,
respectively). The conjugate gradient method is the most widely used iterative method
for solving Ax = b, with A � 0 and can be extended to non-quadratic unconstrained
minimization. It is a little less reliable than exact Newton methods, but can handle
very large problems.

2. Approximate Solution
Approximation of the solution in a way that makes sense for the Hessian, as opposed
to, e.g., least-squares. Finding Bk in the Quasi-Newton methods come in two main
flavors. One is the Davidon-Fletcher Powell (DFP) algorithm (sometimes referred to
as simply Fletcher-Powell). The other is Broyden-Fletcher-Goldfarb-Shanno (BFGS).
DFP finds a solution that is symmetric, positive definite and closest to the current
approximate value of Bk. BFGS was derived from DFP, which was popular until
BFGS was introduced. Instead of approximating the Hessian, Bk, BFGS approximates
its inverse, Hk. Rather than solving a linear system to get the search direction, it
executes a matrix multiply.

9.3 Conjugate Gradient & Solving Linear Systems

The conjugate gradient method is an iterative method for solving a linear system of equations

Ax = b,

where A is symmetric and positive definite. This is a natural assumption when A is the
Hessian of a convex function. Note that this is equivalent to the following minimization
problem:

min
x
φ(x) = 1

2
xTAx− bx,

since the problem is convex, and the optimality condition ∇φ(x) = 0 gives

∇φ(xk) ≡ Axk − b = rk ≡ 0,

at a point xk, ∇φ(xk) = Axk−b, which is the residual error. We denote this as rk = Axk−b.
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Definition 1. (Conjugacy of vectors) A set of nonzero vectors {p0, p1, ..., pl} is called
conjugate with respect to the symmetric positive semidefinite matrix A if

pTi Apj = 0, i 6= j. (9.1)

A set of conjugate vectors can be used to sequentially solve a linear system. Given a starting
point x0, and conjugate vectors {pi},

xk+1 = xk + ηkpk, (9.2)

where ηk is the one-dimensional minimizer of the quadratic function φ, given by

ηk =
−rTk pk
pTkApk

. (9.3)

We refer to this as the “baby conjugate gradient” method, or B-CG. A basic result from
linear algebra is that:

Theorem 9.1. For any x0 ∈ Rn the sequency {xk} generated by 9.2, 9.3 converges to the
solution x∗ of the linear system in at most n steps.

Proof: Since the direction pi are linearly independent, they must span the whole space Rn.
Hence,

x∗ − x0 = σ0p0 + σ1p1 + ...+ σn−1pn−1,

for some choice of scalars σk. From 9.1, we obtain

σk =
pTkA(x∗ − x0)

pTkApk
. (9.4)

The coefficient σk coincide with the step length ηk generated by the formula 9.3.
Then,

xk = x0 + η0p0 + η1p1 + ...+ ηk−1pk−1.

By premultiplying this expression by P T
k A and using the conjugacy property,

pTkA(xk − x0) = 0,

finally, we have

pTkA(x∗ − x0) = pTkA(x∗ − xk) = pTk (b− Axk) = −pTk rk.

By comparing above equations 9.3 and 9.4, σk = ηk, giving the result. �
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Exercise 1. Show that Baby Conjugate Gradient is coordinate descent with exact line
search.

Proof: Let’s consider a simple case. Suppose A is symmetric. By the spectral theorem, A
is diagonalizable. Suppose pi = ei. Then, the contours of the function φ(·) are ellipses whose
axes are aligned with the coordinate directions. We can find the minimizer of this function
by performing one-dimensional minimizations along the coordinate directions e1, e2, ..., en in
turn. When we change the problem by using new variable as x̂ = T−1x, with n×n matrix T
defined by T = [p0, p1, ..., pn−1], and a set of conjugate directions with respect with respect
to A,{p0, p1, ..., pn−1}, then, the quadratic function φ becomes

φ̂(x̂) = φ(T x̂) =
1

2
x̂T (T TAT )x̂ = (T T b)T x̂.

By the conjugacy property 9.1, the matrix T TAT is diagonal. Hence we can find the min-
imizing value of φ̂ by performing n one-deimesional minimizations along the coordinate
directions of x̂, which is corresponding to the direction pi in x-space. Therefore, The Baby
Conjugate Gradient method is coordinate descent with exact line search in a new coordinate
system. �

Exercise 2. Show that pi is the ith eigenvector of A.

Proof: We can prove above by showing rTk pi = 0, for i = 0, ..., k − 1. Since ηk is always
the one dimensional minimizer, we have immediately that rT1 p0 = 0. By using induction
hypothesis and the conjugacy of pi, we can conclude that rTk pi = 0. �

Note 1. To apply the above idea, we need to compute the complete set of eigenvectors.
This might be harder than simply solving the entire system to begin with. In addition, it is
not practical for large scale applications. There is a missing step; finding {pk}, the conjugate
directions, with minimal computational requirements.

In generating its set of conjugate vectors, the conjugate gradient method picks a new vector
sequentially. Namely, each direction pk is chosen to be a linear combination of negative
residual −rk and the previous direction pk−1 as follows,

pk = −rk + βkpk−1. (9.5)

Exercise 3. Show that

βk =
rTkApk−1
pTk−1Apk−1

. (9.6)

Proof: The scalar βk is to be determined by the requirement that pk−1 and pk must be
conjugate with respect to A. By premultiplying 9.5 by pTk−1A and imposing the condition
pTk−1Apk = 0, we obtain 9.6. �
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9.3.1 Conjugate Gradient for analysis

• Conjugate Gradient Preliminary Version

We add a step to compute pk+1. This version of the algorithm is useful for analysis. We will
introduce a second version which is useful for implementation.

Initialize:

r0 = Ax0 − b,
p0 = −r0,
k = 0.

while rk 6= 0:

ηk =
−rTk pk
pTkApk

,

xk+1 = xk + ηkpk,

rk+1 = Axk+1 − b,

βk+1 =
rTk+1Apk

pTkApk
,

pk+1 = −rk+1 + βk+1pk. (9.7)

end(while)

Note that the algorithm depends on matrix-vector multiplications, but no matrix inver-
sions. We can show that this algorithm has several properties:

Theorem 9.2. Suppose rk 6= 0, then the following four properties hold:

1. rk⊥ri, i.e., rTk ri = 0, for i = 0, 1, ..., k − 1,

2. span{r0, r1, ..., rk} = span{r0, Ar0, ..., Akr0},

3. span{p0, p1, ..., pk} = span{r0, Ar0, ..., Akr0},

4. {pi} conjugate with respect to A, i.e., pTkApi = 0, for i = 0, 1, ..., k − 1.

Proof: First, let’s prove Theorem 9.2-1. Because the direction set is conjugate, rTk pi = 0
for all i = 0, 1, ..., k − 1 and any k = 1, 2, ...n − 1. By rearranging 9.7, we find that pi =
−ri + βipi−1, so that ri ∈ span{pi, pi−1} for all i = 1, 2, ..., k − 1. Hence, we conclude that
rTk ri = 0 for all i = 1, ..., k − 1.
Other proofs are by induction. Theorem 9.2-2 and 9.2-3 hold for k = 0, and 9.2-4 holds
for k = 1. Assuming these properties are true for some k, then we show that they hold for
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k + 1. First, we show that the set on the left-hand side is included in the set on the right
side. From induction hypothesis,

rk ∈ span{r0, Ar0, ..., Akr0}, pk ∈ span{r0, Ar0, ..., Akr0}.

By multiplying the second expression by A,

Apk ∈ span{Ar0, ..., Ak+1r0}.

Then, rk+1 ∈ span{r0, Ar0, ..., Ak+1r0} and by combining this with the induction hypothesis
of Theorem 9.2-2, we conclude span{r0, r1, ..., rk} = span{r0, Ar0, ..., Akr0}. To prove the
reverse inclusion, we use induction hypothesis of Theorem 9.2-3 to deduce that

Ak+1r0 = A(Akr0 ∈ span{Ar0, ..., Ak+1r0}.

Since Api = ri+1−ri
η

, it follows that

Ak+1r0 ∈ span{r0, ..., rk+, rk+1}.

Similarly, via the induction hypothesis of Theorem 9.2-2, the Theorem 9.2-2 continues to
hold when k is replaced by k + 1.
We can prove Theorem 9.2-3 by the following argument:

span{p0, p1, ..., pk, pk+1}
= span{p0, p1, ..., pk, rk+1}
= span{r0, Ar0, ..., Akr0, rk+1}
= span{r0, r1, ..., rk, rk+1}
= span{r0, Ar0, ..., Ak+1r0}.

Next, we prove Theorem 9.2-4 by multiplying 9.7 by Api, i = 0, 1, ..., k we obtain that

pTk+1Api = −rTk+1Api + βi+1p
T
kApi. (9.8)

By the definition of βk, the right hand of 9.8 vanished when i = k. In addition, since
p0, p1, ..., pk are conjugate, rTk+1pi = 0 for i = 0, 1, ..., k− 1. By repeatedly applying Theorem
9.2-3, we can find that

Api ∈ span{Ar0, A2r0, ..., A
i+1r0} ⊂ span{p0, p1, ..., pi+1}.

Therefore, we can deduce that rTk+1Api = 0 for i = 0, 1, ..., k − 1. Consequently, the first
and second term in the right side of 9.8 vanishes, and we conclude that pTkApi = 0, for
i = 0, 1, ..., k − 1.

�
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• Conjugate Gradient Practical Version

Another version of conjugate gradient, which differs only in two steps:

ηk =
rTk rk
pTkApk

, βk+1 =
rTk+1rk+1

rTk rk
.

Theorem 9.3. If A has only d distinct eigenvalues (A is possibly still full rank), then the
conjugate gradient algorithm terminates at the exact solution in at most d steps.

Theorem 9.4. If A has eigenvalues 0 ≤ λ1 ≤ ... ≤ λk then at iteration k + 1,

||xk+1 − x∗||2A ≤
(
λn−k − λi
λn−k + λ1

)2

||x0 − x∗||2A.

Theorem 9.5. If A is positive semidefinite with condition number, then κ(A) = M
m

,

||xk − x∗||A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

||x0 − x∗||A.

Remark 1. These results come from important property. The conjugate gradient algorithm
produces a solution over an “increasing” sequence of affine spaces:

x0 + span{p0, ..., pn} = x0 + span{r0, Ar0, A2r0, ..., A
nr0}︸ ︷︷ ︸

Kn(A,r0)

.

Definition 2. Kn(A, r0) is a Krylov subspace.

When the distribution of the eigenvalues of A has certain favorable features, the algorithm
will identify the solution in many fewer than n iterations. From theorem 9.2-3, we have that

xk+1 = x0 + η0p0 + ...+ ηkpk = x0 + γ0r0 + γ1Ar0 + ...+ γkA
kr0. (9.9)

We can define P ∗k to be a polynomial of degree k with coefficients γ0, γ0, ..., γk, and we have

P ∗k (A) = γ0I + γ1A+ ...+ γkA
k.

Then, 9.9 can be xk+1 = x0 + P ∗k (A)r0. Among all possible methods whose first k steps
are restricted to the Krylov subspace Kn(r0, k), Conjugate Gradient does the best job of
minimizing the distance to the solution after k stpes, when the distance is measured the
weighted norm defined by ||Z||2A = ZTAZ. Using this norm we get

1
2
||x− x∗||2A = 1

2
(x− x∗)TA(x− x∗) = φ(x)− φ(∗).

This states that xk+1 minimizes φ, and hence ||x− x∗||2A, over the set x0 + η0p0 + ...+ ηkpk.
It follows the polynomial P ∗k solves the problem, minPk

||x0 + Pk(A)r0 − x∗||A. Let 0 ≤
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λ1 ≤ ... ≤ λn be the eigenvalues of A, and let v1, v2, ..., vn be the corresponding orthonormal
eigenvectors. Since these eigenvectors span the whole space Rn, we can write for some
coefficients ξi that

||xk+1 − x∗||2A =
∑

λi [I + λiP
∗
k (λi)]

2 ξ2i .

Since the polynomial P ∗k generated by the Conjugate Gradient method is optimal, we have
the following expressions

||xk+1 − x∗||2A = min
Pk

∑
λi [I + λiP

∗
k (λi)]

2 ξ2i

≤ min
Pk

max
1≤i≤n

[I + λiP
∗
k (λi)]

2
(∑

λiξ
2
i

)
≤ min

Pk

max
1≤i≤n

[I + λiP
∗
k (λi)]

2 ||x0 − x∗||2A,

and finally we can quantify the convergence rate of the Conjugate Gradient method by
estimating the nonnegative scalar quantity

min
Pk

max
1≤i≤n

[I + λiP
∗
k (λi)]

2 . (9.10)

This means we search for a polynomial Pk that makes [I + λiP
∗
k (λi)]

2 as small as possible.

Note 2. Theorem 9.3 is strongest, but less useful, because it depends on a significant con-
straint on A, which is difficult to achieve. In particular, a tiny perturbation would destroy
that property, where as it would not affect assumptions for Theorems 9.4 and 9.5. These
theorems are in decreasing order of strength, in that the first depends on having the most
information about the matrix A.

9.4 Nonlinear Conjugate Gradient

We have studied linear conjugate gradient to solve Ax = b or minimize φ(x) = 1
2
xTAx −

bTx. Now, we extend this to a general algorithm for minimizing nonlinear functions. This
extension is possible via two changes:

1. Observe that rk = Ax − b is the gradient of the quadratic function, so just use rk =
∇φ(xk) or rk = ∇f(xk)

2. The linear case essentially used exact line search to find βk, but now we need to use
something suitable for nonlinear functions, like backtracking line search.

The modified algorithm is as follows:
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Initialize:

f0 = f(x0),∇f0 = ∇f(x0),

p0 = −∇f0,
k = 0.

while ∇fk 6= 0,

Compute ηk, set xk+1 = xk + ηkpk,

Evaluate ∇fk+1,

βFRk+1 =
∇fTk+1∇fk+1

∇fTk ∇fk
,

pk+1 = −∆fk+1 + βk+1pk,

k = k + 1.

end(while)

Where one of several well-known method for finding βk+1, the Fletcher-Reeves method,
has been used.
Each iteration requires only evaluation of the objective function and its gradient. No matrix
operations are performed and storage of just a few vectors is required. To complete the
specification of the nonlinear conjugate gradient algorithm, we need to be more precise
about the choice of line search parameters, and there are computational issues:

Issue 1. The line search used must guarantee that we have a descent method. For this, we
need the strong Wolfe conditions:

1. f(xk + ηkpk) ≤ f(xk) + αηk∇f(xk)
Tpk,

2.
∣∣∇f(xk + ηkpk)

Tpk
∣∣ ≤ α̃

∣∣∇f(xk)
Tpk
∣∣, where 0 < α < α̃ < 1

2
.

Any line search procedure that yields an ηk satisfying the above conditions will en-
sure that all directions pk are descent directions for the function f .

Issue 2. Computational issues:

1. The algorithm may not converge in n steps

2. Progress might be very small under some conditions.

There are some pitfalls, which are covered in the homework.

Example 1. Consider the non-convex function f(x) below, known as the Rosenbrock func-
tion. It has a unique minimizer x∗ = (1, 1) and in a neighborhood of this point, the Hessian
is positive definite. For xinit = (−1.2, 1), the convergence and error vs iteration are shown
in Figure 9.1.

f(x) = 100(xx − x21)2 + (1− x1)2.
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Figure 9.1. Convergence and error vs iteration for the Rosenbrock function using the nonlinear Conjugate
Gradient method.

9.5 BFGS & DFP

1. Up until now, we have covered the first section of the lecture: how to exactly or approx-
imately solve the equality constraint, ∇2f(x)∆xnt = −∇f(x), for Newton’s method,
in a computationally inexpensive way, and how to adapt that technique nonlinear
problems.

2. In the following, we discuss Quasi-Newton methods: Bk∆x = −∇f .

BFGS (Broyden-Fletcher-Goldfarb-Shanno) is derived in a natural way from DFP (Davidon-
Fletcher-Powell), which was popular until BFGS was developed. The key idea is that Bk

should be an “approximate Hessian” in some sense. Specifically, Bk+1 is chosen so that∇f̂k+1

agrees with ∇f at xk and xk+1. What conditions does this impose on Bk? For agreement
at xk+1, none, as this is achieved by construction. For agreement at xk+1, this implies that
Bk+1(xk+1 − xk) = (∇f(xk+1)−∇f(xk)). This leads to the update:

sk , xk+1 − xk,
yk , ∇f(xk+1)−∇f(xk),

Bk+1 , argmin||B −Bk||,
s.t. Bsk = yk, B � 0.

Different norms here correspond to different Quasi-Newton methods. This appears to be
another difficult problem to solve, but if we use a weighted Frobenius norm for || · ||, then
this new optimization problem can be solved in closed-form, and the updates are easy to
compute.

In the next lecture, we will focus on methods for approximating Newton’s method by
obtaining recursive approximations to the Hessian at each step.
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