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13. Dual decomposition

• dual gradient methods

• network rate control

• network flow optimization
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Lagrange duality

convex problem (with linear componentwise inequality constraints)

minimize f(x)
subject to Gx � h

Ax = b

Lagrangian and dual function

L(x, λ, ν) = f(x) + (GTλ+ATν)Tx− hTλ− bTν

g(λ, ν) = inf
x

L(x, λ, ν)

dual problem
maximize g(λ, ν)
subject to λ � 0
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Lagrange dual and conjugates

dual function in terms of conjugate:

g(λ, ν) = −hTλ− bTν − f∗(−GTλ−ATν)

where
f∗(y) = sup

x
(yTx− f(x))

potential advantages of dual methods

• dual is unconstrained or has simple constraints (depends on dom f∗)

• dual is differentiable (depends on differentiability properties of f∗)

• dual (almost) decomposes into smaller problems
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(Sub-)gradients of conjugate function

assume f : Rn → R is closed and convex with conjugate

f∗(y) = sup
x

(

yTx− f(x)
)

subgradient

• any maximizer in the definition of f∗(y) is a subgradient at y (page 8-6)

x ∈ ∂f∗(y) ⇐⇒ yTx− f(x) = f∗(y)

• f∗ is subdifferentiable on (at least) int dom f∗ (page 4-6)

gradient: for f strictly convex, maximizer in definition is unique if it exists

∇f∗(y) = argmax
x

(

yTx− f(x)
)

(if maximum is attained)
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Minimum of strongly convex function

if x is a minimizer of a strongly convex function f , then it is unique and

f(y) ≥ f(x) +
µ

2
‖y − x‖22 ∀y ∈ dom f

(µ is the strong convexity constant of f ; see page 1-9)

proof: if some y does not satisfy the inequality, then for small positive θ

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y)− µ
θ(1− θ)

2
‖y − x‖22

= f(x) + θ(f(y)− f(x)− µ

2
‖y − x‖22) + µ

θ2

2
‖x− y‖22

< f(x)
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Conjugate of strongly convex function

for f closed and strongly convex, with parameter µ > 0

• f∗ is defined for all y (i.e., dom f∗ = Rn)

• f∗ is differentiable everywhere, with gradient

∇f∗(y) = argmax
x

(

yTx− f(x)
)

• ∇f∗ is Lipschitz continuous with constant 1/µ

‖∇f∗(u)−∇f∗(v)‖2 ≤
1

µ
‖u− v‖2
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outline of proof

f∗(y) = sup
x

(yTx− f(x))

• yTx− f(x) has a unique maximizer for every y

(follows from closedness of f and strong convexity of f(x)− yTx)

• from page 13-4: ∇f∗(y) = argmaxx (yTx− f(x))

• from strong convexity and page 13-5 (with xu = ∇f∗(u), xv = ∇f∗(v))

f(xu)− vTxu ≥ f(xv)− vTxv +
µ

2
‖xu − xv‖22

f(xv)− uTxv ≥ f(xu)− uTxu +
µ

2
‖xu − xv‖22

combining the inequalities gives µ‖xu − xv‖22 ≤ (xu − xv)
T (u− v)

• apply the Cauchy-Schwarz inequality to get µ‖xu − xv‖2 ≤ ‖u− v‖2
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Dual gradient method

primal problem (only equality constraints, for simplicity)

minimize f(x)
subject to Ax = b

dual problem: maximize g(ν) where

g(ν) = inf
x

(

f(x) + (Ax− b)Tν
)

= −bTν − f∗(−ATν)

dual ascent: solve dual by (sub-)gradient method

x+ = argmin
x

(

f(x) + νTAx
)

, ν+ = ν + t(Ax+ − b)

• sometimes referred to as Uzawa’s method

• of interest if calculation of x+ is inexpensive
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Dual decomposition

convex problem with separable objective

minimize f1(x1) + f2(x2)

subject to G1x1 +G2x2 � h

constraint is complicating (or coupling) constraint

dual problem

maximize g1(λ) + g2(λ)− hTλ
subject to λ � 0

where gj(λ) = infx
(

fj(x) + λTGjx
)

= −f∗
j (−GT

j λ)

can be solved by (sub-)gradient projection if λ � 0 is the only constraint
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subproblem: to calculate gj(λ) and a (sub-)gradient, solve the problem

minimize (over xj) fj(xj) + λTGjxj

• optimal value is gj(λ)

• if x̂j solves the subproblem, then −Gjx̂j is a subgradient of −gj at λ

dual subgradient projection method

• solve two unconstrained (and independent) subproblems

x+
j = argmin

xj

(

fj(xj) + λTGjxj

)

, j = 1, 2

• make projected subgradient update of λ

λ+ =
(

λ+ t(G1x
+
1 +G2x

+
2 − h)

)

+

(u+ = max{u, 0}, component-wise)
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interpretation: price coordination

• p = 2 units in a system; unit j chooses decision variable xj

• constraints are limits on shared resources; λi is price of resource i

• dual update λ+
i = (λi − tsi)+ depends on slacks s = h−G1x1 −G2x2

– increases price λi if resource is over-utilized (si < 0)
– decreases price λi if resource is under-utilized (si > 0)
– never lets prices get negative

distributed architecture

• central node 0 sets prices λ

• peripheral node j sets xj

21
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G1x1

λ

G2x2

λ
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Quadratic programming example

minimize
1

2

r
∑

j=1

xT
j Pjxj + qTj xj

subject to Ajxj � bj
p

∑

j=1

Gjxj � h

• r = 10; variables xj ∈ R100; Aj ∈ R100×100, Gj ∈ R10×100

• Pj ≻ 0; implies dual function has Lipschitz continuous gradient

subproblems are QPs

minimize (over xj) (1/2)xT
j Pjxj + (qj +GT

j λ)
Txj

subject to Ajxj � bj
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gradient projection and fast gradient projection

• fixed step size (equal in the two methods)

• plot shows convergence of master problem
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Outline

• dual gradient methods

• network rate control

• network flow optimization



Network rate control

network flows

• n flows, with fixed routes, in a network with m links

• variable xj ≥ 0 denotes the rate of flow j

• flow utility is Uj : R → R, concave, increasing

capacity constraints

• traffic yi on link i is sum of flows passing through it

• y = Rx, where R is the routing matrix

Rij =

{

1 flow j passes over link i
0 otherwise

• link capacity constraint: y � c
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Rate control problem

maximize U(x) =
n
∑

j=1

Uj(xj)

subject to Rx � c

a convex problem; dual decomposition gives decentralized method

Lagrangian (for minimizing −U)

L(x, λ) = −U(x) + λT (Rx− c)

= −λT c+

n
∑

j=1

(

−Uj(xj) + (rTj λ)xj

)

• λi is price (per unit flow) for using link i

• rTj λ is the sum of prices along route j (rj is jth column of R)
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dual function

g(λ) = −λT c+

n
∑

j=1

inf
xj

(

−Uj(xj) + xjr
T
j λ

)

= −λT c−
n
∑

j=1

(−Uj)
∗(−rTj λ)

dual rate control problem

maximize −λT c−
n
∑

j=1

(−Uj)
∗(−rTj λ)

subject to λ � 0
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(Sub-)gradients of dual function

−g(λ) = λT c+

n
∑

j=1

sup
xj

(

Uj(xj)− xjr
T
j λ

)

• subgradient of −g(λ)

c−Rx̄ ∈ ∂(−g)(λ) where x̄j = argmax
(

Uj(xj)− xjr
T
j λ

)

if Uj is strictly concave, this is a gradient

• rTj λ is the sum of link prices along route j

• c−Rx̄ is vector of link capacity margins for flow x̄
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Dual decomposition rate control algorithm

given initial link price vector λ ≻ 0 (e.g., λ = 1)

repeat

1. sum link prices along each route: calculate zj = rTj λ

2. optimize flows (separately) using flow prices

xj := argmax (Uj(xj)− zjxj)

3. calculate link capacity margins s := c−Rx

4. update link prices using projected (sub-)gradient step with step t

λ := (λ− ts)+

decentralized: links only need to know the flows that pass through them;
flows only need to know prices on links they pass through
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Generating feasible flows

primal iterates are not necessarily feasible (i.e., Rx 6� c)

• define ηi = (Rx)i/ci

ηi < 1 means link i is under capacity; ηi > 1 means link is over capacity

• define xfeas as

xfeas
j =

xj

max{ηi | flow j passes over link i}

xfeas is feasible, even if x is not

• finding xfeas is also decentralized
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Example

• n = 10 flows, m = 12 links; 3 or 4 links per flow

• link capacities chosen randomly, uniform on [0.1, 1]

• Uj(xj) = log xj; optimal flow as a function of price is

x̄j = argmax (Uj(xj)− zjxj) =
1

zj

• initial prices: λ = 1

• constant stepsize tk = 3
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Convergence of primal and dual objectives
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Maximum capacity violation
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Outline

• dual gradient methods

• network rate control

• network flow optimization



Single commodity network flow

network

• connected, directed graph with n links, p nodes

• node incidence matrix A ∈ Rp×n is

Aij =







1 arc j enters i
−1 arc j leaves node i
0 otherwise

flow vector and external sources

• variable xj denotes flow (traffic) on arc j

• given external source (or sink) flow bi at node i, 1T b = 0

• flow conservation: Ax+ b = 0
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Network flow optimization problem

minimize
n
∑

j=1

φj(xj)

subject to Ax+ b = 0

φ(x) =
n
∑

j=1

φj(xj) is separable convex flow cost function

• convex, readily solved with standard methods

• dual decomposition yields decentralized solution method

Dual decomposition 13-24



Network flow dual

Lagrangian

L(x, ν) = φ(x) + νT (Ax+ b)

= bTν +

n
∑

j=1

(

φj(xj) + xja
T
j ν

)

• aj is jth column of A

• dual variable νi can be interpreted as as potential at node i

• yj = −aTj ν is the potential difference across edge j (potential at start
node minus potential at end node)

dual problem: maximize g(ν)

g(ν) = inf
x

L(x, ν) = bTν −
n
∑

j=1

φ∗
j(−aTj ν)
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Recovering primal from dual

assume cost functions φj are strictly convex

• strictly convex φj means unique minimizer

x̂j(y) = argmin
xj

(φj(xj)− yjxj)

• gradient of −g at ν is:

−(Ax̂(y) + b) where y = −ATν

gradient is negative of flow conservation residual

• if φj is differentiable, x̂j(y) = (φ′
j)

−1(yj) (inverse of derivative function)

• optimal flows, from optimal potentials, are x̂j(y
⋆
j ) where y⋆ = −ATν⋆
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Dual decomposition network flow algorithm

given initial potential vector ν

repeat

1. determine link flows from potential differences y = −ATν

xj := x̂j(yj), j = 1, . . . , n

2. compute flow surplus at each node: si := aTi x+ bi, i = 1, . . . , p

3. update node potentials using (sub-)gradient step with step size t

νi := νi + tsi, i = 1, . . . , p

decentralized: flow is calculated from potential difference across edge;
node potential is updated from its own flow surplus
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Electrical network interpretation

network flow optimality conditions (with differentiable φj)

Ax+ b = 0, y +ATν = 0, yj = φ′
j(xj), j = 1, . . . , n

network with node incidence matrix A, nonlinear resistors in branches

Kirchhoff current law (KCL): Ax+ b = 0

xj is the current flow in branch j; bi is external current injected at node i

Kirchhoff voltage law (KVL): y +ATν = 0

νj is node potential; yj = −aTj ν is jth branch voltage

current-voltage characterics: yj = φ′
j(xj)

for example, φj(xj) = Rjx
2
j/2 for linear resistor Rj

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

flow cost function

φj(xj) =
xj

cj − xj

, domφj = [0, cj)

where cj > 0 are given link capacities

conjugate

φ∗
j(yj) =

{

(√
cjyj − 1

)2
yj > 1/cj

0 yj ≤ 1/cj

inverse derivative map

φ′
j(xj) = yj ⇐⇒ xj = x̂j(yj) = cj −

√

cj/yj
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A specific example

network with 5 nodes, 7 links, capacities cj = 1
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Optimal flow

optimal flows shown as width of arrows; optimal dual variables shown in
nodes; potential differences shown on links
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Convergence of dual function

fixed step size rules, t = 0.3, 1, 3
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for t = 1, converges to p⋆ = 2.48 in around 40 iterations
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Convergence of primal residual
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