EE236C (Spring 2011-12)

13. Dual decomposition

e dual gradient methods
e network rate control

e network flow optimization
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Lagrange duality

convex problem (with linear componentwise inequality constraints)

minimize  f(x)
subject to Gx =X h
Ax =0

Lagrangian and dual function

Lz, \v) = fx)+(G'A+ A" 2 —hI X —b'v
g\, v) = inf L(x,\,v)

dual problem
maximize g(\,v)
subject to A >0
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Lagrange dual and conjugates

dual function in terms of conjugate:
g\ v) = —hI X =blv — f*(=GTX - ATv)

where

f*(y) =sup (y'z — f(z))

X

potential advantages of dual methods

e dual is unconstrained or has simple constraints (depends on dom f*)
e dual is differentiable (depends on differentiability properties of f*)

e dual (almost) decomposes into smaller problems
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(Sub-)gradients of conjugate function

assume f : R™ — R is closed and convex with conjugate

f*(y) =sup (y'z — f(z))

subgradient

e any maximizer in the definition of f*(y) is a subgradient at y (page 8-6)
redf(y) <=  ylz—fl=)=[1y)

e f* is subdifferentiable on (at least) int dom f* (page 4-6)

gradient: for f strictly convex, maximizer in definition is unique if it exists

Vf*(y) = argmax (y' = — f(z)) (if maximum is attained)

x
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Minimum of strongly convex function

if x is a minimizer of a strongly convex function f, then it is unique and

f) = f(x) + Slly—al3 ¥y € dom f

(u is the strong convexity constant of f; see page 1-9)

proof: if some y does not satisfy the inequality, then for small positive 6

(-0 +0y) < (1-0)f() +0) — n2 Dy — a3
= J(@) + 00 w) — F@) — Elly — ) + u e ol

< f(x)
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Conjugate of strongly convex function

for f closed and strongly convex, with parameter y > 0

e f*is defined for all y (i.e., dom f* = R")

e ™ is differentiable everywhere, with gradient

V*(y) = argmax (37 — f(x))

T

e V f* is Lipschitz continuous with constant 1/u

HVﬁﬁ»—Vﬁwmzsgm—vm

Dual decomposition

13-6



outline of proof

f*(y) =sup (y' =z — f(z))

x

e y''z — f(x) has a unique maximizer for every y

(follows from closedness of f and strong convexity of f(z) — y!x)

e from page 13-4: Vf*(y) = argmax, (y'z — f(x))

e from strong convexity and page 13-5 (with x, = Vf*(u), z, = Vf*(v))

fa) =v"e = @) ="z, + Sl — 23

fa) —uTwy 2 fla) = aTe+ Glaw - a3

combining the inequalities gives u||z, — 4[| < (74 — 24)! (u — v)

e apply the Cauchy-Schwarz inequality to get p||z, — xy||2 < ||lu — v||2
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Dual gradient method

primal problem (only equality constraints, for simplicity)
minimize  f(x)

subject to Ax =1b

dual problem: maximize g(v) where

g(v) =inf (f(z) + (Az —b)'v) = =b"v — f*(—A"v)

x

dual ascent: solve dual by (sub-)gradient method

zt = argmin (f(z) + v’ Az), v =v+t(Azt —b)

X

e sometimes referred to as Uzawa's method

e of interest if calculation of 2™ is inexpensive
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Dual decomposition

convex problem with separable objective

minimize  fi(x1) + fa(22)
subject to Gix1 + Gaxg X h

constraint is complicating (or coupling) constraint

dual problem

maximize  g1(A) + g2(\) — h1A
subjectto A >0

where g;(\) = inf, (fj(z) + ATGjz) = —fr(=G7N)

can be solved by (sub-)gradient projection if A > 0 is the only constraint
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subproblem: to calculate g;(\) and a (sub-)gradient, solve the problem
minimize (over ;) fj(z;) + A\ G x;

e optimal value is g;(\)
e if 2, solves the subproblem, then —G ;2 is a subgradient of —g; at A
dual subgradient projection method

e solve two unconstrained (and independent) subproblems

T = argmin (fj(a;j) + )\Tijj) , 7=1,2

j .
Lj

e make projected subgradient update of A

A= (A +t(Graf + Gazg — h))+

(uy = max{u, 0}, component-wise)
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interpretation: price coordination

e p = 2 units in a system; unit j chooses decision variable z;
e constraints are limits on shared resources; \; is price of resource 1
e dual update )\j = (A; — ts;)+ depends on slacks s = h — G117 — Gaxo

— increases price \; if resource is over-utilized (s; < 0)
— decreases price \; if resource is under-utilized (s; > 0)
— never lets prices get negative

distributed architecture

e central node O sets prices A

A N

e peripheral node j sets z;
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Quadratic programming example

I T
minimize 52:1:] Pjx;+ q; x;
j=1
subject to Ajz; X b,

P
Z ijl?j j h
71=1

o r = 10; variables z; € R0, Aj; € R100*100 G, € R1V>100

e P; > 0; implies dual function has Lipschitz continuous gradient

subproblems are QPs

minimize (over z;) (1/2)z] Pjz;+ (q; + G A\)"x;
subject to Ajx; 2 b,
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gradient projection and fast gradient projection

e fixed step size (equal in the two methods)

e plot shows convergence of master problem

— gradient
2 -~ FISTA

p* — g(A®)
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Outline

e dual gradient methods
e network rate control

e network flow optimization



Network rate control

network flows

e n flows, with fixed routes, in a network with m links
e variable z; > 0 denotes the rate of flow j

o flow utility is U; : R — R, concave, increasing

capacity constraints

e traffic y; on link ¢ is sum of flows passing through it

e y = Rz, where R is the routing matrix

no_ 1 flow j passes over link %
71 0 otherwise

e link capacity constraint: y < ¢

Dual decomposition
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Rate control problem

maximize U(x) = ) U;(x,)
=1

subject to Rx <c

a convex problem; dual decomposition gives decentralized method

Lagrangian (for minimizing —U)
L(z,\) = -U(z)+ A (Rzx—¢)

— \ex Z (=Uj(xj) + (] Ny)

e )\; is price (per unit flow) for using link ¢

o fr]T)\ is the sum of prices along route j (r; is jth column of R)

Dual decomposition
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dual function

inf (—Uj(z;) + xjroA)
1t

g(A) = A+
J

dual rate control problem

n

maximize —A'c— Z(—Uj)*(—r-TA)

j
j=1
subjectto A >0
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(Sub-)gradients of dual function

—g(A) = Ne+ ) sup (Uj(z;) — zjr] A)
j=1 %

e subgradient of —g(\)
¢c— Rz € 0(—g)(\) where z; = argmax (U;(z;) — z;r] \)
if Uj is strictly concave, this is a gradient
o rf)\ is the sum of link prices along route j

e c — Rx is vector of link capacity margins for flow &
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Dual decomposition rate control algorithm

given initial link price vector A = 0 (e.g., A =1)
repeat

1. sum link prices along each route: calculate z; = ro)\

2. optimize flows (separately) using flow prices
z; = argmax (U;(x;) — zjx;)

3. calculate link capacity margins s := ¢ — Rx

4. update link prices using projected (sub-)gradient step with step ¢

Ai=(A—ts),

decentralized: links only need to know the flows that pass through them;
flows only need to know prices on links they pass through
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Generating feasible flows

primal iterates are not necessarily feasible (i.e., Rx A c)

e define n; = (Rx);/c;

1; < 1 means link ¢ is under capacity; 77; > 1 means link is over capacity

o define zfe@s 35

feas L xj

7 max{n; | flow j passes over link i}

X

xfeas is feasible, even if  is not

feas

e finding x'°** is also decentralized
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Example

e n = 10 flows, m = 12 links; 3 or 4 links per flow
e link capacities chosen randomly, uniform on [0.1, 1]
o U;(x;) =logx;; optimal flow as a function of price is

_ 1
r; = argmax (U;(z;) — zjx;) = —
J

e initial prices: A =1

e constant stepsize tp = 3
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Convergence of primal and dual objectives
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Maximum capacity violation
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Outline

e dual gradient methods
e network rate control

e network flow optimization



Single commodity network flow

network

e connected, directed graph with n links, p nodes

PXMNn |

e node incidence matrix A € R S

1 arc j enters 1
A = —1 arc j leaves node
0 otherwise

flow vector and external sources

e variable z; denotes flow (traffic) on arc j
e given external source (or sink) flow b; at node 4, 116 =0

e flow conservation: Az +b=0
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Network flow optimization problem

minimize Z(bj(xj)
j=1

subjectto Az +b=0

¢(x) = > ¢j(x;) is separable convex flow cost function
j=1

e convex, readily solved with standard methods

e dual decomposition yields decentralized solution method
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Network flow dual

Lagrangian
L(z,v) = ¢(z)+v'(Az+Db)

mn
T T
= b'v+ Z (qﬁj(a:j) + xja; V)
j=1
® a; is jth column of A
e dual variable v; can be interpreted as as potential at node ¢
T

e y; = —aj; v is the potential difference across edge j (potential at start

node minus potential at end node)

dual problem: maximize g(v)

g(v) = igfL(x, V) =blv — Z (b;f(—afu)
j=1
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Recovering primal from dual
assume cost functions ¢; are strictly convex

e strictly convex ¢; means unique minimizer

A

T;(y) = argmin (¢;(z;) — y;7 )

T
e gradient of —g at v is:
—(Az(y) +b) where y=—-Alv
gradient is negative of flow conservation residual
o if ¢; is differentiable, &;(y) = (¢))~"(y;) (inverse of derivative function)

e optimal flows, from optimal potentials, are ;(y}) where y* = —A"v*
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Dual decomposition network flow algorithm

given initial potential vector v

repeat

1. determine link flows from potential differences y = —A'v
r;=2;(y;), j=1...,n

2. compute flow surplus at each node: s; :=alx+b;, i=1,...,p

3. update node potentials using (sub-)gradient step with step size ¢

ViZ:VZ'—FtSZ', 221,,]?

decentralized: flow is calculated from potential difference across edge;
node potential is updated from its own flow surplus
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Electrical network interpretation

network flow optimality conditions (with differentiable ¢;)
Axr +b=0, y+ Alv =0, y; = ¢i(x), j=1,...,n

network with node incidence matrix A, nonlinear resistors in branches
Kirchhoff current law (KCL): Az +b=10

x; is the current flow in branch j; b; is external current injected at node
Kirchhoff voltage law (KVL): y + ATv =0

v;j is node potential; y; = —a; v is jth branch voltage

current-voltage characterics: y; = ¢(x;)

for example, ¢;(z;) = R;x5/2 for linear resistor R;

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

flow cost function

qu (xj) — o 3

Cj—ZIZ'j

where c¢; > 0 are given link capacities

conjugate

dom gbj = [O, Cj)

05 (y;) = { (()\/%— )" y;>1/e

inverse derivative map

oi(xy) =y, = w5 =23(y;) = ¢; —\/¢i/y;

Dual decomposition
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A specific example

network with 5 nodes, 7 links, capacities ¢; = 1
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Optimal flow

optimal flows shown as width of arrows; optimal dual variables shown in
nodes; potential differences shown on links
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Convergence of dual function

fixed step size rules, t = 0.3, 1, 3
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for t = 1, converges to p* = 2.48 in around 40 iterations
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Convergence of primal residual
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