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Abstract. We consider a Markov process on a connected graph, with edges labeled with transition
rates between the adjacent vertices. The distribution of the Markov process converges
to the uniform distribution at a rate determined by the second smallest eigenvalue λ2 of
the Laplacian of the weighted graph. In this paper we consider the problem of assigning
transition rates to the edges so as to maximize λ2 subject to a linear constraint on the
rates. This is the problem of finding the fastest mixing Markov process (FMMP) on the
graph. We show that the FMMP problem is a convex optimization problem, which can in
turn be expressed as a semidefinite program, and therefore effectively solved numerically.
We formulate a dual of the FMMP problem and show that it has a natural geometric
interpretation as a maximum variance unfolding (MVU) problem, i.e., the problem of
choosing a set of points to be as far apart as possible, measured by their variance, while
respecting local distance constraints. This MVU problem is closely related to a problem
recently proposed by Weinberger and Saul as a method for “unfolding” high-dimensional
data that lies on a low-dimensional manifold. The duality between the FMMP and MVU
problems sheds light on both problems, and allows us to characterize and, in some cases,
find optimal solutions.
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1. The Problem. The fastest mixing Markov chain problem was proposed and
studied by Boyd, Diaconis, and Xiao in [4]. In that problem the mixing rate of
a discrete-time Markov chain on a graph was optimized over the set of transition
probabilities on the edges of a given graph. In this paper, we discuss its continuous-
time counterpart.
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1.1. The Laplacian and Mixing Rate. Let G = (V, E) be an undirected connected
graph with n vertices, labeled 1, . . . , n, and m edges. We will use two schemes to label
the edges of the graph. If vertices i and j are adjacent (i ∼ j), we denote the associated
edge by an unordered pair {i, j}. On other occasions we will label the edges with a
single index that runs from 1 to m. We consider a symmetric Markov process on the
graph. The state space is V , and the edges E represent the allowed transitions. Each
edge {i, j} is labeled with the transition rate wij ≥ 0 between the associated vertices.
We will also give the set of edge transition rates as a vector w = (w1, . . . , wm) ∈ Rm,
where the subscript refers to the edges described using a single index.

Let π(t) ∈ Rn denote the distribution of the state at time t. Its evolution is given
by the heat equation

dπ(t)
dt

= −Lπ(t),

where L ∈ Rn×n is the (weighted) Laplacian, defined as

Lij =







−wij , i ∼ j, i %= j,
0, i %∼ j, i %= j,
∑

j∼i wij , i = j.

The solution is given by the action of the semigroup e−tL on the initial condition, i.e.,

π(t) = e−tLπ(0).

The Laplacian L is symmetric and positive semidefinite (PSD). Its smallest eigenvalue
is 0, with associated eigenvector 1 = (1, . . . , 1). We order the eigenvalues of L in
increasing order:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

If the subgraph consisting of edges with positive rates is connected, then λ2 > 0
(i.e., λ1 is isolated). Conversely, if λ2 > 0, the subgraph of edges with positive rates
is connected. For a survey of the properties of the Laplacian, see, e.g., [19]. In the
context of the Laplacian, we refer to the rates wij as weights, since they can be thought
of as weights on the edges of the graph.

From L1 = 0 it follows that the uniform distribution 1/n is an equilibrium distri-
bution of the Markov process. If λ2 > 0, it is the unique equilibrium distribution, and
π(t) → 1/n as t → ∞ for any initial distribution. Moreover, the rate of convergence
of the distribution π(t) to uniform is determined by λ2; for example, we have

sup
π(0)
‖π(t)− (1/n)1‖tv ≤ (1/2)n1/2e−λ2t,

where ‖ · ‖tv is the total variation distance between two distributions (see, e.g., [8]).
(The total variation distance is the maximum difference in probability assigned by the
two distributions, over any subset of vertices.) Thus, the larger the second Laplacian
eigenvalue λ2, the faster the Markov process mixes.

1.2. The Fastest Mixing Markov Process Problem. We now turn to the question
of how to choose the rates w so that the Markov process mixes as quickly as possible.
Since λ2 is a positive homogeneous function of w, it can be made as large as we like by
scaling w by a large positive factor. To make the problem of maximizing λ2 sensible,
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we must somehow limit the rates. Perhaps the simplest way to do this is to impose a
limit on a positive weighted sum of the rates,

∑

{i,j}∈E

d2
ijwij ≤ 1,

where d2
ij > 0 represents a relative cost on edge {i, j}.

We can now state the problem. We wish to assign rates to the edges, subject
to this constraint, to get the fastest mixing Markov process (FMMP) on the given
graph. This can be posed as the following constrained optimization problem:

maximize λ2(w)

subject to
∑

d2
ijwij ≤ 1,

w ≥ 0.

(1)

Here the optimization variable is w ∈ Rm, and the problem data are the graph and
the weights dij ; the notation w ≥ 0 is meant elementwise. We call (1) the FMMP
problem.

We make several simple observations about the FMMP problem. First, it always
has a solution, since the objective is continuous and the constraint set is compact.
Moreover, the inequality constraint

∑

d2
ijwij ≤ 1 always holds with equality at the

solution, since λ2 is positive homogeneous. In particular, we can replace the inequal-
ity by equality. The optimal value of the problem is always positive, since we can
choose all rates to be small and positive, which results in λ2 > 0 (since the graph
is connected). Finally, we note that if w∗ is optimal, the subgraph associated with
w∗ij > 0 must be connected.

The absolute algebraic connectivity problem, described by Fiedler [9, 10], is a
special case of the FMMP problem, with dij = 1/

√
m for all {i, j} ∈ E. The absolute

algebraic connectivity problem is a very interesting topic in algebraic graph theory;
the fact that it is a special case of the FMMP problem also gives it several physical
interpretations (discussed in the next section).

Several other closely related problems have been explored by the authors, includ-
ing the discrete-time counterpart [4, 3], distributed algorithms for resource allocation
[32], and distributed algorithms for averaging [31]. We will also see, in section 4.7,
a somewhat surprising connection to recent work in machine learning in the area of
manifold unfolding [28, 29].

2. Interpretations. In this section we give some simple physical interpretations
of the FMMP problem (1). None of this material is used in what follows (except in
interpretations of subsequent results), so the reader anxious to get to the main results
can skip this section. We note that similar extremal eigenvalue problems have been
studied for continuous domains, with the Laplacian matrix replaced by a Laplacian
operator; see, e.g., [6, 7].

2.1. Grounded Capacitor RC Circuit. Consider a connected grounded capacitor
resistor-capacitor (RC) circuit, as shown in Figure 1. Each node has a grounded unit
value capacitor, and nodes i and j are connected by a conductance gij (which is zero
if nodes i and j are not directly connected). Let q(t) denote the vector of charge
distribution on the nodes. Then

dq

dt
= −Lq(t),
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Fig. 1 Example of a grounded capacitor RC circuit.

where L is the Laplacian with gij as the edge weights. When λ2, the second eigenvalue
of the Laplacian, is positive, the charge distribution converges to uniform, i.e., qi(t)→
1T q(0)/n. The second Laplacian eigenvalue λ2 gives the rate at which the charge is
equilibrated. In this context, the FMMP problem is to choose the conductances in
the circuit, subject to a limit on the weighted total conductance, to make the circuit
equilibrate charge as fast as possible.

We can give a simple physical interpretation of the weighted total conductance
constraint. Assume the conductors are made of a material with unit resistivity, and
let dij and aij be the length and cross-sectional area of the conductor between nodes
i and j, respectively. The conductance between the nodes is then

gij =
aij

dij
,

and the total volume of the conductors is
∑

dijaij =
∑

d2
ijgij .

Thus, we can interpret the FMMP problem as the problem of choosing the conduc-
tor cross-sectional areas, subject to a unit total volume, so as to make the circuit
equilibrate charge as quickly as possible.

For a related application of semidefinite programming to optimizing RC circuits,
see [27].

2.2. Isolated Thermal System. We can give a similar interpretation for a ther-
mal system. We consider a thermal system consisting of n unit thermal masses,
connected by some thermal conductances but otherwise isolated. The total heat is
constant and asymptotically distributes itself evenly across the masses, with a rate
that depends on the second Laplacian eigenvalue λ2. We can imagine that the con-
ductances are, say, rods with unit thermal conductivity, given lengths dij and cross-
sectional areas aij . The problem is to choose the cross-sectional areas, subject to a
total volume constraint, so that the system equilibrates heat as rapidly as possible.

2.3. Mass-Spring System. Consider a mass-spring system such as the one shown
in Figure 2. The unit masses move horizontally without friction, with some pairs
connected by springs with spring constant kij between adjacent nodes i and j. (The
spring constant is the ratio of force to displacement.) The vector of displacements
x(t) satisfies the wave equation

d2x

dt2
= −Lx(t),
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Fig. 2 Example of a mass-spring system.

where L is the Laplacian with kij as the edge weights. The solution has the form

xi(t) = ai + bt +
n
∑

j=2

cij cos(λ1/2
j t + φij),

where ai, b, cij , and φij depend on the initial displacements and velocities, and
λ2, . . . ,λn are the Laplacian eigenvalues. Assuming λ2 > 0, the motion of each mass
consists of a (common) constant velocity component ai + bt and a sum of sinusoidal
oscillations with frequencies given by the square roots of the Laplacian eigenvalues,
which are the natural frequencies of the system. The slowest or fundamental natural
frequency is λ1/2

2 , and the associated fundamental period is 2πλ−1/2
2 . In this example,

then, the second Laplacian eigenvalue is related to the fundamental period of the
system; the larger λ2 is, the shorter the fundamental period. The FMMP problem is
to choose the stiffness of each spring, subject to a total weighted stiffness constraint,
so as to make the fundamental period as fast as possible.

Here too we can relate the optimization variables to cross-sectional areas. Assume
that the springs are bars with unit Young’s modulus, and let dij and aij be the length
and cross-sectional area of the bar connecting mass i and mass j. Then its stiffness is

kij =
aij

dij
,

and the total volume of the bars is
∑

dijaij =
∑

d2
ijkij .

Thus, the FMMP problem is to allocate a unit volume of material to the bars so as
to minimize the fundamental period.

Of course the same type of analysis holds for an inductor-capacitor (LC) circuit.

3. Convexity and Semidefinite Program Formulation.

3.1. Concavity of λ2. The second Laplacian eigenvalue λ2 is a concave function
of the weights w. This can be seen in several ways; for example, from the variational
characterization of eigenvalues [15, section 4.2],

λ2(w) = inf
‖u‖=1, 1T u=0

uT L(w)u = inf
‖u‖=1, 1T u=0

∑

{i,j}∈E

wij(ui − uj)2.

This shows that λ2(w) is the pointwise infimum of a family of linear functions of w,
and therefore is concave (see [5, section 3.2]).

Since the constraints in the FMMP problem are linear, we see that it is a convex
optimization problem (since the objective is concave and is to be maximized). General
background on eigenvalue optimization can be found in, e.g., [21, 17].
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3.2. An Alternate Formulation. Here we give an alternate formulation of the
FMMP problem which will be more convenient in what follows. Since the objective λ2
and the constraint function

∑

d2
ijwij in the FMMP problem are positive homogeneous,

we can just as well minimize the constraint function subject to a minimum on λ2:

minimize
∑

d2
ijwij

subject to λ2(w) ≥ 1,
w ≥ 0.

(2)

As in the original FMMP problem (1), the solution here will always satisfy the in-
equality constraint with equality. (The solutions of the two FMMP formulations are
the same, up to a positive scaling.) In this alternate formulation, we want to find
rates on the edges so as to minimize the total weighted cost, subject to the constraint
that the mixing rate (as measured by λ2) exceeds 1. We will also refer to problem
(2) as the FMMP problem. Like the original formulation, it is a convex optimization
problem.

3.3. Semidefinite Program (SDP) Formulation. We can transform the FMMP
problem (2) into an SDP by observing that

λ2(w) ≥ 1 ⇐⇒ L(w) - I − (1/n)11T ,

where - denotes matrix inequality. Using this, we can express the FMMP problem
as

minimize
∑

d2
ijwij

subject to L(w) - I − (1/n)11T ,
w ≥ 0.

(3)

This problem has a linear objective, a linear matrix inequality (LMI) constraint, and
a set of nonnegativity constraints, and so is an SDP. We refer to (3) as the primal
SDP. While problem (3) is not in one of the so-called standard forms for an SDP, it
is easily transformed to a standard form; see, e.g., [5, 26].

One immediate consequence of the SDP formulation (3) is that we can numerically
solve the FMMP problem efficiently, using standard algorithms for an SDP (e.g.,
[23, 2, 1, 11, 24]; see [13] for a comprehensive list of current SDP software). For m no
more than 1000 or so, interior-point methods can be used to solve the FMMP problem
in a minute or so (or much less) on a small personal computer. Far larger problems can
be solved using subgradient-type methods and by exploiting the problem structure;
see, e.g., [5, 4]. More sophisticated methods for solving large scale problems of this
type are discussed in [22, 14, 20]. However, we won’t pursue numerical methods for
the FMMP problem in this paper.

3.4. The Dual Problem. The dual of the SDP (3) is (the SDP)

maximize Tr(I − (1/n)11T )X
subject to Xii + Xjj −Xij −Xji ≤ d2

ij , {i, j} ∈ E,
X - 0,

(4)

where the symmetric matrix X ∈ Rn×n is the optimization variable, and the problem
data are the graph and the weights dij . (See [5] for more on SDP duality.)
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Before proceeding, we simplify this problem a bit. If X is feasible, then

X̃ = (I − (1/n)11T )X(I − (1/n)11T )

is also feasible, since X̃ - 0,

X̃ii + X̃jj − X̃ij − X̃ji = Xii + Xjj −Xij −Xji ≤ d2
ij , {i, j} ∈ E.

Moreover, Tr X̃ is equal to the objective Tr(I − (1/n)11T )X:

Tr X̃ = Tr(I − (1/n)11T )X(I − (1/n)11T )
= Tr(I − (1/n)11T )2X
= Tr(I − (1/n)11T )X.

(Here we use Tr(AB) = Tr(BA) and (I − (1/n)11T )2 = (I − (1/n)11T ).) Evidently,
X̃ always satisfies 1T X̃1 = 0.

Conversely, if X̃ satisfies

X̃ii + X̃jj − X̃ij − X̃ji ≤ d2
ij , {i, j} ∈ E, 1T X̃1 = 0, X̃ - 0,

then it also is feasible for the problem (4), and its objective there is equal to Tr X̃.
It follows that we can use X̃ as the variable in the dual, in place of X.

Using X̃ as the variable and adding this constraint (and relabeling X̃ as X) yields
the SDP

maximize TrX
subject to Xii + Xjj −Xij −Xji ≤ d2

ij , {i, j} ∈ E,
1T X1 = 0, X - 0.

(5)

We will refer to this version of the SDP dual as the dual SDP. The primal SDP (3)
and the dual SDP (5) form a pair of duals, in the sense that the following duality
results hold.

• Weak duality. For any primal feasible w and any dual feasible X, we have
∑

d2
ijwij ≥ TrX.

Thus, any dual feasible X gives a lower bound on the optimal value of the
primal FMMP problem. (Similarly, any primal feasible w gives an upper
bound on the optimal value of the dual problem.) We can give a simple
direct derivation of this fact: For any primal-dual feasible pair (w, X),

∑

d2
ijwij −TrX =

∑

[d2
ij − (Xii + Xjj −Xij −Xji)]wij

+Tr(L(w)− (I − (1/n)11T ))X
≥ 0.

The difference between the primal and dual objective values, i.e., the left-
hand side in the equation above, is the gap for a feasible pair (w, X). If the
gap is zero, then w is optimal for the primal, and X is optimal for the dual.
In other words, zero gap is sufficient for optimality.
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• Strong duality. There exists a primal-dual feasible pair (w∗, X∗) with zero
gap, i.e.,

∑

d2
ijw
∗
ij = TrX∗.

In particular, w∗ is primal optimal and X∗ is dual optimal. This means that
optimal values of the primal and dual problems are the same. This strong
duality result follows from Slater’s condition [5, 26].

3.5. Optimality Conditions. From duality, we obtain the so-called Karush–
Kuhn–Tucker (KKT) optimality conditions: A pair (w∗, X∗) is primal-dual optimal if
and only if its elements are feasible and have zero gap, i.e., they satisfy the following.

• Primal feasibility:

w∗ ≥ 0, L(w∗) - I − (1/n)11T .

• Dual feasibility:

1T X∗1 = 0, X∗ - 0, X∗ii + X∗jj −X∗ij −X∗ji ≤ d2
ij , {i, j} ∈ E.

• Complementary slackness on edges:
(

d2
ij − (X∗ii + X∗jj −X∗ij −X∗ji)

)

w∗ij = 0, {i, j} ∈ E.

• Matrix complementary slackness:

L(w∗)X∗ = X∗.

Complementary slackness on the edges means that for each edge, if the primal con-
straint is not tight, i.e., w∗ij > 0, then the dual constraint is tight, i.e.,

X∗ii + X∗jj −X∗ij −X∗ji = d2
ij .

The matrix complementary slackness condition means that the range of X∗ lies
in the eigenspace of L(w∗) associated with λ2 (which is 1), i.e.,

(L(w∗)− I)X∗ = 0.(6)

This means that if p is the multiplicity of λ2 for a primal optimal L(w∗), and q is
the rank of a dual optimal X∗, then we must have p ≥ q. This holds for any primal
optimal w∗ and any dual optimal X∗, which leads to the following result.

Result 1. Let p∗ denote the minimum multiplicity of the second eigenvalue of
L(w∗) over all primal optimal solutions w∗, and let q∗ denote the maximum rank of
X∗ over all dual optimal solutions X∗. Then p∗ ≥ q∗.

A simple and interesting special case is p∗ = 1, as follows.
Result 2. Suppose there is a primal optimal solution w∗ whose second Laplacian

eigenvalue is isolated (i.e., p∗ = 1). Then the solution of the dual problem is unique
and given by

X∗ = c∗uuT ,

where c∗ is the optimal value (of the primal and dual problems), and u is the (nor-
malized) eigenvector associated with the second Laplacian eigenvalue of L(w∗), i.e.,
L(w∗)u = u. This last condition can be expressed as

∑

j∼i

wij(ui − uj) = ui, i = 1, . . . , n.

We note that Result 2 corresponds exactly with the case in which the objective
λ2 in the FMMP problem is differentiable at an optimal point (see, e.g., [16]).
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4. A Geometric Dual.

4.1. A Maximum Variance Unfolding Problem. In this section we transform the
dual SDP (5) to an equivalent problem that has a simple geometric interpretation.
Since the dual variable X is symmetric and PSD, we can express it as

X =







xT
1
...

xT
n







[

x1 · · · xn

]

(7)

for some set of n points xi ∈ Rn, i.e., we consider X as a Gram matrix. This
factorization is not unique: multiplying xi by any orthogonal matrix yields another
set of vectors with the same Gram matrix. Conversely, any two factorizations are
related by multiplication with an orthogonal matrix. We will refer to the set of points
x1, . . . , xn as a configuration.

In terms of xi, we have

Xii + Xjj −Xij −Xji = ‖xi − xj‖2,

the square of the Euclidean distance between xi and xj . The condition 1T X1 = 0
implies

n
∑

i=1

xi = 0,

i.e., the points are centered at the origin.
Finally, the dual objective TrX corresponds to

TrX =
n
∑

i=1

‖xi‖2,

the variance of the set of points, and thus gives a measure of how spread out the
points are. Since

∑n
i=1 xi = 0, we can express the dual objective as

TrX =
n
∑

i=1

‖xi‖2 =
1
2n

n
∑

i,j=1

‖xi − xj‖2,

the sum of square distances between all pairs of points. Note that these interpretations
hold for any choice of the xi, i.e., for any factorization of a dual feasible X.

Now we change variables in the dual SDP (5), using the new variables x1, . . . , xn.
This gives the following problem:

maximize
∑

i

‖xi‖2

subject to ‖xi − xj‖ ≤ dij , {i, j} ∈ E,
∑

i

xi = 0,

(8)

with variables x1, . . . , xn ∈ Rn. An optimal x∗1, . . . , x
∗
n will be called an optimal

configuration. This problem is equivalent to the dual SDP (5): the optimal objective
values are the same, and we can obtain optimal solutions of each one from the other
using (7).
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Problem (8) has a simple geometric interpretation. The goal is to position n
points in Rn as far apart as possible, measured by their variance, while respecting
upper bounds on the distance between some pairs of points. We call (8) the maximum
variance unfolding (MVU) problem. (The term “unfolding” will be explained below.)
After this manuscript was accepted for publication, the authors found the recent work
[12], which gives the same interpretation of problem (8) (with dij all the same) as the
dual of the absolute algebraic connectivity problem, and discusses many interesting
properties of the optimal solution.

4.2. MVU with PSD Constraint. The MVU problem (8) is clearly invariant un-
der orthogonal transformations: If x1, . . . , xn is a feasible (or optimal) configuration,
then so is Qx1, . . . , Qxn, where Q is orthogonal. Since the MVU problem (8) is in-
variant under orthogonal transformations, we can if we wish add a constraint that
forces a particular choice (or orientation) of the configuration. One obvious choice
corresponds to the unique symmetric PSD square root of X, i.e.,







xT
1
...

xT
n






=
[

x1 · · · xn

]

= X1/2.

In other words, we can add the symmetry and PSD constraint






xT
1
...

xT
n






=
[

x1 · · · xn

]

- 0

to the MVU problem to obtain

maximize
∑

i

‖xi‖2

subject to ‖xi − xj‖ ≤ dij , {i, j} ∈ E,
∑

i

xi = 0, (xi)j = (xj)i, i, j = 1, . . . , n,

[x1 · · · xn] - 0.

(9)

This problem, which we call the PSD MVU problem, is equivalent to the MVU prob-
lem (8) in the following sense. The optimal values of the two problems are the same;
any optimal solution of the PSD MVU problem is also optimal for the original MVU
problem without the symmetry constraint; and any optimal solution of the original
MVU problem can be transformed by an orthogonal matrix to give an optimal solution
of the PSD MVU problem.

The only difference between the MVU problem (8) and the PSD MVU problem (9)
is that in the PSD MVU problem, we have forced a particular orientation for the
configuration. We will see in section 4.4 that this choice gives us a nice interpretation
of the optimality conditions.

4.3. FMMP-MVU Duality. The MVU problem is not a convex optimization prob-
lem, although it is equivalent to one. However, from the SDP duality results, we do
have the following.

• Weak duality. For any w feasible for the primal FMMP problem (2), and any
x1, . . . , xn feasible for the associated MVU problem (8), we have

∑

d2
ijwij ≥

∑

‖xi‖2.
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In other words, the variance of any feasible configuration is a lower bound on
the optimal value of the FMMP problem.

• Strong duality. There exist a primal FMMP feasible w∗ and an MVU feasible
configuration x∗1, . . . , x

∗
n, for which

∑

d2
ijw
∗
ij =

∑

‖x∗i ‖2.

In particular, w∗ is an optimal set of edge rates for the FMMP problem, and
x∗1, . . . , x

∗
n is an optimal configuration for the MVU problem.

In this sense, the FMMP problem (2) and the associated MVU problem (8) can be
considered as (strong) duals.

4.4. Optimality conditions revisited. We can restate the optimality conditions
for the FMMP and its SDP dual in terms of the MVU problem. A set of edge rates
w∗ and a configuration x∗1, . . . , x

∗
n are primal-dual optimal if and only if they satisfy

the following.
• Primal feasibility:

w∗ ≥ 0, λ2(w∗) ≥ 1.

• Dual feasibility:
∑

x∗i = 0, ‖x∗i − x∗j‖ ≤ dij , {i, j} ∈ E.

• Complementary slackness on edges:

w∗ij(dij − ‖x∗i − x∗j‖) = 0, {i, j} ∈ E.

• Matrix complementary slackness:

L(w∗)







x∗1
T

...
x∗n

T






=







x∗1
T

...
x∗n

T






.

The edge complementary slackness condition means that for each edge, if the
optimal rate w∗ij is strictly positive, then the associated distance in the optimal con-
figuration, ‖x∗i − x∗j‖, is at its maximum value dij .

The matrix complementary slackness condition can be given an interesting inter-
pretation. Let q be any unit vector, and define z = (qT x∗1, . . . , q

T x∗n), which is the
vector of q-coordinates of the configuration. Then we have

L(w∗)z = L(w∗)







x∗1
T

...
x∗n

T






q =







x∗1
T

...
x∗n

T






q = z.

Thus, for any direction q, the coordinates of an optimal configuration, when nonzero,
form an eigenvector of L(w∗) associated with the second eigenvalue.

We can give a very simple interpretation of the matrix complementary slackness
condition for the PSD MVU problem (9). Using the symmetry constraint, the matrix
complementary slackness condition simplifies to

L(w∗)x∗i = x∗i , i = 1, . . . , n,
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i.e., each point in the optimal configuration x∗1, . . . , x
∗
n lies in the eigenspace of L(w∗)

associated with its second eigenvalue. This can also be concluded from the fact that
the range of X∗ is contained in the eigenspace of the second Laplacian eigenvalue of
L(w∗) (see (6)).

For future use, we note that the matrix complementary slackness condition can
be expressed as

∑

j∼i

w∗ij(x
∗
i − x∗j ) = x∗i , i = 1, . . . , n.

(This is the case with and without the symmetry constraint.)

4.5. Some Rank and Dimension Inequalities. The (affine) dimension of a con-
figuration x1, . . . , xn is the rank of the associated (Gram) matrix X. Therefore we
can restate our rank inequalities from Result 1 in section 3.5 in terms of the MVU
problem.

Result 3. Let p denote the multiplicity of the second eigenvalue of L(w∗) for
some primal FMMP optimal w∗. Then any configuration that is optimal for the
associated MVU problem has an affine dimension not exceeding p.

Since this result holds for any primal optimal w∗, it holds with p = p∗, the
minimum multiplicity over all primal optimal solutions. This result shows that if an
FMMP instance has an optimal solution with low multiplicity of λ2, then any optimal
solution of the associated MVU is guaranteed to have a low affine dimension.

Result 4. Suppose there is a primal optimal solution w∗ whose second Laplacian
eigenvalue is isolated (i.e., p∗ = 1), with normalized eigenvector u. Then the optimal
configuration of the associated MVU problem is unique, up to multiplication by an
orthogonal matrix, and has affine dimension 1, i.e., its points all lie on a line. The
optimal configuration for the MVU with symmetry constraints is given by

x∗i = c∗uiu, i = 1, . . . , n,

where c∗ is the optimal value of the FMMP (and MVU) problem.
There seem to be some interesting connections between the results in this section

and some well-known functions of graphs, the Lovász number [18] and the Colin de
Verdière parameter [25]. In connection with the Lovász number, suppose we label the
vertices of the graph with unit vectors in a d-dimensional Euclidean space, such that
vectors associated with nonadjacent vertices are orthogonal. The Lovász number is
a lower bound on the embedding dimension d. The Colin de Verdière parameter is
related to the maximum multiplicity of the second smallest eigenvalue of the weighted
Laplacian of the graph, which plays an important role in certain graph embedding
problems.

4.6. A Mechanics Interpretation. We can give a simple mechanics interpretation
of the MVU problem. We consider an n-point system in Rn, with a potential energy

U(r) = −r2/2n

between any two points with distance r. (This is a repulsive potential whose strength
grows with distance.) The total system potential or energy is then

U(x1, . . . , xn) = −
∑

i<j

‖xi − xj‖2/2n.

We assume that for i ∼ j, points i and j are connected by a rope of length dij , so
that ‖xi − xj‖ ≤ dij . Then the problem of finding the constrained minimum energy
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configuration is the same as the MVU problem. This mechanics problem is invariant
under multiplication by an orthogonal matrix, as well as under translation, so we can
assume without loss of generality that

∑

xi = 0, in which case we have

U(x1, . . . , xn) = −
∑

‖xi‖2/2.

A necessary condition for x1, . . . , xn to be a constrained minimum energy config-
uration is that the system is in static equilibrium. By differentiating U with respect
to xi, we find that the potential corresponds to a (centripetal) force Fi = xi on point
i. Let Tij ≥ 0 be the tension in rope {i, j}. The static equilibrium condition is that
the tensions are in balance with the outward centripetal force, i.e.,

∑

{i,j}∈E

Tij
xi − xj

‖xi − xj‖
= xi, i = 1, . . . , n.

The tensions must be zero unless the ropes are taut, i.e.,

(dij − ‖xi − xj‖)Tij = 0, {i, j} ∈ E.

Using this equation, the force balance can be expressed as

∑

{i,j}∈E

Tij

dij
(xi − xj) = xi, i = 1, . . . , n.

By comparing these conditions with the optimality conditions, we see that Tij =
dijw∗ij is a set of tensions that satisfy the static equilibrium condition, where w∗ij is an
optimal set of rates for the FMMP problem. Thus, we can interpret the optimal rates
for the FMMP problem as tensions per unit length in the ropes that hold together a
minimum energy configuration.

4.7. A Connection to Machine Learning. The MVU problem (8) is very close
to a problem proposed by Weinberger and Saul in [28, 29] as a heuristic for unfolding
data that lies on a manifold. Indeed, the name “maximum variance unfolding” is
inspired entirely by their application.

Weinberger and Saul proposed the following problem:

maximize
∑

i

‖xi‖2

subject to ‖xi − xj‖ = dij , {i, j} ∈ E,
∑

i

xi = 0,

(10)

with variables x1, . . . , xn ∈ Rn; the graph, along with the distances dij , are the
problem data. The only difference between this problem and the MVU problem (8)
is in the distance constraints: in Weinberger and Saul’s problem, they are equalities,
whereas in the MVU problem, they are inequalities. Weinberger and Saul’s equality
constrained MVU problem can be converted to an SDP very similar to our SDP dual
of the FMMP, i.e., the problem (5) (or (4); the only difference is that the distance
inequalities in our formulation are replaced with equalities in Weinberger and Saul’s).

We can give a brief description of the context and ideas behind Weinberger and
Saul’s problem. The starting point is a set of distances between all pairs of a large set
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d23 = 1
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d34 = 1

d45 = 1

d46 = 2

Fig. 3 A small numerical example.

of points in Rn. The underlying assumption is that these points lie (approximately)
on a manifold of low dimension, and the goal is to discover the manifold (and, in
particular, its dimension). To do this, we select a distance threshold and ignore all
pairwise distances that are larger than the threshold. This results in a sparse graph,
whose edges are labeled with the distance dij between points xi and xj . We now
try to find a configuration that respects these local distances and has lowest possible
affine dimension. This is a hard problem, but Weinberger and Saul proposed maxi-
mizing the variance of the configuration, subject to matching the local distances, as
a heuristic for solving it. Our result above on rank has immediate ramifications for
this method of unfolding, since it gives an upper bound on the affine dimension of the
resulting configuration.

We can turn things around as well, and work out a variation on our FMMP
problem that is a dual for Weinberger and Saul’s problem:

minimize
∑

d2
ijwij

subject to L(w) - I − (1/n)11T .

This is the same as our FMMP problem, except that we drop the nonnegativity
constraints on the edge weights w.

While it seems reasonable, in retrospect, that fast mixing Markov chains and
manifold unfolding are related, it was not obvious (at least to us) that the problems
are so closely related.

5. Examples.

5.1. A Small Example. We consider the small example with graph and costs dij

shown in Figure 3. The solutions to both the FMMP problem (2) and its dual MVU
problem (8) are readily found numerically (and simultaneously) using an SDP solver
to solve the SDP (3) (and its dual). For example, SDPSOL (Wu and Boyd [30]) gives
us the FMMP optimal edge weights

w∗12 = 1.776, w∗23 = 3.276, w∗13 = 0.362,

w∗34 = 4.500, w∗45 = 1.500, w∗46 = 1.250,

with optimal objective value
∑

d2
ijw
∗
ij = 17.5. Along with this primal solution, SDPSOL

produces a corresponding dual optimal solution X∗, which we can factor to obtain an
optimal configuration. The Laplacian associated with the edge weights given above
has a second eigenvalue with multiplicity 1, which implies (by our results) that the
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1 2 3 4 5 6

Fig. 4 The path P6.

optimal solution of the MVU problem is unique (up to multiplication by an orthogonal
matrix) and lies on a line (i.e., has affine dimension 1). This solution is

x∗1 = −2.5q, x∗2 = −1.5q, x∗3 = −0.5q, x∗4 = 0.5q, x∗5 = 1.5q, x∗6 = 2.5q,

where q is any unit vector. The associated maximum variance is
∑

‖x∗i ‖2 = 17.5,
the same (as it must be) as the minimum cost for the FMMP problem. This MVU
solution was obtained numerically, but is easily verified to be the exact solution.

The optimal solution to the FMMP problem, however, is not unique. The full
set of optimal edge rates can be obtained from the optimal configuration of the MVU
problem and the optimality conditions, which include the linear equations

w∗12 + 2w∗13 = 2.5, w∗23 − w∗12 = 1.5, 2w∗13 + w∗23 = 4,

w∗34 = 4.5, w∗45 = 1.5, w∗46 = 1.25.

It can be verified that any choice of w∗ij ≥ 0 that satisfies these equations is optimal,
so the set of optimal edge rates for the FMMP problem is given by

w∗12 = a, w∗23 = 1.5 + a, w∗13 = 1.25− 0.5a,

w∗34 = 4.5, w∗45 = 1.5, w∗46 = 1.25,

where the parameter a varies between 0 and 2.5.
The intuition provided by the MVU problem allows us to make guesses about

how the solution of both the FMMP and the associated MVU changes when the data
change. For example, suppose that we increase d13 above the value 2 (keeping the
other dij the same). The optimal configuration for the MVU is the same as the one
described above, with all points on a line. The distance constraint ‖x∗1 − x∗2‖ ≤ d13,
however, is slack at the optimal solution. This in turn implies that any FMMP on
the graph assigns zero transition rate to the edge {1, 3}. This is readily verified
numerically, or analytically.

5.2. Paths. Our second example is a path Pn, with vertices indexed in order on
the path, as shown in Figure 4. Boyd et al. solved the problem of finding the fastest
mixing discrete-time Markov chain on a path in [3]; not surprisingly, we can do the
same here.

Result 5. The optimal rates on a path are unique and given by

w∗i,i+1 =
1

di,i+1





i

n

n−1
∑

j=1

(n− j)dj,j+1 −
i−1
∑

j=1

(i− j)dj,j+1



 , i = 1, . . . , n− 1.

The optimal configuration for the associated MVU problem is also unique (up to mul-
tiplication by an orthogonal matrix) and consists of points on a line with distances
di,i+1:

x∗i =
1
n





i−1
∑

j=1

jdj,j+1 −
n−1
∑

j=i

(n− j)dj,j+1



u, i = 1, . . . , n,

where u ∈ Rn is any unit vector.
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Fig. 5 The cycle C6.

In particular, when the edge costs are all 1, the optimal rates form a parabolic
curve:

w∗i,i+1 =
i(n− i)

2
, i = 1, . . . , n− 1.

Proof. We will show directly that the one-dimensional configuration is optimal.
For any x1, . . . , xn with ‖xi − xi+1‖ ≤ di,i+1 and

∑

xi = 0, we have
∑

i<j

‖xi − xj‖2 ≤
∑

i<j

(‖xi − xi+1‖+ · · · + ‖xj−1 − xj‖)2

≤
∑

i<j

(di,i+1 + · · · + dj−1,j)2.

This shows that any feasible configuration has a variance smaller than the configu-
ration given above (for which the inequalities become equalities). The optimal rates
w∗i,i+1 are uniquely determined from the optimal configuration using the optimality
conditions.

The solution for the path with uniform edge cost was obtained in [9] in the study
of the absolute algebraic connectivity problem. In the same paper, and the later one
[10], Fielder gave a complete solution for trees, and showed that the absolute algebraic
connectivity for trees is always a rational number.

5.3. Cycles. Our next example is a cycle Cn, as illustrated in Figure 5. We first
consider the simple case with all costs on the edges 1, i.e., dij = 1. By symmetry and
convexity (see [5, Exercise 4.4]), it is easy to show that an optimal solution to the
FMMP problem can, without loss of generality, be assumed to have equal rates on
all edges. The eigenvalues of the associated Laplacian are readily found analytically,
and we find that the optimal rates

wij =
1

4 sin2(π/n)
, {i, j} ∈ E,

yield λ2 = 1.
It is also easy to guess that an optimal configuration for the MVU problem consists

of n points evenly spaced on a circle with radius 1/(2 sin(π/n)). However, it is not
immediately clear how to prove this directly by symmetry arguments, since the MVU
problem (8) is not convex. It is also not obvious how to prove this result using direct
arguments like those for a path.
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We can, however, establish that this configuration is optimal by verifying that it
has a variance equal to the cost of the FMMP for the rates given above, i.e.,

n

4 sin2(π/n)
.

This in fact certifies that this circular configuration, as well as the weights found
above, are optimal for the MVU and FMMP, respectively.

The general case with arbitrary weights dij is more complicated. But we will
show the following result.

Result 6. Any optimal configuration of a cycle is two-dimensional.
Proof. We prove something stronger: The multiplicity of any Laplacian eigenvalue

of a cycle does not exceed 2. Suppose u1, u2, u3 are linearly independent eigenvectors
associated with an eigenvalue λ > 0. Take any two adjacent vertices, say, 1 and 2.
Let (α,β, γ) be a nonzero triple such that u = αu1 +βu2 + γu3 vanishes on these two
vertices, i.e., u1 = 0 and u2 = 0. Since u is also an eigenvector associated with λ, it
should satisfy the equation L(w)u = λu, i.e.,

∑

j∼i wij(ui − uj) = λui for any i.
Since the cycle is connected, without loss of generality, suppose vertex 2 also

connects to vertex 3; then w21(u2 − u1) + w23(u2 − u3) = λu2. Since u1 = u2 = 0,
w23 %= 0, we have u3 = 0. By repeating this argument, it is easy to see that u actually
vanishes on every vertex, i.e., u = 0. This contradicts the assumption that u1, u2, u3

are linearly independent.

6. Time-Reversible FMMP. The FMMP problem can be extended to a time-
reversible Markov process, with a specified equilibrium distribution π. We can pose
this problem as an SDP, and therefore solve it efficiently; its associated dual problem
can be interpreted as a type of weighted MVU problem.

The transition rates qij of a time-reversible Markov process must satisfy the de-
tailed balance equation

πiqij = πjqji, {i, j} ∈ E,

where (π1, . . . ,πn) is the given equilibrium distribution. Let wij = πiqij = πjqji and
let L(w) be the Laplacian with wij as the edge weights. Let Π = diag(π1, . . . ,πn).
Then the evolution of the Markov process is given by

dπ(t)
dt

= −LΠ−1π(t),

where π(t) denotes the distribution of the state at time t.
The matrix LΠ−1 is similar to Π−1/2LΠ−1/2, which is symmetric PSD. The eigen-

vector of Π−1/2LΠ−1/2 associated with the smallest eigenvalue (which is zero) is
q = (

√
π1, . . . ,

√
πn). The asymptotic rate of convergence to equilibrium is deter-

mined by the second eigenvalue of Π−1/2LΠ−1/2.
The time-reversible FMMP problem can then be formulated as the SDP

minimize
∑

d2
ijwij

subject to Π−1/2L(w)Π−1/2 - I − qqT ,
w ≥ 0.

(11)

The associated dual SDP can be simplified to yield

maximize TrX
subject to π−1

i Xii + π−1
j Xjj − 2(πiπj)−1/2Xij ≤ d2

ij , {i, j} ∈ E,
qT Xq = 0, X - 0.

(12)
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To derive a geometric dual for the time-reversible FMMP problem, we let the
symmetric matrix Π−1/2XΠ−1/2 be the Gram matrix of a configuration of n points
x1, . . . , xn ∈ Rn. Using these variables we can reformulate the dual (12) as

maximize
∑

πi‖xi‖2

subject to ‖xi − xj‖ ≤ dij , {i, j} ∈ E,
∑

πixi = 0.

(13)

The objective here is the variance of the configuration, but with probability πi on
point xi. (The constraint

∑

πixi = 0 sets the mean of the configuration to be zero.)
Thus, the problem is again one of maximizing the variance of a configuration of points,
subject to some distance inequalities given by the original graph and costs dij . The
only difference is that the variance is calculated using the probabilities πi (instead of
uniform probabilities).

The time-reversible FMMP problem has a simple interpretation in the context of
the physical systems described in section 2. For example, for a grounded capacitor
RC circuit, the reversible FMMP problem corresponds to an RC circuit with given
capacitors to ground C1, . . . , Cn.
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