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Proximal point algorithm

a conceptual algorithm for minimizing a closed convex function f

k) = proxtkf(a:(k_l))

1

—  argmin (f<u> + L x“*—”n%)

e special case of the proximal gradient method (page 6-2) with g(z) =0
e step size t; > 0 affects number of iterations, cost of prox evaluations
e a practical algorithm if inexact prox evaluations are used

e of interest if prox evaluations are much easier than minimizing f directly

basis of the method of multipliers or augmented Lagrangian method
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Convergence

assumptions

e f is closed and convex (hence, prox,(z) is uniquely defined for all x)

e optimal value f* is finite and attained at x*

result 5
|2 — 2],

2 25:1 ti

Flaz®y — fr < for k > 1

e implies convergence if ) .t;, = oo
e rate is 1/k if t; is fixed or variable but bounded away from zero

e t, is arbitrary; however cost of prox evaluations will depend on ¢;
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proof: follows from analysis of proximal gradient method (lect. 6)

1
o(r) =0, Gilx) = (x — prox,(x))
e inequality (1) on page 6-13 holds for any ¢ > 0

e from page 6-15, f(z¥) is nonincreasing and
) * 1 ) * 1— *
i (F@D) = 1) <5 (129 = 213 — 207 — 2*)3)

e combine inequalities for 1 =1 to ¢ = k to get

k

St (£ - ) < f}&ﬂﬂ%—fﬁ

1=1
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1
2 — 7|
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Accelerated proximal point algorithm

FISTA (take g(x) = 0 on p. 7-8): choose z(?) = () and repeat

s = (1= 02D 4 gD

™ = prox, ;(y*)

RO x<k—1>+-éﬁ(14k>-a#k—l>)
k

possible choices of parameters

o fixed steps: ty =t and 0, =2/(k+ 1)

e variable steps: choose any ¢t > 0, 8; = 1, and for k > 1, solve 0 from

(1 — Qk)tk _ i1
0 01
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Convergence

assumptions

e f is closed and convex (hence, prox,(z) is uniquely defined for all x)
e optimal value f* is finite and attained at x*

o (9 ¢ dom f

result

2 for k>1

f@®) = f* < :
(2\/E + 25:2 ti)

e implies convergence if > . \/t; = o0

e rate is 1/k? if t; is fixed or variable but bounded away from zero
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proof: follows from analysis of FISTA in lecture 7 with g(z) =0

e inequality (1) on page 7-10 holds for any ¢ > 0

e therefore the conclusion on page 7-15 holds:

92
fa™) — fr < B2 — 2%
2t

o for fixed step size ty, =t, O =2/(k+ 1),

0; 2

2t (k+1)%t

e for variable step size, we proved on page 7-19 that

9,§< 2

2t T 2y + 2, V)
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Moreau-Yosida regularization

Moreau-Yosida regularization of closed convex f is defined as

foole) = it (f) + 5 fu=alf) (it u>0

immediate properties

® f(u) is convex (infimum over u of a convex function of z, u)

e domain of f(,) is R" (recall that prox , ;(z) is defined for all )
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Examples

indicator function (of closed convex set C)

F@) = To(@), () = 5-d(@)’

d(x) is the Euclidean distance to C

1-norm

f@)=llzl,  fon@) =D dulx)

¢, 1s the Huber penalty
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Conjugate

proof:

e maximizer z in definition of conjugate satisfies uy = x — prox,, ()

of Moreau-Yosida regularization

(Fi)™ @) = £ @) + 53

e note: (f(,))" is strongly convex with parameter p
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Gradient of Moreau-Yosida regularization
_ T,  prx _H 2
foo () = sup («7y = () = § vl

e f(u) is differentiable; gradient is Lipschitz continuous with constant 1/

e maximizer in definition satisfies

r—py €0f (y) <= yeIf(r—ny)

e maximizing y is the gradient of f,,: from pages 6-8 and 8-13,
()

Viw(x) = % (a: — proxﬂf(a:)) = proxf*/u(a:/,u)
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau-Yosida regularization:

minimize f(,)(x) = igf (f(u) + %HU - 55“3)

this is an exact smooth reformulation of original problem

e solution x is minimizer of f

e f(u) is differentiable with Lipschitz continuous gradient (L = 1/p)

gradient update: with fixed t, = 1/L = pu

r*) = (k=) _ qu(M)(a;(k_l)) = prox f(x(k_l))

7

the update in the proximal point algorithm with constant step size tx = 1
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Augmented Lagrangian method

convex problem (with linear constraints for simplicity)

minimize  f(x)
subject to Gx X h
Az =0

dual problem: maximize —F'(\, ) where

[ RTA+ T+ F(—GTA— ATY) A= 0
F(Av) = { +00 otherwise

augmented Lagrangian method: proximal point alg. applied to dual
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Prox-operator of negative dual function

from page 14-20

A+t(Gz+5—h
pI‘OXtF<)\, V) — V —I—(t(AQAZ . b) )
where (z, §) is the solution of

minimize  L(x,s,\, V)
subjectto s> 0

cost function is augmented Lagrangian

L(x,s,\, V)=
t
f(x) + )\T(G:L‘ +s—h)+ VT(A:I: —b) + 5 (HGx + 5 — hl|5 + || Az — ng)
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Algorithm
choose A\, v, t > 0
1. minimize the augmented Lagrangian

(z,8) := argmin L(x, s, \, V)
x,s~0

2. dual update

A= A+t(Gx+5—h), v:=v+1t(AT — b)

e this is the proximal point algorithm applied to dual problem
e equivalently, gradient method applied to Moreau-Yosida regularized dual
e as a variant, can apply fast proximal point algorithm to the dual

e can be shown to work with inexact minimizers of L
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Applications

augmented Lagrangian method is useful when subproblems

t 1 1
minimize  f(x) —|—§ (||G:z:—h+z)\]|§—|— ||Aa:—b+zu||§>
subjectto s> 0

are substantially easier than original problem

example
minimize ||z
subject to Ax =1b

e solve sequence of /i-regularized least-squares problems

e equivalent to the Bregman iteration specialized to basis pursuit problem
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Dual decomposition

convex problem with separable objective

minimize  f(x) + h(y)
subject to Ax+ By =10>

augmented Lagrangian
t
L(x,y,v) = f(@) + h(y) +v' (Az + By = b) + ;|| Az + By — b];

e difficulty: quadratic penalty destroys separability of Lagrangian

e solution: replace minimization over (x,y) by alternating minimization
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Alternating direction method of multipliers

apply one cycle of alternating minimization steps to augmented Lagrangian

1. minimize augmented Lagrangian over x:

z®) = argmin £(z,y* Y, p*1)

X
2. minimize augmented Lagrangian over y:

y®) = argmin £(z®), y, v*~1)
y

3. dual update:

pF) = =) g (Aa;(k) + ByF) — b)

can be shown to converge under weak assumptions
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Example

minimize f(x) + ||[Ax — b
f convex (not necessarily strongly as on page 14-4)

reformulated problem

minimize  f(x) + ||y
subject to y = Az —b

augmented Lagrangian

t
Llr,y.2) = f@)+lyll+ 27— Az +0) + 5 |ly — Az + 0] 5

t 1 1
= 1@+ Dl + 5lly — Az + b+ —2[3 - 213
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alternating minimization

1. minimization over x

t
argmin £(x,y, ) = argmin (f(x) — 2T Az + 5HA$ —y — b||§>

x x

2. minimization over y involves projection on dual norm ball (see p.8-22)

arg;nin L(z,y,z) = prox), ; (Az—b—(1/t)z)
= 1 (Po(z—t(Az — b)) — (= — t(Az — b))

where C' = {u | ||ul|« < 1}
3. dual update

z:=z+4+tly—Ar+b) = Po(z —t(Ax — b))
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comparison with dual proximal gradient algorithm (page 14-4)

e ADMM does not require strong convexity of f, can use larger values of ¢
e dual updates are identical

e ADMM step 1 may be more expensive, e.q., for f(z) = (1/2)||z — a|3:
v = (I +tATA) " Ha+ AT (2 4+ t(y + b))

as opposed to x := a + A’z in the dual proximal gradient method

related algorithms (see references)

e split Bregman method with linear constraints

e fast alternating minimization algorithms
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example: nuclear norm approximation (problem instance of page 14-7)

| - ||+ is nuclear norm; A : R" x RP*? with A(z) = > z;A;
i=1

FISTA step size is 1/L = 1/||A||3; ADMM step size is t = 100/||A||3

Multiplier methods

relative error

1
minimize §||:1; — a3+ ||A(z) — B+

10°

| — ADMM

- FISTA
\
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