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15. Multiplier methods

• proximal point algorithm

• Moreau-Yosida regularization

• augmented Lagrangian method

• alternating direction method of multipliers (ADMM)
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Proximal point algorithm

a conceptual algorithm for minimizing a closed convex function f

x(k) = proxtkf
(x(k−1))

= argmin
u

(

f(u) +
1

2tk
‖u− x(k−1)‖22

)

• special case of the proximal gradient method (page 6-2) with g(x) = 0

• step size tk > 0 affects number of iterations, cost of prox evaluations

• a practical algorithm if inexact prox evaluations are used

• of interest if prox evaluations are much easier than minimizing f directly

basis of the method of multipliers or augmented Lagrangian method
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Convergence

assumptions

• f is closed and convex (hence, proxtf(x) is uniquely defined for all x)

• optimal value f⋆ is finite and attained at x⋆

result

f(x(k))− f⋆ ≤
∥

∥x(0) − x⋆
∥

∥

2

2

2
∑k

i=1 ti
for k ≥ 1

• implies convergence if
∑

i ti → ∞
• rate is 1/k if ti is fixed or variable but bounded away from zero

• ti is arbitrary; however cost of prox evaluations will depend on ti
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proof: follows from analysis of proximal gradient method (lect. 6)

g(x) = 0, Gt(x) =
1

t
(x− proxtf(x))

• inequality (1) on page 6-13 holds for any t > 0

• from page 6-15, f(x(i)) is nonincreasing and

ti

(

f(x(i))− f⋆
)

≤ 1

2

(

‖x(i) − x⋆‖22 − ‖x(i−1) − x⋆‖22
)

• combine inequalities for i = 1 to i = k to get

(
k

∑

i=1

ti)
(

f(x(k))− f⋆)
)

≤
k

∑

i=1

ti

(

f(x(i))− f⋆
)

≤ 1

2
‖x(0) − x⋆‖22
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Accelerated proximal point algorithm

FISTA (take g(x) = 0 on p. 7-8): choose x(0) = v(0) and repeat

y(k) = (1− θk)x
(k−1) + θkv

(k−1)

x(k) = proxtkf
(y(k))

v(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

possible choices of parameters

• fixed steps: tk = t and θk = 2/(k + 1)

• variable steps: choose any tk > 0, θ1 = 1, and for k > 1, solve θk from

(1− θk)tk
θ2k

=
tk−1

θ2k−1
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Convergence

assumptions

• f is closed and convex (hence, proxtf(x) is uniquely defined for all x)

• optimal value f⋆ is finite and attained at x⋆

• x(0) ∈ dom f

result

f(x(k))− f⋆ ≤
2
∥

∥x(0) − x⋆
∥

∥

2

2
(

2
√
t1 +

∑k
i=2

√
ti

)2 for k ≥ 1

• implies convergence if
∑

i

√
ti → ∞

• rate is 1/k2 if ti is fixed or variable but bounded away from zero
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proof: follows from analysis of FISTA in lecture 7 with g(x) = 0

• inequality (1) on page 7-10 holds for any t > 0

• therefore the conclusion on page 7-15 holds:

f(x(k))− f⋆ ≤ θ2k
2tk

‖x(0) − x⋆‖22

• for fixed step size tk = t, θk = 2/(k + 1),

θ2k
2tk

=
2

(k + 1)2t

• for variable step size, we proved on page 7-19 that

θ2k
2tk

≤ 2

(2
√
t1 +

∑k
i=2

√
ti)2
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Outline

• proximal point algorithm

• Moreau-Yosida regularization

• augmented Lagrangian method

• alternating direction method of multipliers (ADMM)



Moreau-Yosida regularization

Moreau-Yosida regularization of closed convex f is defined as

f(µ)(x) = inf
u

(

f(u) +
1

2µ
‖u− x‖22

)

(with µ > 0)

= f
(

proxµf(x)
)

+
1

2µ

∥

∥proxµf(x)− x
∥

∥

2

2

immediate properties

• f(µ) is convex (infimum over u of a convex function of x, u)

• domain of f(µ) is R
n (recall that proxµf(x) is defined for all x)
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Examples

indicator function (of closed convex set C)

f(x) = IC(x), f(µ)(x) =
1

2µ
d(x)2

d(x) is the Euclidean distance to C

1-norm

f(x) = ‖x‖1, f(µ)(x) =
n
∑

k=1

φµ(xk)

φµ is the Huber penalty
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Conjugate of Moreau-Yosida regularization

(f(µ))
∗(y) = f∗(y) +

µ

2
‖y‖22

proof:

(f(µ))
∗(y) = sup

x

(

yTx− f(µ)(x)
)

= sup
x,u

(

yTx− f(u)− 1

2µ
‖u− x‖22

)

= sup
u

(

yT (u+ µy)− f(u)− µ

2
‖y‖22

)

= f∗(y) +
µ

2
‖y‖22

• maximizer x in definition of conjugate satisfies µy = x− proxµf(x)

• note: (f(µ))
∗ is strongly convex with parameter µ
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Gradient of Moreau-Yosida regularization

f(µ)(x) = sup
y

(

xTy − f∗(y)− µ

2
‖y‖22

)

• f(µ) is differentiable; gradient is Lipschitz continuous with constant 1/µ

• maximizer in definition satisfies

x− µy ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x− µy)

• maximizing y is the gradient of f(µ): from pages 6-8 and 8-13,

∇f(µ)(x) =
1

µ

(

x− proxµf(x)
)

= proxf∗/µ(x/µ)
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau-Yosida regularization:

minimize f(µ)(x) = inf
u

(

f(u) +
1

2µ
‖u− x‖22

)

this is an exact smooth reformulation of original problem

• solution x is minimizer of f

• f(µ) is differentiable with Lipschitz continuous gradient (L = 1/µ)

gradient update: with fixed tk = 1/L = µ

x(k) = x(k−1) − µ∇f(µ)(x
(k−1)) = proxµf(x

(k−1))

the update in the proximal point algorithm with constant step size tk = µ
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Augmented Lagrangian method

convex problem (with linear constraints for simplicity)

minimize f(x)
subject to Gx � h

Ax = b

dual problem: maximize −F (λ, ν) where

F (λ, ν) =

{

hTλ+ bTν + f∗(−GTλ−ATν) λ � 0
+∞ otherwise

augmented Lagrangian method: proximal point alg. applied to dual
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Prox-operator of negative dual function

from page 14-20

proxtF (λ, ν) =

[

λ+ t(Gx̂+ ŝ− h)
ν + t(Ax̂− b)

]

where (x̂, ŝ) is the solution of

minimize L(x, s, λ, ν)
subject to s � 0

cost function is augmented Lagrangian

L(x, s, λ, ν) =

f(x) + λT (Gx+ s− h) + νT (Ax− b) +
t

2

(

‖Gx+ s− h‖22 + ‖Ax− b‖22
)
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Algorithm

choose λ, ν, t > 0

1. minimize the augmented Lagrangian

(x̂, ŝ) := argmin
x,s�0

L(x, s, λ, ν)

2. dual update

λ := λ+ t(Gx̂+ ŝ− h), ν := ν + t(Ax̂− b)

• this is the proximal point algorithm applied to dual problem

• equivalently, gradient method applied to Moreau-Yosida regularized dual

• as a variant, can apply fast proximal point algorithm to the dual

• can be shown to work with inexact minimizers of L
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Applications

augmented Lagrangian method is useful when subproblems

minimize f(x) +
t

2

(

‖Gx− h+
1

t
λ‖22 + ‖Ax− b+

1

t
ν‖22

)

subject to s � 0

are substantially easier than original problem

example
minimize ‖x‖1
subject to Ax = b

• solve sequence of ℓ1-regularized least-squares problems

• equivalent to the Bregman iteration specialized to basis pursuit problem
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Dual decomposition

convex problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

augmented Lagrangian

L(x, y, ν) = f(x) + h(y) + νT (Ax+By − b) +
t

2
‖Ax+By − b‖22

• difficulty: quadratic penalty destroys separability of Lagrangian

• solution: replace minimization over (x, y) by alternating minimization
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Alternating direction method of multipliers

apply one cycle of alternating minimization steps to augmented Lagrangian

1. minimize augmented Lagrangian over x:

x(k) = argmin
x

L(x, y(k−1), ν(k−1))

2. minimize augmented Lagrangian over y:

y(k) = argmin
y

L(x(k), y, ν(k−1))

3. dual update:

ν(k) := ν(k−1) + t
(

Ax(k) +By(k) − b
)

can be shown to converge under weak assumptions
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Example

minimize f(x) + ‖Ax− b‖

f convex (not necessarily strongly as on page 14-4)

reformulated problem

minimize f(x) + ‖y‖
subject to y = Ax− b

augmented Lagrangian

L(x, y, z) = f(x) + ‖y‖+ zT (y −Ax+ b) +
t

2
‖y −Ax+ b‖22

= f(x) + ‖y‖+ t

2
‖y −Ax+ b+

1

t
z‖22 −

1

2t
‖z‖22
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alternating minimization

1. minimization over x

argmin
x

L(x, y, ν) = argmin
x

(

f(x)− zTAx+
t

2
‖Ax− y − b‖22

)

2. minimization over y involves projection on dual norm ball (see p.8-22)

argmin
y

L(x, y, z) = prox‖·‖/t (Ax− b− (1/t)z)

=
1

t
(PC (z − t(Ax− b))− (z − t(Ax− b)))

where C = {u | ‖u‖∗ ≤ 1}

3. dual update

z := z + t(y −Ax+ b) = PC(z − t(Ax− b))
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comparison with dual proximal gradient algorithm (page 14-4)

• ADMM does not require strong convexity of f , can use larger values of t

• dual updates are identical

• ADMM step 1 may be more expensive, e.g., for f(x) = (1/2)‖x− a‖22:

x := (I + tATA)−1(a+AT (z + t(y + b))

as opposed to x := a+ATz in the dual proximal gradient method

related algorithms (see references)

• split Bregman method with linear constraints

• fast alternating minimization algorithms
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example: nuclear norm approximation (problem instance of page 14-7)

minimize
1

2
‖x− a‖22 + ‖A(x)−B‖∗

‖ · ‖∗ is nuclear norm; A : Rn × Rp×q with A(x) =
n
∑

i=1

xiAi
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FISTA step size is 1/L = 1/‖A‖22; ADMM step size is t = 100/‖A‖22
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