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Reading Assignments

1. Reading: Boyd & Vandenberghe: Chapters 4 & 5.

Written Problems

1. For A an m× n matrix, and b ∈ Rm, show that exactly one of the two following statements
must hold:

(i) There exists x ≥ 0 such that Ax = b.

(ii) There exists a vector s such that s>A ≥ 0, and s>b < 0.

(Hint: One direction is easy. For the other, think about separation arguments.)

2. Compressed Sensing Consider the following optimization problem

min
x∈Rn

‖x‖1

s.t. Ax = b

Write this as a linear program. Find its dual.

3. Problem 5.7 in the textbook, Boyd and Vandenberghe.

4. Exponential Families In this problem we investigate the natural motivation for an impor-
tant class of distributions: exponential families. Let X be a discrete1 random variable, with
possible values x ∈ X . Given a set of functions {φk(x)}, the corresponding exponential family
is all probability mass functions of the form

p(x) =
1

Z(θ)
exp

(∑
k

θkφk(x)

)
(1)

where all θk ∈ R and Z(θ) is a normalizing constant. Examples include bernoulli, exponential,
gaussian, poisson etc.

(a) Consider the entropy function H(p) := −
∑

x p(x) log p(x). As is well known, the higher
the entropy of a random variable, the “more random” it is. Show that H(·) is a concave
function of p.

1The same property holds for all random variables, but we will keep it discrete here for simplicity.
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(b) Consider the following optimization problem, which maximizes entropy subject to moment
constraints on certain functions:

max
p

H(p)

s.t. Ep[φk(X)] = ak for all k

where Ep[·] is the expectation when X has pmf p. Why is this a convex program ?

(c) Given a set of functions {φk(x)}, show that the optimum of the convex program above is
a pmf in the corresponding exponential family (1).

5. Fast-Mixing Markov Chains A doubly-stochastic matrix P is a symmetric matrix with
non-negative entries such that every row and every column sums up to 1. Its leading eigenvalue
is always 1, corresponding to the eigenvector 1. Consider the absolute values of all the other
eigenvalues of P , say λ2(P ) ≥ . . . ≥ λn(P ), and let µ(P ) := maxi 6=1 |λi(P )| denote the largest
such absolute value2.

(a) Show that µ(P ) is a convex function of P . (Hint: µ(P ) = max{λ2(P ),−λn(P )}).
(b) Write µ(P ) as the spectral norm of P minus another matrix. (Recall: for symmetric
matrices, spectral norm is the largest absolute value of an eignevalue.) (Hint: all eigenvectors
are orthogonal.)

6. Duality in graph theory. Given a graph with edge weights wij ≥ 0, the max-weight
matching problem is: find the heaviest set of disjoint edges (i.e no two edges in the set share
a node). The min-weight vertex cover problem is: put weights ui on each vertex, so that (a)
for every edge we have wij ≤ ui + uj , and (b) the total node weights

∑
i ui is minimized.

Show that these two problems are the duals of each other.

7. Robust Optimization. Recall the Robust Optimization framework we introduced in class.
We have a linear program,

min : c>x

s.t. : a>i x ≤ b, ∀ai ∈ Ui, i = 1, . . . ,m,

where Ui represents the uncertainty set. In class we considered polyhedral and ellipsoidal
uncertainty sets. Now consider the following cardinality-constrained robust problem:3 Each
constraint, a>i x ≤ bi, has some integer ri of its entries that may deviate from some nominal
value, while the remaining (n− ri) entries are known exactly. Thus we have:

Ui = {a = a0i + âi : |âij | ≤ ∆ij , |supp(âi)| ≤ ri}.

That is, âi is non-zero on at most ri entries. Here, âij is the jth entry of the vector âi.

Show that the robust linear program can be rewritten as a linear program. Note that you
have a non-convex problem to deal with, because of the cardinality constraint. The final
outcome, however, is just a linear program.

21 − µ(P ) governs the time it takes for a Markov chain, with probability transition matrix P , to converge to the
unique stationary distribution 1

n
1.

3As motivation, consider the following: if you are modeling measurements, it may make sense to assume that all
entries may be off by some amount. But if you are modeling, say, faulty components, where something either fails
or does not, it may make more sense to consider the case where at most some finite number of components fail, and
the others operate perfectly.

2


