
Why This Problem is Difficult

	 The	problem	of	finding	the	best	possible	overall	driver	and	rider	matching	(i.e.	global	best	solu-
tion)	is	just	a	version	of	a	well-known	problem	called	the	Vehicle	Routing	Problem	(VRP),	which	is	
stated	as:

	 “The	Vehicle	Routing	Problem	or	VRP	is	a	combinatorial	optimization	and	nonlinear	pro-
	 gramming	problem	seeking	to	service	a	number	of	customers	with	a	fleet	of	vehicles.	
	 Proposed	by	Dantzig	and	Ramser	in	1959,	VRP	is	an	important	problem	in	the	fields	of
	 	transportation,	distribution	and	logistics.	Often	the	context	is	that	of	delivering	goods	
	 located	at	a	central	depot	to	customers	who	have	placed	orders	for	such	goods.	
	 Implicit	is	the	goal	of	minimizing	the	cost	of	distributing	the	goods.	Many methods have
 been developed for searching for good solutions to the problem, but for all but
 the smallest problems, finding global minimum for the cost function is computation-
 ally complex.”

 	 	 –Wikipedia	entry	for	Vehicle	Routing	Problem

It	is	classified	as	an	NP-Hard	problem,	meaning	that	no	known	polynomial-time	algorithms	for	solv-
ing	it	exist.		If	we	approached	solving	it	in	the	naïve	sense,	i.e.	try	every	possible	solution,	reaching	
a	solution	would	take	an	amount	of	time	that	exceeds	the	history	of	the	known	universe.

To	top	it	off,	Rideshare	includes	scheduling	and	preference	matching,	and	allows	for	arbitrarily	many	
depots.

Our	approach	involved	using	three	different	algorithms	which	were	developed	by	many	of	our	wise	
predecessors,	and	adapted	by	us.

How We Find an Optimal Solution

In	order	to	match	users,	we	utilize	three	different	Optimizers.

An	Optimizer	takes	in	a	set	of	drivers	and	riders,	and	creates	a	“seed	solution.”

A	Solution	sets	up	Rideshares	which	initially	contain	only	the	drivers.

	 	 	 	 	 	 	 	 	 	 The	Optimizer	applies	an	algorithm	to	find	
	 	 	 	 	 	 	 	 	 	 an	optimal	result.		It	compares	different	solutions	
	 	 	 	 	 	 	 	 	 	 using		a	scoring	function,	and	generates	the	
	 	 	 	 	 	 	 	 	 	 highest	scoring	solution	it	can,	returning	it	as	
	 	 	 	 	 	 	 	 	 	 the	optimized	solution.

	 	 	 	 	 	 	 	 	 	 The	score	of	a	given	solution	is:

 Number	of	Riders	Matched	+	Number	of	Drivers	Matched	+
	 	 	 	 	 	 	 	 ∑(drivers’	seed	distances)/∑(rideshares’	final	distances)

	 	 	 	 	 	 	 	 The	whole	part	of	the	score	represents	the	primary
	 	 	 	 	 	 	 	 criteria	for	comparing	solutions.		It	consists	of	the	
	 	 	 	 	 	 	 	 total	number	of	users	matched.

	 	 	 	 	 	 	 	 	 Our	secondary	criteria	for	a	good	solution	is
	 	 	 	 	 	 	 	 	 the	fraction.	It	gives	us	an	idea	of	the	average
	 	 	 	 	 	 	 	 	 driver	deviation	from	their	original	route.		
	 	 	 	 	 	 	 	 	 A	smaller	fraction	means	shorter	deviations.

Compatibility - Can I Add This Rider?

	 How	to	take	a	Rideshare	and	rider	and	ascertain	whether	they	are	compatible.		This	might	sound	
like	a	simple	enough	task,	but	it	involves	much	more	than	meets	the	eye.

Of	course,	checking	for	age	and	gender	preferences	is	simple	enough.		But	schedule	and	route	compat-
ibility	are	a	different	story.		It	turns	out	that	the	first	can	be	done	if	we	apply	a	clever	observation	about	
the	Driver’s	worst	case	leave	window,	and	the	second	is	yet	another	instance	of	our	good	friend	the	Ve-
hicle	Routing	Problem.

Suppose	we	have	Marisa	Driver	and	Joe	Rider	in	a	match,	and	we	would	like	to	see	if	adding	a	
Alex	Rider	would	create	an	incompatible	ride	schedule	or	route	length.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 To	do	this	we	need	to	find	out	the		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 best	way	of	ordering	the	riders,		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 so	as	to	minimize	route	length.			 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Since	the	capacity	of	a	vehicle	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 is	fairly	small,	we	find	the	best	route		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 by	simplytrying	all	combinations.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Once	we	have	an	optimal	route	for		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 this	group,	we	verify	that	the	itiner	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ary	doesn’t	conflict	with	anyone’s		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 schedule.		We	do	this	by	narrowing			
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 the	leave	and	arrive	windows	until		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 we	reach	a	worst	case	leave	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 window	for	the	driver.	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 We	then	add	to	this	leave	window	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 the	time	necessary	to	get	from	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 point	to	point,	each	time	verifying	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 that	the	users’	time	windows	do	not	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 conflict	with	the	arrival	window	for		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 that	point.

Rideshare Sitemap
	 Reduce	your consumption,	ecological	footprint,	costs,	and	energy	dependency.

Share	and	cooperate.	
 Cooperation	has	a	way	of	benefiting	everyone	involved.
	 	 ride	with	your friends,	befriend your	riders.

Hundreds	of	millions	of	trips	are	taken	every	day	from	places	
we	all	live	to	places	we	all	go.			

The	energy	costs	and	global	consequences of
overconsumption	don’t	seem	to	be	
falling.	

Add	your	trip	to	the	lot,	and	find	someone	going	your	way.
Enter	your	ride	locations,	schedule,	and	preferences.		
If	we	find	matching	requests,	we	will	inform	you	by	email
and	rss	feed.		It’s	that	simple.

In	addition	to	providing	you	with	results,	
we	generate	matches	in	a	way	that	allows
more people	to	be	matched.		
This	means	that	we	improve	
the	likelihood	that	you	get	results,
and	reduce	everyone’s
ecological	footprint	even	further.	:)

 Pseudo-code For the Algorithms

Algorithms

0

10

20

30

40

50

60

70

80

uPrefs
_1

uPrefs
_2

uPrefs
_3

uPrefs
_4

uPrefs
_5

uPrefs
_6

uPrefs
_7

uPrefs
_8

uPrefs
_9

uPrefs
_10

uPrefs
_11

uPrefs
_12

uPrefs
_13

uPrefs
_14

uPrefs
_15

uPrefs
_16

Bipartite Matching 0.0028 8.0007 4.0004 7.0003 10.000 12.000 21.000 18.000 16.000 16.000 21.000 30.000 45.000 41.000 50.000 53.000

Genetic 0.0028 6.0009 11.000 11.000 17.000 19.000 25.000 26.000 33.000 34.000 39.002 49.000 53.000 59.000 67.000 72.000

Sc
o

re
N

u
m

 D
ri

ve
rs

 M
at

ch
e

d
 +

N
u

m
 R

id
e

rs
 M

at
ch

e
d

+
Su

m
(D

ri
ve

rs
' I

n
it

ia
l D

is
ta

n
ce

s)
/S

u
m

(R
id

es
h

ar
e

 D
is

ta
n

ce
s)

Scores
Genetic vs. Bipartite

7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120

Bipartite Matching 0 3 1 6 23 205 1977 1565 52 672 5310 4405 7259 4209 5120 7329

Genetic 3.03 16.92 41.55 52.51 203.49 470.04 894.08 228.32 1230.0 1319.3 4976 3757 3529 2959 7721 5414

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
u

n
 T

im
 e

 in
 s

e
co

n
d

s

Number of Requests vs.
Run Time

7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120

Bipartite Matching 0.000 1.099 0.000 1.792 3.135 5.323 7.589 7.356 3.951 6.510 8.577 8.390 8.890 8.345 8.541 8.900

Genetic 1.109 2.828 3.727 3.961 5.316 6.153 6.796 5.431 7.115 7.185 8.512 8.231 8.169 7.993 8.952 8.597

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

N
at

ru
al

 L
o

ga
ri

th
m

 o
f

th
e

 R
u

n
 T

im
 e

ln
(r

u
n

 t
im

e
 in

 s
e

co
n

d
s)

Number of Requests vs.
Natural Logarithm of Run Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time in seconds 0 3 1 6 23 205 1977 1565 52 672 5310 4405 7259 4209 5120 7329

Final score 0.0028 8.0007 4.0004 7.0003 10.000 12.000 21.000 18.000 16.000 16.000 21.000 30.000 45.000 41.000 50.000 53.000

0

10

20

30

40

50

60

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u

n
 T

im
e

 in
 s

e
co

n
d

s

Bipartite
Run Time vs. Final Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time in seconds 3.03 16.92 41.55 52.51 203.49 470.04 894.08 228.32 1230.0 1319.3 4976 3757 3529 2959 7721 5414

final score 0.0028 6.0009 11.000 11.000 17.000 19.000 25.000 26.000 33.000 34.000 39.002 49.000 53.000 59.000 67.000 72.000

0

10

20

30

40

50

60

70

80

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
u

n
 T

im
e

 in
 s

e
co

n
d

s

Genetic
Run Time vs. Final Score

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Implementation

