Reduce your consumption, ecological footprint, costs, and energy dependency.

and :
has a way of benefiting everyone involved.
ride with your , your riders.

Hundreds of millions of trips are taken every day from places
we all live to places we all go.

The energy costs and global consequences of
overconsumption don’t seem to be
falling.

Add your trip to the lot, and find someone going your way.
Enter your ride locations, schedule, and preferences.

If we find matching requests, we will inform you by

and It’s that simple.

In addition to providing you with results,

we generate matches in a way that allows
more people to be matched.
This means that we improve

Rideshare Application

the likelihood that you get results,
and reduce ‘

even further. :)

<

“— ‘

1.___.—-___“
\QEeS (/\Q_,ve, ,
External 4—)
Internal ¢—)
Optimizers \
Control ‘ — Internet #/
| ~_ P>,

‘. User Interface ‘

T

[MapQuest J

"

..--..

—(

.'-l. -

Why This Problem is Difficult

The problem of finding the best possible overall driver and rider matching (i.e. global best solu-
tion) is just a version of a well-known problem called the Vehicle Routing Problem (VRP), which is
stated as:

“The Venhicle Routing Problem or VRP is a combinatorial optimization and nonlinear pro-
gramming problem seeking to service a number of customers with a fleet of vehicles.
Proposed by Dantzig and Ramser in 1959, VRP is an important problem in the fields of
transportation, distribution and logistics. Often the context is that of delivering goods
located at a central depot to customers who have placed orders for such goods.

Implicit is the goal of minimizing the cost of distributing the goods. Many methods have
been developed for searching for good solutions to the problem, but for all but

the smallest problems, finding global minimum for the cost function is computation-
ally complex.”

—Wikipedia entry for Vehicle Routing Problem

It is classified as an NP-Hard problem, meaning that no known polynomial-time algorithms for solv-
ing it exist. If we approached solving it in the naive sense, i.e. try every possible solution, reaching
a solution would take an amount of time that exceeds the history of the known universe.

To top it off, Rideshare includes scheduling and preference matching, and allows for arbitrarily many
depots.

Our approach involved using three different algorithms which were developed by many of our wise
predecessors, and adapted by us.

v

Internet

] €&

"'_*-h___ﬂ__.__f/»__f”'

| Google Maps

L

L

f Google Geo-coder

How We Find an Optimal Solution

In order to match users, we utilize three different Optimizers.

An Optimizer takes in a set of drivers and riders, and creates a “seed solution.”

A Solution sets up Rideshares which initially contain only the drivers.

Ride Offers

Ride
Requests

Seed

Solution |

N,

Optimizer

—
| Optimizer
|

/

The Optimizer applies an algorithm to find

an optimal result. It compares different solutions
using a scoring function, and generates the
highest scoring solution it can, returning it as
the optimized solution.

The score of a given solution is:

The whole part of the score represents the primary
criteria for comparing solutions. It consists of the
total number of users matched.

Our secondary criteria for a good solution is
the fraction. It gives us an idea of the average
driver deviation from their original route.

A smaller fraction means shorter deviations.

Rideshare

Firshe v b e prelieg otk irpi albve Frabine] = el b epht mbe bl
. W e 1, O e e e R
G Lmmes s

- i -
msnimmn k1 oy il o iy Brei e e e e il Bl Te im
H EHE

1. - e

HE HHH o Ceiia ey o b

Rideshare Sitemap

Rideshare

‘Welcoma to Rideshare
Flaass log il 10 YoLF S00snt

fepene 1
| T
et

Ll o]

sy o

rhin - :-rmurlq
B i e A g e R e e B b e e e B i D
it el

Send Email
Validation

borrm i arrd eyt 8

Authentication

Rideshare

Forgotten Password
Flease NIl in gou L Rall addiess hebas

[Etdai ackines___]

Send Email

|

Reset Password

Data Valid

Save to Database

Bam

A T e

nm
= PP binhimin -

T PRAF Covmbond L FETL

T e s el Tmy

T FOE Wil L 9
B L e P Tl
a

Data Valid

Save to Database

Compatibility - Can | Add This Rider?

How to take a Rideshare and rider and ascertain whether they are compatible. This might sound
like a simple enough task, but it involves much more than meets the eye.

Of course, checking for age and gender preferences is simple enough. But schedule and route compat-
ibility are a different story. It turns out that the first can be done if we apply a clever observation about
the Driver’s worst case leave window, and the second is yet another instance of our good friend the Ve-

hicle Routing Problem.

Suppose we have Marisa Driver and Joe Rider in a match, and we would like to see if adding a
Alex Rider would create an incompatible ride schedule or route length.

Final Time Windows Time between
Locations

8am 10am 1 Marisa Leaves |

- Time to get from

l =— Mariza's crigin to

Alex Rider Alex Rider Joe's origin
| W e Joe Leaves |
Marisa D y 3

Joe's origin
T to Alex's origin

3
:

arrive—
z
5 Alex Leaves |
=
= Alex's origin to
E E Joe's desiination
€ g g 2 5 Joe Arrives |
z = = = E
— = =
% = = = =]\ Joe's destination o
- 2 = £ = — Marisa and Alex's
@ g @ E > [destination
€ A i 4 =
= & 2 2 = Marisa and Alex
J N — Arrive

To do this we need to find out the
best way of ordering the riders,

SO as to minimize route length.
Since the capacity of a vehicle

is fairly small, we find the best route
by simplytrying all combinations.

Once we have an optimal route for
this group, we verify that the itiner
ary doesn’t conflict with anyone’s
schedule. We do this by narrowing
the leave and arrive windows until
we reach a worst case leave
window for the driver.

We then add to this leave window
the time necessary to get from
point to point, each time verifying
that the users’ time windows do not
conflict with the arrival window for
that point.

Bipartite Matching Optimizer

1. Get seed solution

® Rideshares
@ Unmaiched riders

e

."R_

2. Connect compatible
riders and rideshares
with unmatched edges.
(Read "Compatibility —
Can | Add This Rider?"
to see how we do this)

Unmatched edges
Matched edges

3. For a random unmatched
rider, check if there is an

augmenting path leading from

that rider.

An augmenting path is a path

that begins and ends with

unmatched edges.

Such a path
allows us to
add one edge
to the
matching,
since the
number of
unmatched
edges is one

greater than
the number of
matched

edges.

The path

\. i

a->b->c is an augmenting

path. It allows us to remove b

and add a and c to the

matching.

4. Exchange all unmatched
and maiched edges on the
augmenting path.

5. Repeat 3-4 until all
unmatched riders
have been tried.

This produces a
maximal matching:

6. Add all matched

riders to their
rideshares.

7. Repeat 2-6, until
no more augmenting

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

Algorithms

Genetic Optimizer

1. Get seed solution

P
f \

-,

2. Spawn a generation of

solutions from the
seed, randomly
matching ride offers
and requests

3. Keep a handful of the
best solutions

4. Keep a copy
of the
best solution

1. Get seed Solution

.'.--.

™,

Brute Force Optimizer

2. For each solution in the space of all
possible solutions, compare it with the
best one so far.

Keep only the better of the two.

6. Repeat from-3-
itbest score settles

M

5. Spawn another generation
from the last generation’s
best solutions

settles,

®—p
|
W

7. Once the score

return

the best solution

Pseudo-code For the Algorithms

BipartiteMatchingOptimize(Solution S)

GeneticOptimize(Solution S)

3. Return the best solution.

\
T e

BruteForceOptimize(Solution S)
best_solution =S
best_score = score(S)
for each solution in solution_space(S)

1
2

score = score(solution)

If(score > best_score)
best_solution = solution

best_score = score

return best_solution

Score(Solution §)
score = S.numRidersMatched() + S.numDriversMatched()
original_route_lengths = Sum(drivers’ seed route lengths)
total_route_length = Sum(final route lengths)
deviation = original_route_lengths/total_route_lengths

bk Wwh =

score += deviation

return score

paths exist.
Scores
Genetic vs. Bipartite
80
70
g 60
[=
8
T »n
2B
S e
S 8
23 50
3 E
[-'4
£ S
e 33
o3
83: ®
£a
g% 30
I
E 2
==
23
€
a 20
"
10
0
uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs | uPrefs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
H Bipartite Matching | 0.0028 | 8.0007 | 4.0004 | 7.0003 | 10.000 | 12.000 | 21.000 | 18.000 | 16.000 | 16.000 | 21.000 | 30.000 | 45.000 | 41.000 | 50.000 | 53.000
M Genetic 0.0028 | 6.0009|11.000|11.000|17.000|19.000|25.000|26.000|33.000|34.000|39.002|49.000|53.00059.000|67.000|72.000
Number of Requests vs.
Run Time
9000
8000
/ R\ / Xf
6000
]
§ 5000
£
()]
€
= 4000
c
=]
m /
3000 / \\\/
2000 /\\ V
1000
0 —1I%
7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120
=fll— Bipartite Matching 0 3 1 6 23 205 1977 1565 52 672 5310 | 4405 | 7259 | 4209 | 5120 | 7329
= Genetic 3.03 16.92 | 41.55 | 52.51 |203.49(470.04 (894.08 | 228.32|1230.0|1319.3| 4976 | 3757 | 3529 | 2959 | 7721 | 5414

1 Rideshares = S.Drivers() 1 Solutions Population, Best
2 last_score = 0.0 2 Population.GenerateNextPopulation(S, NULL)
3 while(score(S) > last_score) 3 time = amount of time to run
4 last_score = score(S) 4 time.countDown()
5 CompatibleEdges = unmatchedEdges(Rideshares, S.Riders) 3 while(time not expired)
6 while(S.hasAugmentingPath()) 4 for each solution in Population do
7 augmentingPath = GetAugmentingPath(S) 5 score(solution)
8 for each edge in augmentingPath do 6 Best = getBest(Population)
9 if(edge = matched) edge = unmatched 7 GenerateNextPopulation(Population, Best)
10 if(edge = unmatched) edge = matched 8 end while
11 end while
12 for each edge in Edges.matchedEdges() do GenerateNextPopulation(Solutions Population, Best)
13 add edge ->rider to edge->rideshare 1 if(Best = NULL)
14 remove edge->rider from S.Riders 2 for each solution in Population
15 end while 3 solution=§
16 return S 4 else
o for each solution in Population
GetAugmentingPath(Solution S) 6 randomly assign riders to rideshares in solution
1 for each rider in UnmatchedRiders(S) do
2 traverse unmatched edges from rider to rideshares
3 traverse matched edges from rideshares to riders
4 return augmentingPath if an unmatched rideshare is reached
5 return false
Number of Requests vs. Bipartite
Natural Logarithm of Run Time Run Time vs. Final Score
10.000 8000 60
9.000 7000 N
\ s
8.000
/\1 6000
'E ANV F A -
c — 5000
% é 6.000 \/ g V V
:é % 5.000 / / \ / -% 4000 / 30
g E. 4.000 v 5 /
3E 3000
E /\\J %
3.000
/ 2000
2.000 /// /\\ /
- 10
/ / 1000
1.000
0.000 N 0 —ii—a—8 v 0
7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
—fl—Bipartite Matching| 0.000 | 1.099 | 0.000 | 1.792 | 3.135 | 5.323 | 7.589 | 7.356 | 3.951 | 6.510 | 8.577 | 8.390 | 8.890 | 8.345 | 8.541 | 8.900 =li—Time in seconds 0 3 1 6 23 205 1977 | 1565 52 672 5310 | 4405 | 7259 | 4209 | 5120 | 7329
= Genetic 1.109 | 2.828 | 3.727 | 3.961 | 5.316 | 6.153 | 6.796 | 5.431 | 7.115 | 7.185 | 8.512 | 8.231 | 8.169 | 7.993 | 8.952 | 8.597 —&—Final score 0.0028 | 8.0007 | 4.0004 | 7.0003 | 10.000 | 12.000 | 21.000 | 18.000 | 16.000 | 16.000 | 21.000 | 30.000 | 45.000 | 41.000 | 50.000 | 53.000

9000

8000

7000

6000

5000

4000

Run Time in seconds

3000

2000

1000

0

Genetic

Run Time vs. Final Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
=#—Time inseconds| 3.03 | 16.92 | 41.55 | 52.51 |203.49 |470.04 |894.08 | 228.32|1230.0|1319.3| 4976 | 3757 | 3529 | 2959 | 7721 | 5414
—&—final score 0.0028 | 6.0009 | 11.000 | 11.000 | 17.000 | 19.000 | 25.000 | 26.000 | 33.000 | 34.000 | 39.002 | 49.000 | 53.000 | 59.000 | 67.000 | 72.000

80

- 70

- 60

- 50

- 40

- 30

- 20

- 10

Implementation

