
Why This Problem is Difficult

	 The problem of finding the best possible overall driver and rider matching (i.e. global best solu-
tion) is just a version of a well-known problem called the Vehicle Routing Problem (VRP), which is
stated as:

	 “The Vehicle Routing Problem or VRP is a combinatorial optimization and nonlinear pro-
	 gramming problem seeking to service a number of customers with a fleet of vehicles.
	 Proposed by Dantzig and Ramser in 1959, VRP is an important problem in the fields of
	 transportation, distribution and logistics. Often the context is that of delivering goods
	 located at a central depot to customers who have placed orders for such goods.
	 Implicit is the goal of minimizing the cost of distributing the goods. Many methods have
	 been developed for searching for good solutions to the problem, but for all but
	 the smallest problems, finding global minimum for the cost function is computation-
	 ally complex.”
			
	 	 	 –Wikipedia entry for Vehicle Routing Problem

It is classified as an NP-Hard problem, meaning that no known polynomial-time algorithms for solv-
ing it exist. If we approached solving it in the naïve sense, i.e. try every possible solution, reaching
a solution would take an amount of time that exceeds the history of the known universe.

To top it off, Rideshare includes scheduling and preference matching, and allows for arbitrarily many
depots.

Our approach involved using three different algorithms which were developed by many of our wise
predecessors, and adapted by us.

How We Find an Optimal Solution

In order to match users, we utilize three different Optimizers.

An Optimizer takes in a set of drivers and riders, and creates a “seed solution.”

A Solution sets up Rideshares which initially contain only the drivers.

	 	 	 	 	 	 	 	 	 	 The Optimizer applies an algorithm to find
	 	 	 	 	 	 	 	 	 	 an optimal result. It compares different solutions
	 	 	 	 	 	 	 	 	 	 using a scoring function, and generates the
	 	 	 	 	 	 	 	 	 	 highest scoring solution it can, returning it as
	 	 	 	 	 	 	 	 	 	 the optimized solution.

	 	 	 	 	 	 	 	 	 	 The score of a given solution is:

								 Number of Riders Matched + Number of Drivers Matched +
	 	 	 	 	 	 	 	 ∑(drivers’ seed distances)/∑(rideshares’ final distances)

	 	 	 	 	 	 	 	 The whole part of the score represents the primary
	 	 	 	 	 	 	 	 criteria for comparing solutions. It consists of the
	 	 	 	 	 	 	 	 total number of users matched.

	 	 	 	 	 	 	 	 	 Our secondary criteria for a good solution is
	 	 	 	 	 	 	 	 	 the fraction. It gives us an idea of the average
	 	 	 	 	 	 	 	 	 driver deviation from their original route.
	 	 	 	 	 	 	 	 	 A smaller fraction means shorter deviations.

Compatibility - Can I Add This Rider?

	 How to take a Rideshare and rider and ascertain whether they are compatible. This might sound
like a simple enough task, but it involves much more than meets the eye.

Of course, checking for age and gender preferences is simple enough. But schedule and route compat-
ibility are a different story. It turns out that the first can be done if we apply a clever observation about
the Driver’s worst case leave window, and the second is yet another instance of our good friend the Ve-
hicle Routing Problem.

Suppose we have Marisa Driver and Joe Rider in a match, and we would like to see if adding a
Alex Rider would create an incompatible ride schedule or route length.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 To do this we need to find out the 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 best way of ordering the riders, 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 so as to minimize route length. 		 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Since the capacity of a vehicle	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is fairly small, we find the best route 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 by simplytrying all combinations.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Once we have an optimal route for 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 this group, we verify that the itiner	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ary doesn’t conflict with anyone’s 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 schedule. We do this by narrowing 		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 the leave and arrive windows until 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 we reach a worst case leave
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 window for the driver.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 We then add to this leave window	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 the time necessary to get from
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 point to point, each time verifying
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 that the users’ time windows do not
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 conflict with the arrival window for 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 that point.

Rideshare Sitemap
	 Reduce your consumption, ecological footprint, costs, and energy dependency.

Share and cooperate.
	 Cooperation has a way of benefiting everyone involved.
	 	 ride with your friends, befriend your riders.

Hundreds of millions of trips are taken every day from places
we all live to places we all go.

The energy costs and global consequences of
overconsumption don’t seem to be
falling.

Add your trip to the lot, and find someone going your way.
Enter your ride locations, schedule, and preferences.
If we find matching requests, we will inform you by email
and rss feed. It’s that simple.

In addition to providing you with results,
we generate matches in a way that allows
more people to be matched.
This means that we improve
the likelihood that you get results,
and reduce everyone’s
ecological footprint even further. :)

 Pseudo-code For the Algorithms

Algorithms

0

10

20

30

40

50

60

70

80

uPrefs
_1

uPrefs
_2

uPrefs
_3

uPrefs
_4

uPrefs
_5

uPrefs
_6

uPrefs
_7

uPrefs
_8

uPrefs
_9

uPrefs
_10

uPrefs
_11

uPrefs
_12

uPrefs
_13

uPrefs
_14

uPrefs
_15

uPrefs
_16

Bipartite Matching 0.0028 8.0007 4.0004 7.0003 10.000 12.000 21.000 18.000 16.000 16.000 21.000 30.000 45.000 41.000 50.000 53.000

Genetic 0.0028 6.0009 11.000 11.000 17.000 19.000 25.000 26.000 33.000 34.000 39.002 49.000 53.000 59.000 67.000 72.000

Sc
o

re
N

u
m

 D
ri

ve
rs

 M
at

ch
e

d
 +

N
u

m
 R

id
e

rs
 M

at
ch

e
d

+
Su

m
(D

ri
ve

rs
' I

n
it

ia
l D

is
ta

n
ce

s)
/S

u
m

(R
id

es
h

ar
e

 D
is

ta
n

ce
s)

Scores
Genetic vs. Bipartite

7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120

Bipartite Matching 0 3 1 6 23 205 1977 1565 52 672 5310 4405 7259 4209 5120 7329

Genetic 3.03 16.92 41.55 52.51 203.49 470.04 894.08 228.32 1230.0 1319.3 4976 3757 3529 2959 7721 5414

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
u

n
 T

im
 e

 in
 s

e
co

n
d

s

Number of Requests vs.
Run Time

7 15 23 30 38 45 53 60 68 75 83 90 97 105 113 120

Bipartite Matching 0.000 1.099 0.000 1.792 3.135 5.323 7.589 7.356 3.951 6.510 8.577 8.390 8.890 8.345 8.541 8.900

Genetic 1.109 2.828 3.727 3.961 5.316 6.153 6.796 5.431 7.115 7.185 8.512 8.231 8.169 7.993 8.952 8.597

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

N
at

ru
al

 L
o

ga
ri

th
m

 o
f

th
e

 R
u

n
 T

im
 e

ln
(r

u
n

 t
im

e
 in

 s
e

co
n

d
s)

Number of Requests vs.
Natural Logarithm of Run Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time in seconds 0 3 1 6 23 205 1977 1565 52 672 5310 4405 7259 4209 5120 7329

Final score 0.0028 8.0007 4.0004 7.0003 10.000 12.000 21.000 18.000 16.000 16.000 21.000 30.000 45.000 41.000 50.000 53.000

0

10

20

30

40

50

60

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u

n
 T

im
e

 in
 s

e
co

n
d

s

Bipartite
Run Time vs. Final Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time in seconds 3.03 16.92 41.55 52.51 203.49 470.04 894.08 228.32 1230.0 1319.3 4976 3757 3529 2959 7721 5414

final score 0.0028 6.0009 11.000 11.000 17.000 19.000 25.000 26.000 33.000 34.000 39.002 49.000 53.000 59.000 67.000 72.000

0

10

20

30

40

50

60

70

80

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
u

n
 T

im
e

 in
 s

e
co

n
d

s

Genetic
Run Time vs. Final Score

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Implementation

