The Technion (and The University of Texas at Austin) Department of Electrical and Computer Engineering

Large Scale Learning — Fall 2013

Assignment 1

Constantine Caramanis

Not Due

There are numerous problems marked as *Exercise* given during the class, that are meant to fill in some missing details. These are not replicated here. The point of the exercises below is more of the same: to provide practice and review, and also to fill in details left out in class.

Some linear algebra review. Most of the below are standard.

1. Range and Nullspace of Matrices: Recall the definition of the null space and the range of a linear transformation, $T: V \to W$:

$$\operatorname{null}(T) = \{ \boldsymbol{v} \in V : T\boldsymbol{v} = 0 \}$$

$$\operatorname{range}(T) = \{ T\boldsymbol{v} \in W : \boldsymbol{v} \in V \}$$

- Suppose A is a 10-by-10 matrix of rank 5, and B is also a 10-by-10 matrix of rank 5. What is the **smallest** and **largest** the rank the matrix C = AB could be?
- Now suppose A is a 10-by-15 matrix of rank 7, and B is a 15-by-11 matrix of rank 8. What is the **largest** that the rank of matrix C = AB can be?
- 2. Let A be an $n \times m$ real matrix, and B a $k \times m$ real matrix. Suppose that for every $x \in \mathbb{R}^m$, Ax = 0 only if Bx = 0, that is,

$$Ax = 0 \Rightarrow Bx = 0.$$

Show that there exists a $k \times n$ real matrix C such that CA = B.

- 3. Recall the definition of rank, and show the following.
 - For A an $m \times n$ matrix, rank $A \le \min\{m, n\}$.
 - For A an $m \times k$ matrix and B a $k \times n$ matrix,

 $\operatorname{rank}(A) + \operatorname{rank}(B) - k \le \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}.$

• For A and $B \ m \times n$ matrices,

$$\operatorname{rank}(A+B) \le \operatorname{rank}(A) + \operatorname{rank}(B).$$

• For A an $m \times k$ matrix, B a $k \times p$ matrix, and C a $p \times n$ matrix, then

$$\operatorname{rank}(AB) + \operatorname{rank}(BC) \le \operatorname{rank}(B) + \operatorname{rank}(ABC)$$

4. Consider a mapping $T: V \to V$. If the vector space V is finite dimensional, show that then if null $T = \{0\}$, then T is surjective. Conversely, if T is surjective, then null $T = \{0\}$, and Tv = 0 implies v = 0.

- 5. Show that both directions of the above can fail if V is not finite dimensional. That is, give an example of an infinite dimensional vector space, V, and a linear operator $T: V \to V$, such that T is surjective, but null $T \neq \{0\}$. Then, give an example of an infinite dimensional vector space, V, and a linear operator $T: V \to V$, such that null $T = \{0\}$, but T is not surjective.
- 6. Recall from class that the spectral theorem for symmetric $n \times n$ real matrices, says, among other things, that if A is a symmetric (real) $n \times n$ matrix, then it has an basis of orthonormal eigenvectors, $\{v_1, \ldots, v_n\}$. Use A and $\{v_i\}$ to construct a matrix T, such that the matrix $T^{\top}AT$ is diagonal.
- 7. Let A be a rank n matrix (of any dimensions, not necessarily square). Let its singular value decomposition be given by

$$A = U\Sigma V^*,$$

where Σ is the matrix of singular values given in *descending order*: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Let Σ_k denote the matrix with $\sigma_{k+1}, \ldots, \sigma_n$ set to zero, and let $\hat{A} = U\Sigma_k V^*$. Show that \hat{A} solves the optimization problem:

$$\min_{\hat{A}: \operatorname{rk}(\hat{A}) \le k} \|A - \hat{A}\|_F.$$

Hint: you can use the fact that the optimal solution should satisfy $(A - \hat{A}) \perp \hat{A}$, where orthogonality is defined with respect to the natural matrix inner product compatible with the Frobenius norm:

$$\langle M, N \rangle = \sum_{i,j} M_{ij} N_{ij} = \operatorname{Trace}(M^*N).$$

If you choose to use this hint, please do show that \hat{A} and A satisfy the orthogonality, as claimed.

- 8. Prove the above hint, namely, that the optimal solution must satisfy the orthogonality condition (in the previous problem, you are assuming that this is true).
- 9. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Recall that by the spectral theorem, A will have real eigenvalues. Therefore we can order the eigenvalues of A: $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A)$. Show that:

$$\lambda_{1}(A) = \max_{y \neq 0} \frac{\langle y, Ay \rangle}{\langle y, y \rangle},$$

$$\vdots$$

$$\lambda_{k}(A) = \max_{V:\dim V = k} \min_{0 \neq y \in V} \frac{\langle y, Ay \rangle}{\langle y, y \rangle}$$

10. The spectral radius of a matrix A is defined as:

$$\rho(A) = \max\{|\lambda| : \lambda \text{ an e-value of } A.\}.$$

Note that the spectral radius is invariant under similarity transformations, and thus we can speak of the spectral radius of a linear operator.

- (a) Show that $\rho(A) \leq \sigma_1(A)$.
- (b) Show that

$$\rho(A) = \inf_{\{S: \det S \neq 0\}} \sigma_1(S^{-1}AS).$$

- 11. A linear operator N is called *nilpotent* if for some integer k, $N^k = 0$. Show that if N is nilpotent, then (I + N) has a square root. (Hint: consider the Taylor expansion of $\sqrt{1 + x}$, and use that as a starting point).
- 12. Find an example of a matrix that is diagonalizable, but not unitarily so. That is, produce an example of a $n \times n$ matrix A (n up to you) for which there is some invertible matrix T that satisfies $T^{-1}AT = D$ for some diagonal matrix, but the columns of T cannot be taken to be orthonormal. Hint: related to one of the problems above.
- 13. Suppose $A \in \mathbb{C}^{m \times n}$ has full column rank n. Show that:

$$\min_{\Delta \in \mathbb{C}^{m \times n}} \{ ||\Delta||_2 \, | \, \operatorname{rank}(A + \Delta) < n \} = \sigma_n(A),$$

where $\sigma_n(A)$ denotes the smallest singular value of A.

Other Problems

1. Planted Model

We will discuss the planted model in class in a lecture or two. In this model, we explore how much noise spectral methods can tolerate while still finding the right clusterings. It is used as a model for community detection. The basic model is as follows: Recall that if we have a $n \times n$ similarity matrix with k blocks that have all 1's inside the blocks, and then 0's outside the blocks, that spectral clustering performs a perfect clustering of the blocks. Instead, the planted model puts a 1 in each element of the blocks with probability p, and puts a 1 in each entry *outside* the blocks with some probability q. For this to make sense, we need p > q. Therefore, there are missing 1's (or edges) inside clusters with probability (1 - p), and there are 1's outside, or equivalently edges between clusters, with probability q.

How small can (p-q) be, before we fail to detect the clusters?

Let n = 200, and k = 5. Form the matrix P as described above, that has p on the five equal 40×40 blocks on the diagonal, and q = 1-p everywhere else. Let A be the resulting (random) similarity matrix where each entry A_{ij} is a Bernoulli random variable with probability P_{ij} . Note that you will have to construct A as a symmetric matrix, so generate elements above the diagonal, and then just replicate them below.

- (a) For p = 0.8, 0.7, 0.6 and 0.55, generate the matrix A. Permute the rows and columns (same permutation!) to get an appreciation of how non-trivial it is to find the blocks.
- (b) Compute the eigenvalues of the deterministic matrix P and of (the random matrix) A and plot them. How many eigenvalues of P are non-zero?
- (c) Now run the spectral clustering algorithm on A (rather than the Laplacian). The points that you get will be 5 dimensional. Pick a random projection onto two dimensions, and project all of the resulting five dimensional points onto these two randomly chosen dimensions. Plot the results for the different values of p.
- (d) Cluster according to k-Means.

2. Gershgorin Circle Theorem

Let A be some $n \times n$ matrix. If for some invertible matrix, X, $X^{-1}AX = D$, a diagonal matrix, then we know the eigenvalues of A are the elements of D. If $X^{-1}AX$ is approximately diagonal, i.e.,

$$X^{-1}AX = D + F,$$

where F has zeros on the diagonal, then how close are the eigenvalues of A to the elements of D? You answer that here.

(a) Show that for any square matrix, M, the induced infinity norm satisfies:

$$||M||_{\infty} = \sup_{||x||_{\infty}=1} ||Mx||_{\infty} = \max_{i} \sum_{j} |M_{ij}|.$$

- (b) For $\lambda \in \lambda(A)$, and assuming that $\lambda \neq d_i$ for any *i*, show that $(D \lambda I) + F$ is singular.
- (c) Again assuming $\lambda \in \lambda(A)$, and assuming that $\lambda \neq d_i$ for any *i*, show that

$$1 \le ||(D - \lambda I)^{-1}F||_{\infty} = \sum_{j=1}^{n} \frac{|f_{kj}|}{|d_k - \lambda|}.$$

(d) Conclude that

$$\lambda(A) \subseteq \bigcup_{i=1}^n \mathcal{D}_i,$$

where

$$\mathcal{D}_i = \{ z \in \mathbb{C} : |z - d_i| \le \sum_{j=1}^n |f_{ij}| \}.$$