
The Technion (and The University of Texas at Austin)
Department of Electrical and Computer Engineering

Large Scale Learning — Fall 2013

Assignment 1

Constantine Caramanis Not Due

There are numerous problems marked as Exercise given during the class, that are meant to fill
in some missing details. These are not replicated here. The point of the exercises below is more of
the same: to provide practice and review, and also to fill in details left out in class.

Some linear algebra review. Most of the below are standard.

1. Range and Nullspace of Matrices: Recall the definition of the null space and the range of a
linear transformation, T : V →W :

null(T ) = {v ∈ V : Tv = 0}
range(T ) = {Tv ∈W : v ∈ V }

• Suppose A is a 10-by-10 matrix of rank 5, and B is also a 10-by-10 matrix of rank 5.
What is the smallest and largest the rank the matrix C = AB could be?

• Now suppose A is a 10-by-15 matrix of rank 7, and B is a 15-by-11 matrix of rank 8.
What is the largest that the rank of matrix C = AB can be?

2. Let A be an n×m real matrix, and B a k ×m real matrix. Suppose that for every x ∈ Rm,
Ax = 0 only if Bx = 0, that is,

Ax = 0⇒ Bx = 0.

Show that there exists a k × n real matrix C such that CA = B.

3. Recall the definition of rank, and show the following.

• For A an m× n matrix, rankA ≤ min{m,n}.
• For A an m× k matrix and B a k × n matrix,

rank(A) + rank(B)− k ≤ rank(AB) ≤ min{rank(A), rank(B)}.

• For A and B m× n matrices,

rank(A+B) ≤ rank(A) + rank(B).

• For A an m× k matrix, B a k × p matrix, and C a p× n matrix, then

rank(AB) + rank(BC) ≤ rank(B) + rank(ABC)

4. Consider a mapping T : V → V . If the vector space V is finite dimensional, show that then
if nullT = {0}, then T is surjective. Conversely, if T is surjective, then nullT = {0}, and
Tv = 0 implies v = 0.
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5. Show that both directions of the above can fail if V is not finite dimensional. That is, give
an example of an infinite dimensional vector space, V , and a linear operator T : V → V , such
that T is surjective, but nullT 6= {0}. Then, give an example of an infinite dimensional vector
space, V , and a linear operator T : V → V , such that nullT = {0}, but T is not surjective.

6. Recall from class that the spectral theorem for symmetric n × n real matrices, says, among
other things, that if A is a symmetric (real) n×n matrix, then it has an basis of orthonormal
eigenvectors, {v1, . . . , vn}. Use A and {vi} to construct a matrix T , such that the matrix
T>AT is diagonal.

7. Let A be a rank n matrix (of any dimensions, not necessarily square). Let its singular value
decomposition be given by

A = UΣV ∗,

where Σ is the matrix of singular values given in descending order: σ1 ≥ σ2 ≥ · · · ≥ σn. Let
Σk denote the matrix with σk+1, . . . , σn set to zero, and let Â = UΣkV

∗. Show that Â solves
the optimization problem:

min
Â : rk(Â)≤k

‖A− Â‖F .

Hint: you can use the fact that the optimal solution should satisfy (A − Â) ⊥ Â, where
orthogonality is defined with respect to the natural matrix inner product compatible with the
Frobenius norm:

〈M,N〉 =
∑
i,j

MijNij = Trace(M∗N).

If you choose to use this hint, please do show that Â and A satisfy the orthogonality, as
claimed.

8. Prove the above hint, namely, that the optimal solution must satisfy the orthogonality con-
dition (in the previous problem, you are assuming that this is true).

9. Let A ∈ Rn×n be symmetric. Recall that by the spectral theorem, A will have real eigenvalues.
Therefore we can order the eigenvalues of A: λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Show that:

λ1(A) = max
y 6=0

〈y,Ay〉
〈y, y〉

,

...

λk(A) = max
V :dimV =k

min
06=y∈V

〈y,Ay〉
〈y, y〉

.

10. The spectral radius of a matrix A is defined as:

ρ(A) = max{|λ| : λ an e-value of A.}.

Note that the spectral radius is invariant under similarity transformations, and thus we can
speak of the spectral radius of a linear operator.

(a) Show that ρ(A) ≤ σ1(A).

(b) Show that
ρ(A) = inf

{S: detS 6=0}
σ1(S−1AS).
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11. A linear operator N is called nilpotent if for some integer k, Nk = 0. Show that if N is
nilpotent, then (I + N) has a square root. (Hint: consider the Taylor expansion of

√
1 + x,

and use that as a starting point).

12. Find an example of a matrix that is diagonalizable, but not unitarily so. That is, produce an
example of a n× n matrix A (n up to you) for which there is some invertible matrix T that
satisfies T−1AT = D for some diagonal matrix, but the columns of T cannot be taken to be
orthonormal. Hint: related to one of the problems above.

13. Suppose A ∈ Cm×n has full column rank n. Show that:

min
∆∈Cm×n

{||∆||2 | rank(A+ ∆) < n} = σn(A),

where σn(A) denotes the smallest singular value of A.

Other Problems

1. Planted Model

We will discuss the planted model in class in a lecture or two. In this model, we explore how
much noise spectral methods can tolerate while still finding the right clusterings. It is used
as a model for community detection. The basic model is as follows: Recall that if we have a
n× n similarity matrix with k blocks that have all 1’s inside the blocks, and then 0’s outside
the blocks, that spectral clustering performs a perfect clustering of the blocks. Instead, the
planted model puts a 1 in each element of the blocks with probability p, and puts a 1 in each
entry outside the blocks with some probability q. For this to make sense, we need p > q.
Therefore, there are missing 1’s (or edges) inside clusters with probability (1− p), and there
are 1’s outside, or equivalently edges between clusters, with probability q.

How small can (p− q) be, before we fail to detect the clusters?

Let n = 200, and k = 5. Form the matrix P as described above, that has p on the five equal
40×40 blocks on the diagonal, and q = 1−p everywhere else. Let A be the resulting (random)
similarity matrix where each entry Aij is a Bernoulli random variable with probability Pij .
Note that you will have to construct A as a symmetric matrix, so generate elements above
the diagonal, and then just replicate them below.

(a) For p = 0.8, 0.7, 0.6 and 0.55, generate the matrix A. Permute the rows and columns
(same permutation!) to get an appreciation of how non-trivial it is to find the blocks.

(b) Compute the eigenvalues of the deterministic matrix P and of (the random matrix) A
and plot them. How many eigenvalues of P are non-zero?

(c) Now run the spectral clustering algorithm on A (rather than the Laplacian). The points
that you get will be 5 dimensional. Pick a random projection onto two dimensions,
and project all of the resulting five dimensional points onto these two randomly chosen
dimensions. Plot the results for the different values of p.

(d) Cluster according to k-Means.

2. Gershgorin Circle Theorem
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Let A be some n × n matrix. If for some invertible matrix, X, X−1AX = D, a diagonal
matrix, then we know the eigenvalues of A are the elements of D. If X−1AX is approximately
diagonal, i.e.,

X−1AX = D + F,

where F has zeros on the diagonal, then how close are the eigenvalues of A to the elements
of D? You answer that here.

(a) Show that for any square matrix, M , the induced infinity norm satisfies:

‖M‖∞ = sup
‖x‖∞=1

‖Mx‖∞ = max
i

∑
j

|Mij |.

(b) For λ ∈ λ(A), and assuming that λ 6= di for any i, show that (D − λI) + F is singular.

(c) Again assuming λ ∈ λ(A), and assuming that λ 6= di for any i, show that

1 ≤ ‖(D − λI)−1F‖∞ =

n∑
j=1

|fkj |
|dk − λ|

.

(d) Conclude that

λ(A) ⊆
n⋃

i=1

Di,

where

Di = {z ∈ C : |z − di| ≤
n∑

j=1

|fij |}.
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