Large Scale Learning — Fall 2013

Assignment 3

Constantine Caramanis Not Due

There are numerous problems marked as *Exercise* given during the class, that are meant to fill in some missing details. These are not replicated here. The point of the exercises below is more of the same: to provide practice and review, and also to fill in details left out in class.

1. Matrix Perturbation Review

(a) Go back to the main $\sin \Theta$ theorem we proved via the so-called *direct method* and prove the following: Suppose LX - XM = R, for some consistent (submultiplicative) norm. Then if we have for some $\alpha, \delta > 0$

$$||L^{-1}||^{-1} \ge \alpha + \delta$$
, and $||M|| \le \alpha$,

or if

$$\|M^{-1}\|^{-1} \ge \alpha + \delta, \quad \text{and} \quad \|L\| \le \alpha,$$

we have

$$||X|| \le \frac{||R||}{\delta}.$$

(b) Consider a Hermitian matrix A and a Hermitian perturbation $A + \Delta$. Suppose that $X = [X_1 \ X_2]$ and $Y = [Y_1 \ Y_2]$ are orthonormal bases (of matching dimensions for X_i and Y_i), such that

$$X^H A X = \begin{pmatrix} L_1 & 0 \\ 0 & L_2 \end{pmatrix}, \qquad Y^H (A + \Delta) Y = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}.$$

Then if either M_1 and L_2 , or L_1 and M_2 are separated, in the sense that one matrix has spectrum contained inside an interval and the other has spectrum outside a δ -expansion of that same interval, then the sine of the largest canonical angle between subspaces $\mathcal{X} = \text{Range}(X_1)$ and $\mathcal{Y} = \text{Range}(Y_1)$ is bounded above by $\|\Delta\|/\delta$, where $\|\cdot\|$ denotes the spectral norm (equal to the operator norm since everything is Hermitian).

- 2. The following problems are useful for the matrix sketching / randomized linear algebra that we are covering.
 - (a) Given a matrix X with full column rank, let P_X denote the orthogonal projector onto its range, i.e., the self-adjoint operator that satisfies: $P_X(x) = x$ for every $x \in \text{Ra}(X)$, and $P_X(y) = 0$ for every $y \perp \text{Ra}(X)$. Show that:

$$P_X = X(X^*X)^{-1}X^*.$$

(b) Suppose that a matrix M is positive semi-definite. Show first that (I + M) is invertible, and then the following result on perturbation of inverses.

$$M \succeq I - (I + M)^{-1}.$$

(c) Suppose that M is a positive semidefinite matrix, with block decomposition:

$$M = \left[\begin{array}{cc} A & B \\ B^* & C \end{array} \right].$$

Show that the following holds for $\|\cdot\|$ denoting the operator (spectral) norm:

$$||M|| \le ||A|| + ||C||.$$

(Hint: you can use, or if you like prove, the fact that $M \succeq 0$ implies that $\|B\|^2 \le \|A\| \cdot \|C\|$, a fact that is immediate for a 2×2 matrix.)