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Abstract—Equation-based optimization using geometric pro-
gramming (GP) for automated synthesis of analog circuits has
recently gained broader adoption. A major outstanding challenge
is the inaccuracy resulting from fitting the complex behavior of
scaled transistors to posynomial functions. Fitting over a large
region can be grossly inaccurate, and in fact, poor posynomial
fit can lead to failure to find a true feasible solution. On the
other hand, fitting over smaller regions and then selecting the
best region, incurs exponential complexity.

In this paper, we advance a novel optimization strategy that
circumvents these dueling problems in the following manner:
by explicitly handling the error of the model in the course
of optimization, we find a potentially suboptimal, but feasible
solution. This solution subsequently guides a range-refinement
process of our transistor models, allowing us to reduce the range
of operating conditions and dimensions, and hence obtain far
more accurate GP models.

The key contribution is in using the available oracle (SPICE
simulations) to identify solutions that are feasible with respect
to the accurate behavior rather than the fitted model. The key
innovation is the explicit link between the fitting error statistics
and the rate of the error uncertainty set increase, which we use
in a robust optimization formulation to find feasible solutions.

We demonstrate the effectiveness of our algorithm on a two
benchmarks: a two-stage CMOS operational amplifier and a
voltage controlled oscillator designed in TSMC 0.18µm CMOS
technology. Our algorithm is able to identify superior solution
points producing uniformly better power and area values under
gain constraint with improvements of up to 50% in power and
10% in area for the amplifier design. We also demonstrate that
when utilizing the models with the same level of modeling error,
our method yields solutions that meet the constraints while the
violations for the standard method were as high as 45% and
larger than 15% for several constraints.

I. INTRODUCTION

One of the challenging aspects of analog design is opti-
mizing a given circuit topology to meet design specifications,
such as gain, while minimizing cost metrics such as area
and power. This process poses severe challenges due to the
stringent requirements upon multiple mutually conflicting per-
formance constraints. In any manual design strategy, success
heavily depends on the designer’s experience and design-
specific intuition. Automated analog optimization promises
to increase productivity by reducing design time. Efforts to
automate analog design have taken two major routes. In one,
the circuit topology is assumed to be fixed and only optimal
device sizing is performed [8], [10]. In the other, the topology

is also selected automatically [11]. Our work focuses on the
first class of approaches.

The existing work has fallen into two major categories based
on how they evaluate a solution point to drive optimization:
approaches relying on extensive use of SPICE simulations
[11], [12], [9], and those that construct an analytical model of
circuit behavior and use the model to drive the optimization
[5], [10], [13], [6]. Clearly, evaluating a solution point via
a SPICE simulation gives the most accurate measure of the
feasibility and optimality of a solution. However, SPICE sim-
ulations are time-consuming, and yield no structure that can
be exploited for efficient global optimization. Both local and
global solution search methods relying on SPICE simulations
have been studied. The local search methods typically are
based on gradient methods, while global solution methods
employ simulated annealing or genetic algorithms. In local
search methods performance is tied to the initial points of the
algorithm. Global search methods require a potentially much
larger number of SPICE evaluations for the global exploration
to converge [12], and typically have exponential complexity.

The model-based, or equation-based methods help to avoid
the circuit-level SPICE simulation costs. They rely on a model
of circuit behavior to capture the constraints and the objective
function in terms of design variables. The typical optimization
variables are transistor width, length, biasing currents, and the
constraints are bounds on gain, bandwidth, and other perfor-
mance measures. The models express in closed form the circuit
performances in terms of the small-signal transistor parameters
such as transconductance (gm) and output conductance (gd),
transistor capacitances, overdrive voltages, sizes, currents etc.

The challenge of model-based optimization is two-fold: (1)
to ensure sufficient model accuracy, or at least, fidelity, and
(2) do that in the functional form that lends itself to efficient
optimization. The first-principles small-signal parameters de-
rived based on long-channel transistor theory are not accurate
for nanometer scale technologies. The small signal parameters
gm, gd, gmb, as well as overdrive voltage and the transistor
capacitances, are complex functions of the biasing current
and sizes. Device-level modeling of transistors is embedded
into SPICE device models, such as BSIM4, and involves
hundreds of variables. Directly working with such models
appears infeasible since in order to be tractable equation-
based optimization requires continuous low-dimensional mod-



els, and, in particular, convexity.
In fitting regression models we need to utilize functional

forms allowing efficient convex optimization. Specifically,
it has been observed that many of the circuit performance
constraints can be cast as a special class known as posyno-
mial functions [5]. Optimization problems using posynomial
constraints and objective function can be solved efficiently
using the convex optimization framework of the geometric
programming (GP) paradigm relying on fast interior point
solution methods. Posynomials are generalized polynomials
with positive coefficients and arbitrary real exponents [14].
Thus, a posynomial f(x1, . . . , xn) has the general form
Σβ

q=1
aqx

αq1

1
· · ·x

αqn

n where the α’s are arbitrary, and the a’s
are positive. Each product term is called a monomial.

Relying on posynomial models is useful due to the fact that
they yield globally-solvable tractable optimization problems.
The cost, however, is that the fitting error of posynomial
models can be large. While in part, this is due to the complex
device physics, another important source of error is due to
the limitations imposed by the requirement of modeling in
a GP-compatible manner. In addition to limiting our fitting
capability, GP-compatibility forces us to eliminate referencing
some key input variables, e.g., it has been proven difficult
to capture the dependence on Vds (drain to source voltage)
in posynomial form, in contrast to dependence on I (drain
current), W (width), and L (gate length) [6]. As a result, the
optimization model may differ greatly from the behavior of
the physical device. As we quantitatively demonstrate later, the
attributes of the solution generated by the optimization may
be more than 30% off from the intended target constraints.

The inaccuracy of posynomial fitting over a large range has
been observed in the literature [8], [10]. In [8], the proposal
to model transistor parameter behavior using piecewise linear
models improves accuracy, but may lead to non-posynomial
constraints, hence rendering convex optimization unusable.
Elsewhere in the literature, the modeling error is either fully
ignored [6], or local refinement methods are used [10], or
generic robustification strategies are adopted [8] that robustify
the optimization, but, crucially, not in a way directly linked
to the errors in the specific model’s fit. The work in [10]
does local search in the small vicinity of the current solu-
tion. In comparison, single transistor fitting which requires
three or four variables, can be done over a broader range
with relatively better accuracy. In [8], a simple strategy for
robustification utilizes the worst-case error. This can be highly
over-conservative because it may introduce robustness where
none is needed. As a consequence, the feasible space of
the optimization may be unduly and significantly reduced,
resulting in degraded performance, or in the worst case, an
inability to find a SPICE-simulation feasible (we henceforth
call this true-feasible) solution.

Main Contributions and Outline: The power of geometric
programming (GP) lies in its ability to quickly and efficiently
find guaranteed optimal solutions to the model represented by
the given posynomials. The fundamental shortcoming is the
inherent inability to accurately model the behavior of transistor

parameters over a large range of values of width, length, and
biasing currents. The central contribution of this paper is to
harness the power of the convex optimization approach, while
mitigating its significant drawbacks, thus moving us closer
towards automating analog design and optimization. More
specifically:
(1) We develop an efficient iterative algorithm that converges

to a good solution that meets multiple performance
constraint targets. This is in sharp contrast to existing
algorithms that may be off by upwards of 30% from the
desired targets.

(2) We develop the notion of the coverage metric that allows
us to map fitting error to robust optimization uncertainty
sets. We show that this coverage metric serves as a
successful proxy for true feasibility (i.e., SPICE-verified
feasibility).

(3) Using this coverage metric, we develop a principled
robust optimization-based method that explicitly incorpo-
rates fitting error into the circuit optimization, allowing
us to optimize objectives while also meeting performance
constraints exactly. We show that the coverage metric
can be optimized via a linear or binary search to reduce
the conservatism in uncertainty set and still obtain a true
feasible solution.

(4) Our method is independent of the fitting procedure used,
and hence is flexible and modular. Thus, we believe the
tools introduced here could be important for a broader
class of problems.

The remainder of the paper is organized as follows. In
Section II, we lay out the conceptual framework of our
main approach. In Section III, we provide the details of the
optimization. Finally, in Section IV, we provide the numerical
experiments that show the performance of our algorithm.
II. EXPLOITING MODELING ERROR STATISTICS TO DRIVE

OPTIMIZATION

A. High-level Algorithm and Approach
Our strategy is based on two key observations. First, while

any given posynomial model may have significant errors, we
can precisely assess the true feasibility of the solution using
SPICE. Thus, despite the difficulty in obtaining a globally
accurate fit, we have a local oracle of true feasibility. However,
while we can determine true feasibility of any given point
(W,L, I), i.e., membership in the set of true feasible points,
we cannot optimize over this set — indeed this problem is
known to be NP-hard and hence intractable. Second, is the
observation that the fitting error is a product of the global fit.
Obtaining a better fit over a smaller range is, not surprisingly,
much more readily achievable. Yet a brute-force search for
a “good” limited range of variables (width, length, etc) over
which to fit the transistor parameters and, subsequently, to
optimize, is a hopeless avenue, as its computational complexity
grows exponentially. Even seeking to reduce the range of each
variable by just a factor of 1/d, would lead to dN possible
variable ranges to consider, where N is the number of modeled
transistor parameters.



A central part of our contribution is a robust optimization-
based scheme for efficiently finding such a “good” limited
range for the variables, over which the quality of the posyno-
mial fit to the true behavior of the transistor parameters is
significantly improved. This refinement relies on explicitly
modeling the error of the posynomial fit and incorporating
this through robust optimization in the circuit optimization.

We denote a solution by (W,L, I), where bold-face indi-
cates vector notation, i.e., W,L and I are the vectors of all the
width, length and current variables respectively in the circuit.

Most standard equation-based optimization flows that have
been proposed rely on a sequence of basic steps in setting
up the optimization [6], [8], [10]. First, the simulation data
generated by SPICE are used to fit the parameters of each
transistor, using linear least-squares regression. Second, the
fitted models are used within equations that capture the design
specifications, such as gain, bandwidth. Finally, the resulting
geometric program is solved using standard or specialized
convex optimization solvers (e.g., [4], [1]) to obtain (W,L, I).

On top of standard GP-based methods, our algorithm adds
two enhancements: robustness to fitting error, and range
refinement. Adding robustness aims to ensure that we find
solutions that SPICE simulations show to be feasible to the
design constraints, an integral part of our refinement strategy.
The distinction between model and SPICE-feasibility is a
crucial operating principle in our scheme. We refer to variable
values (W,L, I) as model feasible if they are feasible for the
optimization problem at hand, and call them true feasible if
SPICE simulations show that they meet the target constraints.
We add robustness to fitting error using the paradigm of
robust optimization (see [2] for details). The essence of
robust optimization is to build in deterministic protection to
parameter uncertainty in a chosen uncertainty set U . That
is, given U , the solution to the resulting robust optimization
problem is guaranteed to be feasible under any variation of
the optimization parameters in the given uncertainty set.

The nominal optimization problem is a special case of a
robust optimization problem, where there is no uncertainty,
i.e., where the uncertainty set U is empty. The regression
procedure fits posynomials to the individual parameters of
each transistor. The key idea of our algorithm is that the fitting
error of regression fit can be treated as the parameter-error
in the robust optimization setting. Thus, we have an uncertain
variable for every fitted function. As an example, if we have
a design constraint that has the form:

gm(W, L, I)

gd(W, L, I)
≥ c,

the robust version of this would then become:
gm(W, L, I) · e1

gd(W, L, I) · e2

≥ c, ∀(e1, e2) ∈ U ,

meaning that the constraint must be satisfied for all values of
the error parameters e1 and e2 in the uncertainty set U . Using
duality techniques from convex optimization, we reformulate
these constraints in a tractably solvable fashion (see [7], [2]
for details).

The existing theory of robust optimization does not tell us
how the uncertainty sets should be chosen. Addressing this
issue is an important part of our contribution. As we discuss
in detail in Section II-B, the uncertainty sets we design are
chosen in an optimal manner, in order to account for the
fitting errors. We use robustness as a tool to guarantee that
the solution is true-feasible.

The high-level description of our algorithm is as follows.
(1) Initialize: Apply the standard procedures to obtain

(W0,L0, I0)
1.

(2) Find Feasible Solution: If the solution (W,L, I) is not
true feasible, then we increase the robustness of our
algorithm to the fitting errors, by solving a robust GP over
a larger uncertainty set, Û . We repeat this step, increasing
the size of the uncertainty set until we find a true-feasible
solution, (Wf ,Lf , If ). The algorithm for designing and
increasing the uncertainty set U is described below, in
Section II-B.

(3) Refine Variable Range: Given the feasible point
(Wf ,Lf , If ), we refine the allowed range of the vari-
ables, and return to step (1), performing a new (and hence
better) posynomial fit to the transistor parameters. At each
step, we refine the range by shrinking it by a constant
multiplicative factor.

B. Robustness and True Feasibility
Step 2 in our high-level algorithm description above, re-

quires us to enlarge the uncertainty set each time the op-
timization outputs a solution that is not true-feasible. Thus,
the problem faced is to find the “optimal” uncertainty set:
the uncertainty set that yields a true-feasible solution, while
attaining the best possible objective value. In the case of robust
GP, we seek uncertainty sets U that are either ellipsoidal or
rectangular. Even for this simpler class of sets, computing the
optimal set can be shown to be nonconvex and intractable, and
certainly a brute-force search would require effort exponential
in the dimension.

What Does Not Work. It is helpful to discuss two potential
naive approaches. One approach is to simply let U be a
uniform box of dimension equal to the number of transistor
parameters, and then slowly increase its size, hoping that a
true-feasible solution is found before the problem becomes
infeasible. This reduces the search to a single dimension
(since the dimensions of the box are scaled in lock step)
and hence is tractable. While this strategy does sometimes
succeed in obtaining a true-feasible solution, we have found
that it also often leads to model-infeasibility, and in either
case, the objective value suffers more than required. The
intuition as to why such an approach fails, is simple: we may
be adding too much robustness where none is needed, and
too little where more is needed. Another possible approach
is to solve the nominal problem, look at constraints that
are violated according to SPICE, and increase the robustness
requirement of the transistor parameters participating in those

1That is, fitting parameters over a broad range, and solving the GP.
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Fig. 1. The growth of uncertainty set based on coverage increase is
demonstrated in the above one dimensional optimization problem.

true-infeasible constraints. The conceptual, and as we have
found, practical problems with such an approach, are that we
are basing our uncertainty set selection (and ultimately our
iterative optimization strategy) on the behavior of an infeasible
point.

What Does Work. We formulate an uncertainty-set selec-
tion approach that tackles the fundamental fitting problem
head-on: we design our uncertainty sets based on the error
in the fit for each parameter. In order to do this, we introduce
the idea of coverage. Consider some parameter of a given
transistor – for concreteness suppose it is the transconductance
parameter gm. Recall that each such parameter corresponds
to an uncertain parameter, in this case let us refer to it as
e1. The coverage captures how much of the true function
behavior, as represented by SPICE-generated tables, is covered
by the fitted function with an added uncertainty set. Formally,
given an uncertainty set U , we define the coverage metric
of parameter gm to be the fraction of entries in the SPICE-
generated tables of transistor behavior for which the exact
value of the parameter is equal to the value given by the fitted
function, gm, times some error e1 ∈ U . Thus, when U is
empty, the coverage is the fraction of points in the table for
which the fitted function is exact. As the uncertainty set U
grows, the coverage increases to 100% (Figure 1). Note that
this metric captures the error of the posynomial fit, and in
particular has the following two important properties: (a) it is
not sensitive to outliers, since it simply computes the fraction
of points whose fit is within the tolerance of the uncertainty
set – if a point is not in that set, it is simply not counted, and
how far outside it is does not matter; and (b) it is a global
metric and does not depend on a true-infeasible point of the
range.

Given two transistor parameters, we can define their joint
coverage to be the minimum of their coverages. Similarly, we
can now define the overall coverage as the infimum of all the
individual coverages. This gives us a meaningful measure for

the size of the uncertainty set. It should be noted that the “size”
is not a priori well-defined in the context of a general robust
optimization problem, e.g., something like volume may well
be irrelevant in the context of robust optimization. Coverage
allows us to compare two arbitrary uncertainty sets, and hence
coverage becomes a proxy for how strongly a set pushes the
optimization problem to produce a true-feasible point.

We now present a formal high-level description of our
algorithm for increasing the uncertainty sets. We do this
by solving a bi-criterion problem which has the form of a
geometric program. The key observation is that maximizing
coverage subject to the constraint that the objective value
of the problem corresponding to the uncertainty set is no
more than some fixed value α, can be rewritten as a convex
optimization problem. Thus, the high-level algorithm for Step
2 of the algorithm given above, finding a feasible solution,
now becomes:
(i) If the problem from Step (2) is true-infeasible, increase

the coverage requirement by the chosen step-size, ∆: p←
p + ∆.

(ii) Find the minimum value of α such that maximizing the
coverage subject to the constraint that the objective value
of the corresponding robust geometric program is at most
α, gives coverage exceeding the chosen value, p. We
solve the search over α by bisection since the problem is
quasi-convex.

(iii) With this uncertainty set, solve the robust geometric
program. If the returned solution is true feasible, then
move on to Step (3) of the main algorithm. If it is not
true-feasible, then increase the coverage requirement by
∆, and return to step (ii).

III. FORMAL DESCRIPTION OF THE ALGORITHM

We now formally describe the proposed analog circuit
optimization scheme. First, we require the fitted model for
each transistor parameter needed to set up the constraints
and the objective which are in terms of various performance
metrics such as bandwidth, loop-gain, power. A set of SPICE
simulations is carried out at the characterization phase to create
a table capturing the values of the channel conductance (gd)
and transconductance (gm), overdrive voltage (Vgt), and tran-
sistor capacitances (Cgs, Cgd, and Cgb). These measurements
are made over a range of transistor width, length and bias
current values, separately for NMOS and PMOS transistors.

Next, a model is fitted to the collected data. We perform
a single monomial (unknown exponents) fit by applying a
log transformation and subsequently taking the exponential to
recover the transistor parameters as a single monomial. Via
regression, we obtain coefficients and exponents for the best-
possible, in the least square sense, monomial fit. Thus, for
example, our model for gm becomes: gm ≈ aW bLcId, where
values a, b, c and d are determined through regression to the
data in the table.

Now let there be q transistor parameters M =
(m1, . . . , mq), where each mi is a fitted monomial function of
(W, L, I). The nominal constraints of the circuit optimization



are built up from the {mi} in a manner consistent with
geometric programming, namely, in a multiplicative manner.
Thus, constraints will take the form:

∏
i∈I mi∑

l∈L

∏
j∈Jl

mj

≥ 1.

We can now describe the robust optimization problem. Robust
GP is tractable for interval and ellipsoidal uncertainty sets, and
we use the former. To be consistent with the multiplicative
nature of geometric programming, we use a multiplicative
model for the error with an error parameter ei corresponding
to each transistor parameter mi. In the interval uncertainty
model, each ei is constrained to lie in an interval [−ki, ki].
(For example, for the transconductance parameter gm, we have
gm = aW bLcId exp(e), where the error term e belongs to an
interval [−k, k].)

For multiple constraints, we express the uncertainty set as

U
4
= U(k) =

q∏

i=1

[−ki, ki],

which is thus parameterized by the vector k = (k1, . . . , kq).
The robustified constraints now have the form:

∏
i∈I mi · exp ei∑

l∈L

∏
j∈Jl

mj · exp ej

≥ 1, ∀(e1, . . . , eq) ∈ U(k).

For a fixed uncertainty set U(k), letting M denote the set of
transistor parameters as above, and V denote the complete set
of variables (W, L, I) for each transistor, the robust GP that
we need to solve is:

MinV : Objective(V ) (1)
s.t.: Constraints(V, M,k) ≤ 1

The objective function, like the constraints, is a posynomial
function of transistor parameters and variables in V .

Selecting Coverage and Robustness: In the first iteration,
we set U(k) = {0}, i.e., we have k = 0. Each time the robust
GP returns a solution that is not feasible, we must increase
the uncertainty set U , by increasing the vector k. Note that
this cannot be done by sweeping or by brute force, since
any such attempt is exponential in q, the number of transistor
parameters.

Recall from Section II, that given an uncertainty set U , the
coverage of a transistor parameter, mi, is equal to the fraction
of points in the table (in the range we are considering) where
the error falls within U . Formally, given U(k), the coverage of
parameter mi, which we denote as Coverage(ki, i), is equal to
the number of entries in the table where the error is within a
multiplicative factor of exp(±ki). The overall coverage, which
we denote by Coverage(k), is then just the minimal of the
local coverages: Coverage(k) = Minq

i=1
Coverage(ki, i). Our

algorithm calls for us to maximize the overall coverage, while
decreasing the objective of the resulting robust optimization
problem as little as possible. We expand the uncertainty set
optimally, by controlling the allowable decrease in optimality
of the objective function by a factor of α%. Thus, we select

the optimal k by solving the now-posynomially-expressed
optimization problem

Maximizek,V Coverage(k)

s.t.: Objective(V ) ≤ obji ∗ (1 +
α

100
) (2)

Constraints(V, M,k) ≤ 1

In the above problem the constraint set is a collection of
posynomials, however, the objective is not. We found that
it cannot be well approximated by a monomial expression
needed for GP compatibility. We also do not have the option to
use a posynomial fit with multiple terms since this will violate
GP compatibility. The objective function being maximized
must be a monomial. As an alternative, we use a bisection-
based approach, which we describe below.

We note that coverage value is between 0 and 1. In order
to enable the bisection approach, we need to verify whether
there exists a solution in the above constraint space for which
coverage is greater than a number β ∈ [0, 1]. If we can verify
this, then it is clear that a bisection approach will help us find
optimal coverage. Thus, we focus on describing the procedure
to check if Coverage((k)) ≥ β. Note that this is equivalent
to saying that the coverage of each individual parameter is
greater than β, i.e. Coverage(ki, i) ≥ β. Letting Fi denote the
empirical distribution of the absolute value of the fitting error
for the log of parameter mi, we can deduce equivalently that
Fi(ki) ≥ β. We treat exp(ki) as a problem variable k

′

i and
denote the vector exp(k) as k

′. By taking the inverse of the
distribution function, we get k

′

i = exp(ki) ≥ exp(F−1

i (β)).
Now in order to check the feasibility, we check the feasibility
of the following problem, which is a geometric program in
terms of the variables V and k

′:

Maximizek′,V 1

s.t.: Objective(V ) ≤ obji ∗ (1 +
α

100
)

Constraints(V, M,k′) ≤ 1 (3)
k

′

i
≥ exp(F−1

i (β))∀i ∈ [1, q]

Thus, each time the optimization problem returns a solution
that is not true feasible, we seek the uncertainty set U(k)
that maximizes coverage, while not increasing the objective
function by more than α% of the current objective obji.

We can now describe all the steps of the algorithm as
follows.

Input: SPICE-table, initial range, user-selected parame-
ter ∆. Initialize α = 0 and k = 0.

1) Solve Problem (1) to obtain solution (W,L, I).
2) While (W,L, I) is not true feasible, set α ← α + ∆.

Solve Problem (2) to obtain the new vector k and then
solve Problem (1) to obtain new solution (W,L, I).

3) While the range is larger than the minimum size, shrink
the range around the true-feasible solution (W,L, I), set
α = 0 and k = 0, and return to Step 1.

4) Report true-feasible solution (W,L, I).
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Fig. 2. The histogram shows the distribution of fitting errors for gd for a
PMOS transistor.

IV. EXPERIMENTAL RESULTS

In this section, we report our numerical experiments to val-
idate the algorithm performance. Devices were characterized
using 180nm TSMC high-performance technology models.
First, we illustrate the high fitting errors in the monomial
equations needed for GP. In Figure 2, we show the histogram
of the fitting errors for the output conductance parameter gd

of a PMOS transistor. The transistor is simulated in HSPICE
to predict the gd and drain current for a set of width, length,
Vgs and Vds values. The samples are generated by varying
the gate length from 180nm to 1.8µm and gate width varying
from 180nm to 18µm, both in increments of 20%. The Vgs

ranges from 0.65 to 1.8V and Vds ranges from 0.35 to 1.8V.
Then gd was fitted as a monomial function of width, length,
and drain current.

The fitted equation was gd = 0.079W 0.22L−0.84I0.73,
where the unit of gd is µA

V
, W and L are in units of µm, and

I is measured in unit of µA. The fitting errors are significant:
Figure 2 shows that a high number of samples yielded a
fitting error higher than 20%. The rms error of the fit is 19%.
Importantly, the maximum error is 69%. This indicates that
there is a danger of optimizing around a region in which the
model fit is very poor. Similar trends are observed for other
fitted functions.

We next demonstrate the improvement in fitting accuracy
through refinement by an example shown in Figure 3. To
simplify presentation, we restrict the fit to a one-dimensional
single variable fit. We do refinement by generating samples
with W, L and Vds fixed, and varying only Vgs from 0.65
to 1.8V in increments of 0.05. We show the fitting of gd for
a PMOS transistor as a monomial function of current. The
worst-case error is 10% when fitting over the Vgs range of
0.65 to 1.8V. However, when we restrict the range of Vgs to
be 1.05 to 1.8V, the worst-case error is reduced to 1.3%. The
point is that even modest refinement of the range (factor of 2
here) can dramatically improve the fitting error (about a factor
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Fig. 3. Fitting improvement with refinement of the fitting region. The errors
of the global fit are as large as 10%. The worst-case error is 1% for the
narrower region.

Fig. 4. The two-stage operational amplifier used for numerical experiments.

of 8, here).
We next report the outcomes of numerical experiments that

validate the performance of our algorithm, and, in particu-
lar, compare our algorithm to the existing global GP-based
solution. We compare the proposed robustness and refinement
(RAR)-based optimization with the prior equation-based global
search method employing geometric programming. We refer to
the prior method as the standard optimization. We demonstrate
the effectiveness of our algorithm by using it to optimize the
area of a two-stage CMOS operational amplifier and power
for a voltage controlled oscillator, which have been used as
validation vehicles in several prior related publications [10],
[3] (Figure 4 and Figure 5). The two-stage amplifier circuit is
made up of 8 transistors and the typical design metrics include
gain, unity gain bandwidth, slew rate, common-mode rejection
ratio, phase margin, as well as area. The voltage controlled
oscillator has min and max frequency constraints as well as
saturation constraints for all the transistors. We also have a



Fig. 5. The voltage controlled oscillator used for numerical experiments.

constraint on transistor sizes which sets the transistor lengths
and widths within the range of 180nm to 1.8µm. Our algorithm
refines the variable range by 20% in each iteraton, after finding
a true feasible solution. We set 10 as the maximum number
of refinement steps.

The op-amp design process is intrinsically a multi-objective
optimization process and the optimal solutions lie on the
multidimensional Pareto-surfaces. It is hard to present Pareto
curves in more than two dimensions, so we first demonstrate
the effectiveness of the algorithm by showing the value of the
objective function that can be obtained for a single constraint.
We show the value of amplifier gain (used as the constraint)
against the objective area, in one case, and power, in the other
case. In the first experiment the Pareto-curve was generated
by sweeping the value of target gain over the range of
[74.3db 75.3db] and optimizing the power using the standard
optimization method. The results are shown in Figure 6 and
indicate that we can obtain uniformly better solutions with
up to 50% savings in power. We generated a similar tradeoff
curve for minimum area in a different range of gain values.
This experiment also demonstrates that our algorithm produces
uniformly better solutions with up to 10% area savings. The
results are shown in Figure 7.

A major benefit of the proposed algorithm is that it offers
a guaranteed way of meeting multiple design specifications.
Thus, the second set of experiments on solving multiple-
constraint problems aims at demonstrating the degree to which
the standard method can be infeasible, while our method
meets all of the constraints. We find that because of the large
fitting errors the standard optimization method often produces
solutions that grossly violate the constraints, especially when
multiple constraints are used.

In the experiment for the two-stage amplifier, we use area
and power (individually) as the objective to minimize, and
have constraints on gain, unity gain bandwidth (UGB), slew
rate, common-mode rejection ratio (CMRR), phase margin
(PM), and negative power supply rejection ratio (PSRR). In
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Fig. 6. Power vs. gain Pareto curve. Proposed algorithm is uniformly better
and maximum power savings are 50% at fixed gain.
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Fig. 7. Area vs. gain Pareto curve. Proposed algorithm is uniformly better
and maximum area savings are 10% at fixed gain.

Table I, we present the comparison results in terms of percent-
age of constraint violations for minimum area optimization.
As the results demonstrate, while our algorithm meets the
target constraints, the standard optimization is unable to find
a feasible solution, and the solution produced in some cases
grossly violates the target constraints. We show similar results
for a voltage controlled oscillator in Table II.

We note that the objective function of the standard approach
appears better than what our approach finds – however, given
that the standard optimization produces solutions that violate
constraints by up to 47%, it is not clear that the objective
function value is meaningful, or even how to devise a fair
numerical comparison. A useful comparison would be based
on comparing Pareto surfaces, generated by sweeping the
values of all the constraints and plotting against the optimal
values obtained, which is difficult to do for problems with
multiple constraints.



Performance Spec RAR Standard Spec RAR Standard Spec RAR Standard
% violation % violation % violation % violation % violation % violation

Gain (dB) ≥ 66 0 16 ≥ 67.3 0 18.5 ≥ 65.6 0 15.1
UGB (MHz) ≥ 5 0 0 ≥ 5.5 0 0 ≥ 6 0 0
Slew Rate (V/µs) ≥ 9 0 1.7 ≥ 10 0 0 ≥ 5 0 0
CMRR (dB) ≥ 66 0 47.8 ≥ 65.9 0 31.7 ≥ 64.6 0 44.2
Phase Margin (deg) ≥ 60 0 0 ≥ 45 0 0 ≥ 60 0 0
Negative PSRR (dB) ≥ 74.8 0 17.8 ≥ 74.8 0 12.8 ≥ 74 0 11.4
Area (µm

2) MIN 329 237 MIN 296.4 219 MIN 270.4 228.8

TABLE I
Area minimization for the two-stage amplifier benchmark circuit. The standard method leads to significant constraint violations while the proposed method

is able to meet all the constraints.

Performance Spec RAR Standard Spec RAR Standard Spec RAR Standard
% violation % violation % violation % violation % violation % violation

Min VCO freq. (GHz) ≤ 1 0 30 ≤ 1.2 0 28.3 ≤ 1.2 0 30.8
Max VCO freq. (GHz) ≥ 1.25 0 0 ≥ 1.4 0 0 ≥ 1.5 0 0
Power (µW) MIN 69.9 36.7 MIN 69.4 44.6 ≥ 5 76.2 50.13

TABLE II
Power minimization in a voltage controlled oscillator benchmark circuit. The standard method leads to significant constraint violations while the proposed

method is able to meet all the constraints.

V. CONCLUSION

In this paper we presented a set of algorithmic solutions
that aim to explicitly utilize the knowledge of modeling error
in the fitted equations to drive optimization. The algorithm
is based on two key concepts of refinement and robustness.
A novel concept of coverage is used to optimally construct
the uncertainty sets. The results are promising and show
that significant improvements are possible in terms of the
value of the achievable cost functions as well as in terms of
reliably meeting performance constraints in the presence of
large modeling error.
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