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Abstract— We consider a single server serving a time-slotted
queued system of multiple flows, where not more than one
channel can be serviced in a single time slot. Each flow has
exogenous arrivals, and the service rates to the flows vary over
time according to a fixed distribution. The server is allowed
to observe the service rates for only a singlesubset of flows
(chosen from a fixed collection ofobservable subsets) in a time
slot for the purpose of making scheduling decisions. We provide
a precise characterization of the stability region for such a
system. We present an online scheduling algorithm that uses
information about marginal distributions to pick the subset
and the MaxWeight rule to pick a flow within the subset,
and show that it is throughput-optimal. In the case where
the observable subsets are all disjoint, we show that a simple
scheduling algorithm - Max-Sum-Queue - that essentially picks
subsets having the largest squared-sum of queues, followed by
MaxWeight within the subset, is throughput-optimal. We show
that for channels which are symmetric with respect to channel
rates and distributions, and fixed-size observable subsets, Max-
Sum-Queue is throughput-optimal. Finally, we demonstrate
that under certain conditions, Max-Sum-Queue may not be
throughput-optimal.

I. I NTRODUCTION

There has been much recent interest in scheduling over
wireless cellular networks where channel state information is
available at the base-station [1], [2], [12]. A canonical system
consists of a base-station and a collection of mobile users.
Time is slotted (typically of the order of a milli-second),
like in the high-speed WiMAX [9], Ultra Mobile Broadband
(UMB), GSM-based HSDPA and 1xEV-DO communications
technologies. In each time-slot, the channel state (the channel
quality such as SINR or data rate that can be sustained over
the time-slot to the mobile) is potentially available (via a
feedback channel from the mobile terminals to the base-
station) at the base-station. Based on the load (packets queues
at the base-station) as well as the channel state, the base-
station schedules users for channel access each time-slot.

However, as the capacity of the wireless system increases,
it is likely that a large number of mobile users will be
connected to the base-station. Thus, transmitting channel
state feedback from all of the mobile to the base-station
might be difficult due to feedback bandwidth constraints. A
reasonable approach would be for the base-station to request
channel state from a sub-collection of users (for example,
users which have a large backlog of data at the base-station)
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and make scheduling decisions based on this partial channel
state information.

A. Main Contributions

We consider a base-station system where there areN
users and channels, with each user generating data, and with
channels which have an arbitrary joint distribution over a
finite state-space (the channel is assumed to be independent
across time but not across users), and the serverdoes not
have knowledge of the channel joint distribution.

In each time-slot, the base-station is allowed to get channel
state1 from one among a predefined collection of subsets of
channels (for example, in a ten user system, the constraint
could be that we can acquire channel state from at-most three
users per time-slot). We henceforth refer to this as a system
with partial channel-state information.

The scheduling task at each time-slot is to first determine
the subset (of channels for which channel state will be
acquired) and then determine a single user to schedule from
within this subset. In this paper, we characterize the stability
region for this multi-user system, and develop algorithms that
achieve the stability region. The main contributions in this
paper are as follows.

(i) We derive the stability region for a system withN
users and an arbitrary collection of observable subsets
(i.e., a collection of subset of users for which the
channel state can be simultaneously acquired), and for
any joint channel distribution (across users) that are
independent and identically distributed over time. The
stability region corresponds to the set of arrival rates
that can be sustained such that the queues at the base-
station are stable (positive recurrent).
We show that the stability region is described by the
convex hull of the “local” stability region for each
observable subset. In other words, for each observable
subset, we first consider the rates that can be sustained
if none of the other users had any data. This can be
characterized via a convex polytope that corresponds
to the stability region (the “local” stability region for
the subset) of a reduced system where users that do
not belong to the subset are removed, and the base-
station hascompletechannel state information for the
users within the subset. The convex hull of such “local”

1At each time-slot, the complete channel state is aN dimensional vector,
with thei-th component of the vector corresponding to the data rate that can
be sustained to thei-th mobile user over the time-slot if this user is chosen
by the scheduler. Correspondingly, the partial channel state corresponds to
a sub-vector of thisN dimensional vector.



stability regions over all observable subsets describe the
stability region with partial channel state information.
We also present a numerical example that illustrates
the degradation in the stability region as the amount of
channel state information decreases (i.e., fewer simul-
taneously observable channels). The example suggests
that the stability region with partial channel information
can be viewed as the intersection of the stability regions
with completechannel information over all systems
whose channels have a joint distribution that is consis-
tent with the subset-marginal distributions (i.e., channel
distributions only over the observable subsets) of the
given system with partial channel-state information.

(ii) Next, we develop a queue length based “online” pol-
icy that uses the queue-length information along with
subset-marginal distributions that is throughput-optimal,
i.e., the policy attains all rate points within the stability
region. The policy consists of two stages: In each time-
slot, (a) The base-station first determines the subset
to request channel state from via using theexpected
rates over the observable subsets weighted by theactual
queue lengths at the base-station; and(b) Within the
chosen subset, the policy uses the MaxWeight rule [23],
[1] which uses the product of theactual channel rate
(received from the mobile in the chosen subset) and the
actual queue-length to make the scheduling decision.

(iii) We develop a simpler online policy (Max-Sum-Queue
rule) where in the first stage, the subset of users chosen
is determined by only the queue-lengths and does not
use the expected channel rates. The Max-Sum-Queue
policy chooses that subset over which the sum of the
squares of the queue-lengths is largest. The second
stage is the same as before, namely, the MaxWeight
policy restricted to the chosen subset. We show that
if the observable subsets are disjoint or the channels
are symmetric, this policy is throughput-optimal. Fi-
nally, we provide a example to show that in general
this policy is not throughput optimal if the channel-
symmetry/disjoint-observable-subsets condition is not
met.

B. Related Work

There has been much work in developing scheduling
algorithms for down-link wireless systems for various perfor-
mance metrics that include stability, utility maximization and
probabilistic delay guarantees [23], [13], [20], [11], [5], [15],
[4], [21]. However, the above studies primarily focus on the
case where complete channel state information is available
at the base-station.

In the context of partial channel information, related work
includes that of [8] where the authors study the problem of a
server (terminal) accessingN time varying channels which
are independent across users and time (e.g., a multi-channel
MAC). The server has a cost for (sequentially) probing
channels (with a channel dependent probing cost), and gains
a reward (which depends on the user and the probed state) if a
packet is transmitted successfully. The authors formulatethe

problem of minimizing the expected cost (reward for trans-
missions minus the probing cost) where the cost functions
and the channel probabilities are known to the server. The
authors in [8] develop constant factor (within the optimal
cost) approximation algorithms that operate in polynomial
time for both the saturated data case, as well as when the user
(terminal) generates packets according to a Markov chain.
The authors in [10], [19] have earlier considered the special
cases with equal probing costs and identically distributed
channels. Recent results in this context also includes [3]
where the authors develop structural properties of the optimal
probing strategy using a dynamic programming approach.

Further, for systems with channels that are independent
across users and with infinitely backlogged data at the base-
station, there have been studies on limited feedback from
the mobile users to the base-station. In these studies, the
the mobiles use thresholds to determine if their channel
quality is “good enough”, and if so, send their channel state
information to the base-station [6], [17], [18], [22], [16].

II. SYSTEM MODEL AND DEFINITIONS

Consider a time-slotted model ofN users serviced by a
single server acrossN unidirectional communication chan-
nels{c1, . . . , cN} =: C. An integer number of data packets
arrive at the input of every channel at the beginning of a time
slot, to be serviced by the server. Packets get queued at the
inputs of channels if they are not immediately transmitted.
We assume that at most one of the channels can be activated
for transmission in a single time slot.

Further, in any given time slot,t, the set of channelsC
(anN dimensional vector) assumes astatel(t) from a finite
set of aggregate channel statesL = {1, . . . , L}, with the
channel state remaining constant within each time slot. In
each channel statel ∈ L, every channelci ∈ C assumes a
data service rate ofµl

i, i.e., a maximum ofµl
i packets can

be served from queuei (corresponding to channelci) when
the aggregate channel is in statel. The random channel state
processL := (l(t) ∈ R

N : t = 0, 1, 2, . . .) is assumed to
be an independent and identically distributed (iid) discrete-
time random process taking values from the finite state space
L. We denote the distribution(Pr(l(t) = i))L

i=1 by π =
(π1, . . . , πL). Observe that the channel state process isiid
across time, and can have any joint distribution across users
(i.e., across channels).

The packet arrival process at the input of each channel
ci is taken to be stationary and ergodic, and generated by a
finite state non-negative Discrete Time Markov Chain with
rateλi.

Our channel observations are limited to a given collection
of subsets of the channelC = {c1, . . . , cN} (whose union
is C) called the collection ofobservable subsets. Let us
denote the (finite) set of observable subsets ofC by O =
{o1, o2, . . . , oK}. In the example of Section IV, the setO
contains all subsets of size two. In a given time slot, an
observable subsetok = {cn1

, . . . , cnl
} ⊂ C is said to be in a

sub-stateµk = (µk
n1

, . . . , µk
nl

) if µnj
= µk

nj
for j = 1, . . . , l.



As in [1], we define the state of the system as the
random processS = (S(t), t = 0, 1, 2, . . .) whereS(t) :=
(Q1(t), . . . , QN (t), U11(t), . . . , U1Q1

(t), . . . , UN1(t), . . . ,
UNQN

(t),m(t)). Here, Qj(t) denotes the length of the
packet queue for channelcj ∈ C in time slot t and Uik(t)
is the current delay of thek-th packet in queuei at time
t. In this regard, ascheduling policyP is a pair of maps
(G,H), whereG is a map from the state of the systemS(t)
to a fixed probability distribution on the set of observable
subsetsO, andH is a map which takesS(t) restricted to a
particular observable subset, along with its sub-state, into a
fixed probability distribution on the channels which comprise
the subset. Such a scheduling policyP is applied to select a
transmitting channel using two steps. At every time slott, in
the first step, we pick an observable set randomly according
to the distributionG(S(t)) after which we are able to sample
the sub-state of the chosen observable set. Then, using the
distribution H on the observable set and its sub-state, we
pick a channel for transmission from that observable set.

A vector or pointΛ = (λ1, . . . , λN ) ∈ R
N is said to

be supportedby a scheduling policyP if the input packet
queues at all channels in the system remain stable under
scheduling usingP when the arrival rates at the inputs of
channelsc1, . . . , cN areλ1, . . . , λN respectively. Associated
with each policyP is its rate regionR(P) := {Λ ∈ R

N :
Λ is supported byP}. Theachievable rate regionR for the
system described above is then defined to be the union of
the rate regions for all possible scheduling policiesP. A
rate vectorΛ is said to beachievableif it is supported by
some scheduling policy. Likewise, a set or regionA ⊂ R

N

is said to be achievable if all its elements are achievable.
A scheduling policy is said to bethroughput-optimalif it
supports all vectors in the achievable rate region.

We wish to characterize the achievable rate region for
the model we have described. Henceforth, we shall naturally
confine our attention to the set of maximal observable subsets
OM ⊂ O, where the maximality is with respect to set
inclusion.

III. T HE ACHIEVABLE RATE REGION

In this section, we show two main results. First, we
characterize the achievable rate region for any collectionof
maximal observable subsetsOM . Moreover, we show that
this region is attained using aStatic Split Service(SSS) [1]
scheduling rule. The second part of this section characterizes
all such maximal SSS scheduling rules.

Consider a maximal observable subsetU ∈ OM , U =
{ck1

, ck2
, . . . , ckl

} where k1, . . . , kl ∈ {1, . . . , N}. Let
Q(U) denote thel-dimensional subspace ofRN where
coordinates with indices other thank1, . . . , kl are zero. If
only users fromU are served, then any stabilizable rate must
lie in Q(U). Denote this stabilizable rate region byR(U).
In particular, applying Theorem 1 in [1] to the subsetU , we
have:

Lemma 1:There exists a scheduling ruleH stabilizing a
rate vectorΛ = (λi)

N
i=1 ∈ R(U) ⊆ R

N if and only if there

exists a stochastic matrixφU such that

λi < vU
i (φU ) :=

∑

m∈LU

πm,UφU
miµ

m,U
i , ∀i ∈ U,

whereLU is the set of sub-states ofU , πm,U is the marginal
probability of sub-statem of U andµm,U

i is the service rate
for channeli in sub-statem.
This matrixφU defines a Static Service Split scheduling rule
for the subsetU . The rows ofφU correspond to every sub-
state ofU and the columns ofφU correspond to every chan-
nel in U . WhenU is in the sub-statem = (µck1

, . . . , µckl
),

channeli is chosen with probabilityφU
mi.

ThusR(U) is a convex polytope. We can now characterize
the achievable rate region for the system:

Theorem 1:The achievable region,C, for the whole sys-
tem is the convex hull of the stabilizable regions in each
subspaceQ(α), for α ∈ OM :

C
△
= conv({R(α) : α ∈ OM}).

The proof follows from two lemmata establishing matching
inner and outer bounds on the setC. Achievability follows
from a timesharing argument (see [7] for details):

Lemma 2:C is achievable.
We next establish that this achievable region is actually tight:

Lemma 3: If Λ ∈ R
N is achievable, thenΛ ∈ C. In

particular,Λ can be achieved by a global SSS scheduling
rule given by a stochastic matrixφ of the form

φ =
∑

α∈OM

pαφα,

where φα are stochastic matrices as described above, and
pα is a probability distribution on the maximal observable
subsets,OM .
Similar to the notion of an SSS rule for a maximal observable
subset, the matrixφ above defines aglobal SSS rule. A
scheduling policy implementing this SSS rule for the system
selects a subsetα in the first step with probabilitypα and
subsequently uses the subset SSS ruleφα to pick a queue
in α. The (long-term) service rate such a rule provides to
queuei is

vi :=
∑

α∈OM

pαvα
i (φα) =

∑

α∈OM

pα

∑

l∈Lα

πl,αµl,α
i φα

li.

The proof is available in [7]. We note that the assumption
that the channel state distribution isiid over time, is critically
used in the proof of this lemma.

What do maximal SSS rules look like?

We conclude this subsection with a theorem [7] which
provides a characterization of maximal global SSS rules. We
call a global SSS rulemaximal if no vector inC dominates
its vector of service rates(vi)

N
i=1, where a vectorx ∈ R

N

dominatesa vectory ∈ R
N if xi ≤ yi for all i, andxj < yj

holds for at least onej.
Theorem 2:Consider a maximal global SSS rule associ-

ated with SSS rules{φ∗α : α ∈ OM} and a distribution
{p∗α : α ∈ OM} over subsets. Then, there exists a set of



strictly positive constantsαi, i = 1, . . . , N such that for any
l, i andα,

p∗α > 0, φ∗α
li > 0 ⇒ i ∈ arg max

j∈α
αjµ

l,α
j , and

p∗α > 0 ⇒ α ∈ arg max
β∈OM

∑

l∈Lβ

πl,β(max
j∈β

αjµ
l,β
j ).

The result says that at timet, in the first scheduling
step, a maximal global SSS rule chooses a subsetα for
which

∑

l∈Lα
πl,α(maxj∈α αjµ

l,α
j ) is maximized, and fur-

ther picks queuei in α which maximizesαiµ
l(t),α
i , where

l(t) is the observed sub-state of subsetα.

IV. EXAMPLE : RATE REGION FORTHREE SYMMETRIC

CHANNELS

Let us determine the achievable rate region for a three-
channel systemC3 = {c1, c2, c3} in which the system can
take one of eight possible states{s1, . . . , s8} (Table I), and
where each of the channelsci takes a rate of eithera or b
(a < b) in every state. We denote the 8 possible values of the
joint distribution of all three channels byπ1, π2, . . . , π8 as
shown in the table. Assume that we have partial information
about subsets of size at most 2, i.e. we know all the joint
pairwise probabilities of rates{πij : i, j ∈ {1, 2, 3}}. Thus
the set of maximal posets isOM = {{1, 2}, {2, 3}, {3, 1}}.
In particular, suppose we know that Pr(ci has rateµi, cj has
rateµj) = 1/4, i, j ∈ {1, 2, 3}, i 6= j, µi, µj ∈ {a, b}.

Channel\ State s1 s2 s3 s4 s5 s6 s7 s8

c1 a a a a b b b b

c2 a a b b a a b b

c3 a b a b a b a b

State
probability π1 π2 π3 π4 π5 π6 π7 π8

TABLE I

PROBABILITY ASSIGNMENTS FOR THREE-CHANNEL SYSTEM

These pairwise constraints give us a feasible set of possible
channel distributions: it is the set of vectors(π1, . . . , π8) in
the simplex that satisfy the equationsπ1 + π2 = 1/4, π1 +
π3 = 1/4, π1+π4 = 1/4, π2+π5 = 1/4 etc. In matrix form,
these constraints along with the simplex constraints become



















1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0

...
1 1 1 1 1 1 1 1
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with πi ≥ 0 for all i. The set of possible so-
lutions of the vector ~π = (π1 π2 . . . π8)

T

is the set of convex combinations of the vectors
~π(i) = (1/4 0 0 1/4 0 1/4 1/4 0)T and~π(ii) =
(0 1/4 1/4 0 1/4 0 0 1/4)T , i.e.

~π ∈ {η~π(i) + (1 − η)~π(ii) : 0 ≤ η ≤ 1}.

The case where the three channels are independent and
identically distributed (iid) and πi = 1/8, is given by
η = 1/2. Sincea < b, the “worst case” situation for~π is
whenη = 0, i.e., ~π = ~π(ii), and the best case whenη = 1,
and~π = ~π(i).

Following the earlier notation, ifφ = [φij ]8×3 denotes
a stochastic matrix defining an SSS rule, where, recall, the
(i, j)-th entry is the probability that channelj is chosen for
service in system statesi, then a rate vector(λ1, λ2, λ3) is
stabilized by this rule iff:

φ11π1a + φ21π2a + φ31π3a + · · · + φ81π8b > λ1,

φ12π1a + φ22π2a + φ32π3b + · · · + φ82π8b > λ2,

φ13π1a + φ23π2b + φ33π3a + · · · + φ83π8b > λ3,

and the stability region for the full-observation case is given
by the union of all these regions over all stochastic matrices
φ. For the case ofiid channels, i.e.,πi = 1/8, this region is
depicted in Figure 1.
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Fig. 1. Rate region for 3 channels with full knowledge of all joint
probabilities.

The rate region for any pair of channelsci and cj for
i ∈ {1, 2, 3} in a 2-dimensional projection ofR3 turns out
to be a convex region in the first quadrant enclosed by four
corner points and the origin, as shown in Figure 2.

The dotted line in Figure 2 represents the rate region if
we knew only the marginal probabilities of single channels.

According to our result, the achievable rate region for the
three-channel system with partial information restrictedto
size-2 subsets is the region enclosed within the convex hull
of the corner points of every pairwise rate region (9 in all),
as shown in Figure 3.

Note that this region is a strict subset of the full-
information rate region depicted in Figure 1. We also observe
that in this example, if we did not know the pairwise channel
probabilities of sayc1 andc2, we would have to discard the
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Fig. 3. Achievable rate region for 3 channels, with at most pairwise partial
information

corner points( 1
4b, 1

2b + 1
4a, 0) and ( 1

2b + 1
4a, 1

4b, 0) when
finding the convex hull, hence the achievable region would
be smaller (the dotted simplex) than in the case when we
know all pairwise probabilities.

V. A T HROUGHPUT-OPTIMAL SCHEDULING ALGORITHM

Motivated by the form of the result in Theorem 2, we
present a scheduling algorithm which, for a system having
arrival rates in the described achievable region, takes as
input only the state of the system at each time slot and
decides which maximal subset to observe and ultimately,
which channel in that subset to schedule. Knowledge of the
arrival rates is not assumed in such a case. However, it is
presumed that the marginal probabilitiesπl,α of the subset
α being in the sub-statel (as in the proof of Lemma 3) are
known.

Algorithm 1:

1) Select a posetδ ∈ OM , given by

δ ∈ arg max
α∈OM

∑

l∈Lα

πl,α

(

max
i∈α

Qi(t)µ
l,α
i

)

,

where the symbolsOM , Lα and µl,α
i have the same

meaning as in the proof of Lemma 3 andQi(t)
represents the length of theith queue at the beginning
of time slot t.

2) After observing the states ∈ Lδ of δ, schedule channel
j ∈ δ using themax-weighted-queuerule, i.e.

j ∈ arg max
i∈δ

Qi(t)µ
s,δ
i .

Remark: By arguments used to prove Theorem 2 [7],
we have the following lemma which provides an important
equivalent characterization of the above algorithm in terms
of knowing the extreme points of the achievable rate region
C:

Lemma 4:Let E be the (finite) set of extreme points for
the achievable rate regionC. Then, Step 1 above can be
expressed as choosingδ ∈ OM which satisfies

δ ∈ {α ∈ OM : u ∈ arg max
v∈E

〈v,Q(t)〉 ⇒ u ∈ R(α)}.

That is, the algorithm selects any subset whose rate region
contains an extreme point maximizing the inner product
〈x,Q(t)〉 over all x ∈ E and hence a point maximizing
〈y,Q(t)〉 over all y ∈ C.

The chief result in this section is the following theorem,
which says that the scheduling policy defined above is
throughput-optimal for scheduling with partial channel-state
information.

Theorem 3:Algorithm 1 makes the system stable if the
vector of arrival rates lies in the achievable region.

The proof of stability uses fluid limit machinery. Roughly,
the fluid limit of the (N dimensional) queue length cor-
responds to a limiting trajectory when the queue length
process is “observed” over a long interval of time (by scaling
and “compressing” time) and concurrently scaling down the
magnitude of the queue length process. Under such a scaling,
the discrete and random queue length process “looks like” a
deterministic fluid process henceforth denoted byq(t), which
is driven by a (vector) constant rate fluid arrival process
(the components corresponding to the mean arrival rates to
each of the users), and whose service rate corresponds to the
“average” service rate under the scheduling algorithm. For
the system we are considering, showing that such a limiting
fluid queue length trajectory has negative drift (as we will do
so in Lemma 5) is sufficient to prove that the discrete-time
stochastic queue length process is stable (positive recurrent)
[14], [1], [7].

The proof requires numerous definitions and lemmata on
fluid limits, their existence and their properties. We defer
these to the full version ([7]) and provide here only the main
intuitive Lyapunov idea.

The key step in the proof is to show that a suitably
defined Lyapunov function has negative drift. So far this
parallels the proof used for Theorem 3 of [1], however
here we face the additional difficulty of assuring that we
pick the correct observation subsetα ∈ OM , in addition
to picking the correct queue to serve inside that subsetα.
Using the Lyapunov function introduced below, we show
that maximizing the negative drift of this Lyapunov function
is exactly the problem of maximizing the inner product
〈y,Q(t)〉 over all y ∈ C. If we pick the “wrong” subset
α ∈ OM , then maximizing the linear function above becomes
impossible. To side-step this problem, we rely on Lemma 4,



which guarantees that the chosen subset will indeed be one
with an extreme point maximizing the linear function.

Formally, let us introduce the quadratic Lyapunov function

L(y) =
1

2

N
∑

i=1

y2
i (1)

for a vector y = (y1, . . . , yN ). Let q(t) denote a fluid
limit of the queue-length process (this exists almost surely;
see [7] for precise definitions and details). The following
property establishes negative drift, and thus enables us to
show stability:

Lemma 5:Consider a feasible system operating under the
described scheduling discipline. For anyδ1 > 0, there exists
δ2 > 0 such that the following holds. With probability 1, a
limiting set of functions defining the fluid limit, satisfies the
following property at any regular point t:

L(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2 < 0.

The proof relies on Lemma 4. See [7] for the full details.
As in [1], the previous lemma along with a result from

[14] together imply Theorem 3.

VI. T HE MAX -SUM-QUEUE ALGORITHM

In this section, we present a ‘simpler’ scheduling policy
which only uses queue-length information to pick the subset
to observe, and analyze its stability properties under specific
assumptions:

Algorithm 2 :
In each time slott,

1) Select a posetδ ∈ OM , given by

δ = arg max
α∈OM

∑

i∈α

Q2
i (t),

whereQi(t) denotes the length of theith queue at the
beginning of time slott.

2) After observing the states ∈ Lδ of δ, schedule channel
j ∈ δ using the MaxWeight rule (also known as
the Modified Largest-Weighted-Work-First (M-LWWF)
rule) [23], [1], i.e.

j = arg max
i∈δ

Qi(t)µ
s,δ
i .

Note: A suitable rule to break ties in each case is assumed.
We shall call this algorithm theMax-Sum-Queueschedul-

ing algorithm. In this section we show that it is throughput-
optimal in two cases of interest: (i) when the maximal subsets
in OM are disjoint; and (ii) when the channel is symmetric
in the users. In the next section, we prove by example that
throughput-optimality does not hold in general.

A. Max-Sum-Queue for disjoint subsets

The following result tells us that when the collection of
observable subsets is mutually disjoint, Max-Sum-Queue is
throughput-optimal.

Theorem 4:Under the assumption that every pair of max-
imal observable subsets is disjoint, the Max-Sum-Queue

scheduling algorithm makes the system stable if the vector
of arrival rates lies in the achievable region.

To prove Theorem 4, we follow a similar route as in
the previous section, defining fluid limits and proving that
a suitably defined Lyapunov function has negative drift. The
Lyapunov function we use here is

L(y) = hβ(y) =
1

2

∑

i∈β

y2
i ,

where

β ∈ arg max
α∈OM

hα(y)

and β is chosen according to some fixed precedence rule
in arg maxα∈OM

hα(y) , for a vectory = (y1, . . . , yN ). As
with Lemma 5, the following lemma is used to establish
stability.

Lemma 6:Consider a feasible system operating under the
Max-Sum-Queue scheduling discipline. For anyδ1 > 0,
there existsδ2 > 0 such that the following holds. With prob-
ability 1, a limiting set of functions defining the fluid limit,
satisfies the following additional property at any regular point
t:

L(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2.

We refer the reader to [7] for the details. There is an intuitive
geometric explanation for this result. It is based on two
observations: first, due to the disjoint subset assumption and
the Max-Sum-Queue algorithm, if any queue is unstable, all
queues are unstable; next, given an extreme pointxα in each
setR(α), the convex hull of those extreme points will always
lie on an exposed face ofC. Note that this is not true in the
general case.

B. Max-Sum-Queue for symmetric channels

It is instructive to note that the reason that the presented
scheduling policies work in their respective cases is because
at any pointt ∈ [0,∞), they maximize the linear objective
function 〈q(t), u〉 over allu in the convex polytopeC which
represents the achievable rate region. The drift of the sum-of-
squares Lyapunov function defined by (1) happens to be pre-
cisely the difference between〈q(t), λ〉 andmaxu∈C〈q(t), u〉.
This geometric interpretation allows us to prove the useful
result that Max-Sum-Queue is actually throughput-optimal
for systems of symmetric channels and subsets.

Theorem 5:Consider a symmetric system, i.e. where all
the N channels have an identical distribution of service
rates. Further, let the observable subsets be all subsets of
a fixed cardinalityK. For such a system, Max-Sum-Queue
is throughput-optimal.
See [7] for the proof.

A geometric view of Max-Sum-Queue:In the following, we
see why Max-Sum-Queue is throughput-optimal by examin-
ing the geometric aspect of its working. Letλ be the vector
of arrival rates to the system ofN channels represented by
S = {1, . . . , N}, such thatλ ∈ intC. As before, we consider
the drift of the sum-of-squares Lyapunov function defined by



(1):

d

dt
L(q(t)) =

N
∑

i=1

qi(t)(λi − f̂i(t))

= 〈q(t), λ〉 − 〈q(t), f̂(t)〉,

where f̂(t) ≡ (f̂i(t))
N
i=1 is the instantaneous vector of

service rates chosen by Max-Sum-Queue at timet in the
fluid time scale. We will show that̂f(t) ∈ C maximizes the
inner product〈q(t), x〉 over all x ∈ C or equivalently over
all the extreme points ofC; this establishes that the drift of
L(q(t)) is strictly negative and bounded away from zero and
hence Max-Sum-Queue is throughput-optimal.

We observe that the subsets which Max-Sum-Queue picks
for scheduling att are the ones of (fixed) sizeK < N , say,
that contain the topK queues in the system. Without loss
of generality, letq1(t) ≥ q2(t) ≥ . . . ≥ qN (t), and let

A = arg max
β⊂S,|β|=K

∑

i∈β

q2
i (t).

Every setα ∈ A is picked by Max-Sum-Queue in the
fluid timescale, and has the same queue values ordered in
descending order. Further, since the channels are symmetric,
every subset rate regionR(β) for β ⊂ S, |β| = K, is
identical up to a permutation of indices. It follows that the
extreme points ofC maximizing 〈·, q(t)〉 must lie in the
rate regionsR(α) whereα ∈ A, since only theK heaviest
queues can maximize this inner product over all permutations
of extreme points.

Since these extreme points are precisely the ones picked
by Max-Sum-Queue in each subset, and thatf̂(t) lies in
the convex hull of these extreme points,f̂(t) maximizes the
inner product〈q(t), x〉 over all x ∈ C, and we are done.

VII. M AX -SUM-QUEUE APPLIED TO ARBITRARY

SUBSETS

λa

λ1λ3

C : (50, 125, 0)

E : (150, 0, 0)

B : (0, 150, 0)

A : (0, 100, 1)

G : (0, 0, 2)

F : (100, 0, 1)

D : (125, 50, 0)

λ2

λb

Fig. 4. Rate region for described 3-channel system

It is interesting to ask the question: Is the simple Max-
Sum-Queue scheduling algorithm throughput-optimal for an
arbitrary (and, in particular, non-disjoint) system of maximal
observable subsets? In this section, we present an example

based on a system of three channels where under certain
arrival rates in the stability region, all the queue fluid limits
are seen to increase. Thus we can show [7] that the system
exhibits instability in certain portions of the achievablerate
region, under this policy.

Consider a system of three channelsc1, c2 and c3. The
system assumes four possible statesS1, S2, S3 and S4

with the corresponding channel rates, expressed by (rate of
c1, rate of c2, rate of c3), being (100,100,2), (100,200,2),
(200,100,2) and (200,200,2) respectively. Further, each state
occurs with probability1

4 . The maximal observable subsets
are α = {c1, c2}, β = {c2, c3} and γ = {c3, c1}, i.e., all
pairs of channels. The achievable rate region for the system
is shown in Figure 4.

Set the vector of arrival rates (shown in the figure) to be
λb ≡ (λ1b, λ2b, λ3b) = (175

2 , 175
2 , 0) − ǫ(1, 1, 0) + δ(0, 0, 1),

with ǫ = 1
2 and 0 < δ = 1

100 < 1
75 . It is easily verifiable

that λ lies in the interior of the rate region. We will show
that a regular pointt ∈ [0,∞) can exist with the fluid-limit
queue-length process satisfyingq1(t) = q2(t) = q3(t) > 0,
and with q̇1(t) = q̇2(t) = q̇3(t) > 0 (the full details are in
[7]). In such a case, the fluid levels of the queues increase
(linearly) at a constant rate.

Let us hypothesize thatt is a regular point in[0,∞)
satisfying the conditionq1(t) = q2(t) = q3(t) > 0,
and attempt to find a valid set of the subset timesharing
probabilitiespα, pβ and pγ . Note that all theqi(t) being
equal forces the system to be ‘serving’ all three subsets with
the aforementioned timesharing probabilities, which mustbe
positive. We can show ([7]) that the regularity hypothesis
now implies q̇1(t) = q̇2(t) = q̇3(t), and hence

⇒ λ1b − 150pγ −
175

2
pα

= λ2b − 150pβ −
175

2
pα

= λ3b − 0 = δ

⇒ pγ = pβ , and

150pβ +
175

2
pα = λ2b − δ = 86.99.

Together withpα + pβ + pγ = 1, we getpβ = pγ ≈ 0.02
and pα ≈ 0.96 which is the unique timesharing solution
between the subsetsα, β andγ. Hencet is valid as a regular
point where all the queues are equal and increase linearly at
the same rateδ > 0.

Remarks:
1) We observe that the (mutually exclusive) conditions

q1(t) = q2(t) > q3(t) and q1(t) = q2(t) < q3(t)
lead to all theqi becoming equal within finite time.
Hence the stateq1(t) = q2(t) = q3(t) is an ‘unstable
attractor’ for the fluid limits in this sense.

2) For the arrival rate vectorλa = (87, 87, 0) (as in Figure
4), we can similarly show that starting fromq1(0) =
q2(0) = q3(0) = c > 0 implies thatq1(t) = q2(t) =
q3(t) = c at all timest ∈ [0,∞).

The following proposition formalizes the case of linearly
exploding fluid limits for the system defined in Section VII



when the vector of arrival rates isλ = λb (as in Figure 4).
Specifically, we show that given any large time interval, we
can find a large enough initial condition for the queue lengths
such that the queue lengths grow linearly within that time
interval. We refer the reader to [7] for the proof.

Proposition 6: Fix any T > 0. Then, there existsn0(T )
such that for alln > n0, there existsǫ > 0 such that

Q1(0) = Q2(0) = Q3(0) = n

⇒ Qi(nT ) ≥ (1 + ǫ)n, i = 1, 2, 3.
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