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Predictable Equation-Based Analog Optimization
Based on Explicit Capture of Modeling

Error Statistics
Ashish Kumar Singh, Kareem Ragab, Mario Lok, Constantine Caramanis, Member, IEEE, and Michael Orshansky

Abstract—Equation-based optimization using geometric pro-
gramming (GP) for automated synthesis of analog circuits has
recently gained broader adoption. A major outstanding challenge
is the inaccuracy resulting from fitting the complex behavior
of scaled transistors to posynomial functions. In this paper, we
advance a novel optimization strategy that explicitly handles the
error of the model in the course of optimization. The innovation
is in enabling the successive refinement of transistor models
within gradually reducing ranges of operating conditions and
dimensions. Refining via a brute force requires exponential com-
plexity. The key contribution is the development of a framework
that optimizes efficient convex formulations, while using SPICE
as a feasibility oracle to identify solutions that are feasible
with respect to the accurate behavior rather than the fitted
model. Due to the poor posynomial fit, standard GP can return
grossly infeasible solutions. Our approach dramatically improves
feasibility. We accomplish this by introducing robust modeling
of the fitting error’s sample distribution information explicitly
within the optimization. To address cases of highly stringent
constraints, we introduce an automated method for identifying
a true feasible solution through minimal relaxation of design
targets. We demonstrate the effectiveness of our algorithm on
two benchmarks: a two-stage CMOS operational amplifier and
a voltage-controlled oscillator designed in TSMC 0.18 μm CMOS
technology. Our algorithm is able to identify superior solution
points producing uniformly better power and area values under
a gain constraint with improvements of up to 50% in power and
10% in area for the amplifier design. Moreover, whereas standard
GP methods produced solutions with constraint violations as
large as 45%, our method finds feasible solutions.

Index Terms—Analog optimization, geometric programming
(GP), robust optimization.

I. Introduction

ONE OF THE challenging aspects of analog design is
optimizing a given circuit topology to meet design
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specifications, such as gain, while minimizing cost metrics
such as area and power. This process poses severe challenges
due to the stringent requirements upon multiple mutually
conflicting performance constraints. In any manual design
strategy, success heavily depends on the designer’s experience
and design-specific intuition. Automated analog optimization
promises to increase productivity by reducing design time.
Efforts to automate analog design have taken two major routes.
In one, the circuit topology is assumed to be fixed and only
optimal device sizing is performed [26], [29]. In the other, the
topology is also selected automatically [31], [33]. Our work
focuses on the first class of approaches.

The existing work has fallen into two major categories based
on how they evaluate a solution point to drive optimization:
approaches relying on extensive use of SPICE simulations
[27], [28], [30], [32]–[34], and those that construct an ana-
lytical model of circuit behavior and use the model to drive
the optimization [14], [20], [29], [37]. At the first cut, the
tradeoff is between the accuracy that SPICE-driven methods
provide, versus the global structure that can be captured by
equation-based methods and global fitting. We discuss these
approaches in greater detail below, and discuss the novelty and
contribution of this paper in the context of a taxonomy of past
work that has been done.

The challenges of equation-based optimization are two-fold:
1) to ensure sufficient model accuracy, or at least, fidelity; and
2) do that in a functional form that lends itself to efficient
optimization. The first-principles small-signal parameters de-
rived based on long-channel transistor theory are not accurate
for nanometer scale technologies. The small signal parameters
gm, gd , gmb, as well as overdrive voltage and the transistor
capacitances, are complex functions of the biasing current
and sizes. Device-level modeling of transistors is embedded
into SPICE device models, such as BSIM4, and involves
hundreds of variables. Directly working with such models
appears infeasible since in order to be tractable equation-
based optimization requires low-dimensional models, and, in
particular, convexity.

Perhaps the most common technique along these lines mod-
els circuit performance constraints as posynomial functions
[13], [20], [21]. Optimization problems using posynomial
constraints and objective function can be solved efficiently
using the convex optimization framework of the geometric
programming (GP) paradigm relying on fast interior point
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solution methods. Posynomials are generalized polynomi-
als with positive coefficients and arbitrary real exponents
[8]. Thus, a posynomial f (x1, . . . , xn) has the general form
�

β
q=1aqx

αq1

1 · · · xαqn

n , where the αs are arbitrary and the as are
positive. Each product term is called a monomial.

Relying on posynomial models is useful due to the fact that
they yield globally solvable tractable optimization problems.
The cost, however, is that the fitting error of posynomial
models can be large. While in part this is due to the complex
device physics, another important source of error is due to
the limitations imposed by the requirement of modeling in
a GP-compatible manner. In addition to limiting our fitting
capability, GP compatibility forces us to eliminate referencing
some key input variables, e.g., it has been proven difficult
to capture the dependence on Vds (drain to source voltage)
in a posynomial form, in contrast to dependence on I (drain
current), W (width), and L (gate length) [14]. As a result,
the optimization model may differ greatly from the behavior
of the physical device. As we quantitatively demonstrate later,
the attributes of the solution generated by the optimization may
be more than 30% off from the intended target constraints.

This paper proposes a novel optimization strategy that seeks
to combine the accuracy of SPICE simulations, with the
global optimality of GP-based methods. Our central idea is as
follows. We numerically capture the error between the exact
device behavior (via SPICE) and the GP models we fit, and
we use these measured errors to design a robust optimization
problem that takes into account specifically these errors. This
allows us to find a feasible, but possibly suboptimal point.
Then refining around this point, we obtain a higher accuracy
GP model, which we again robustify according to the fitting
errors between the GP model and SPICE. This iterative process
is efficient, and as we show, produces high-quality solutions,
greatly outperforming existing techniques.

An important clarification needs to be made with regard to
our ability to check true feasibility of a solution and (“vali-
dation” phase) and the way the optimization is guided toward
some solution points (“optimization” phase). The key point
is that while a model used to drive optimization inevitably
has errors due to its capturing of device-level or circuit-level
behavior, we are able to exactly establish true feasibility of
any given solution point. Thus, the basic validation strategy
is direct SPICE validation in which a SPICE simulation is
directly used to evaluate all key performances of interest
without using any intermediate representation. In some cases,
it is possible to use mixed SPICE and model-based validation
in which device-level accuracy is captured through SPICE and
the circuit-level behavior is evaluated via a circuit-level model
when it is known to be accurate. This is not a fundamental
feature of the algorithm, and its only advantage is a slight
reduction in SPICE runtime.

A. Existing Approaches

It is useful to give a broad overview of existing methods
in order to properly situate the contributions and novelty of
this paper. We organize our discussion and literature survey
primarily around four categories: the MOS model and the
circuit model used, and then what we call the optimization

iteration and the evaluation feedback steps. Most algorithms
work by a combination of an optimization step, followed
by some assessment of how good, in terms of feasibility
and performance. The optimization iteration refers to the
optimization step, while the evaluation feedback refers to this
assessment, which in all iterative methods drives the next step.

Many successful local and global optimization methods
are based on local evaluation of feasibility and optimality
using direct SPICE simulation [27], [28], [30], [32]–[34].
These include algorithmic descent algorithms, such as gra-
dient descent, as well as derivative-free optimization (DFO)
methods developed for functions available only through black-
box simulation. DFO methods are suitable for such purposes
[11]. They typically utilize the concept of trust region in
which the functional behavior is approximated locally by a
quadratic function. Thus, such methods are essentially local
[2], [7]. Direct SPICE-based methods also include widely
used approaches, such as simulated annealing [15], [16],
[34], nonconvex optimization [28], nonlinear equation solvers
[19]. Like DFO or gradient descent, simulated annealing is
accurate, since it is SPICE driven at all levels, optimization
and evaluation, and there is no approximating model involved.
This accuracy is a central advantage that these methods enjoy.
In addition to being inherently accurate, simulated annealing
is designed to be able to escape from local minima, according
to the so-called cooling schedule [12], [18]. Essentially, the
idea is that at the initial phases of the algorithm, steps
in a “hill climbing” direction are permitted (in contrast to
descent algorithms) in the name of exploration. While such
methods are not typically grouped or discussed together, there
is a primary distinction that conceptually unites them, and
more importantly separates them from the type of method
we present here. This is that the optimization step does not
capture any substantive global information about the search
space. That is, the methods make use of local properties, be
they function evaluations or local first-order information, and
thereby compute the next step (via strict descent, or via an
annealing-type approach that allows local hill climbing and
exploration) using local information.

A different approach that also focuses on global evaluation
and information, yet uses ideas from convex optimization for
the optimization step, is the work in [35]. Here, the constraints
are locally linearized so that the approximating constraint
set becomes a polytope. Then, borrowing computationally
efficient techniques from interior point optimization the largest
inscribed ellipsoid is fitted, and its center becomes the next
update in the iteration.

There are various approaches that take a different view in
order to capture some global structure of the problem. For
instance, the work in [16] produces circuit-level equations
by symbolic analysis. This approach does not, however, al-
ways yield convex optimization formulations, hence greatly
jeopardizing our ability to efficiently find a global optimum.
Furthermore, unlike our method where we use successive
rounds of refined fitting and robust optimization, this approach
uses a single-shot optimization.

One class of methods is based on using limited sampling of
the accurate model followed by the fitting of an approximate
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model, such as a response surface model or a Kriging model
[23]–[25]. In Kriging, a technique from mathematical geology,
the underlying phenomenon is assumed to be a stochastic
process and an optimal estimator identifies the area of the
optimization space where more simulations should be done to
achieve a more accurate approximate model [23]. These meth-
ods build approximate models entirely based on the samples
from the accurate model, and do not incorporate additional
knowledge of circuit behavior [25]. The work in [38] also
takes an approach that aims to capture global structures by
sampling across the optimization region, by generating a
Pareto surface for the performance metrics, building upon
the Kriging model. The evaluation feedback can be either
model based, if deemed accurate enough, thereby reducing
the number of SPICE simulations needed, or can be directly
SPICE based. A fundamental issue is that the complexity of
this method grows exponentially with the dimensionality of
the problem, because this is typically how the complexity of
global search grows in the dimension. That is, this method
offers potentially significant improvements with respect to
sampling requirements, but still ultimately has to perform a
global exploration of the space.

Yet another family of approaches does attempt to use spe-
cific circuit knowledge, namely, the fact that a coarse simple
model is available in our case in a closed form, based on the
first-principles understanding of circuit behavior. That is, the
perspective taken by the technique of input-space mapping that
assumes that a simplified approximate model already exists
[5]. Through a parameter extraction step, the space modeling
technique establishes a mapping of data points in the spaces
of fine and coarse model domains ensuring that they provide
similar responses [3], [4]. In this way, a coarse model can be
used for fast exploration, and then a mapping to the fine model
space can be performed. Space mapping methods are primarily
suited to unconstrained optimization, and it is unclear how
they might be extended to the constrained setting, making
them inappropriate for our problem. Indeed, our focus is on
problems with highly nontrivial feasibility sets due to the
multiple simultaneous constraints.

As we outline below, our method (and contribution) is
based on the idea of leveraging convex optimization, using
approximate models built from domain-specific knowledge
of circuit models, and from samples taken from across the
optimization region and evaluated via SPICE. The GP (and
generally convex optimization) based approach is global,
but without requiring exhaustive global exploration. Rather,
it is the convex structure that captures global information
about the feasible set. It is for this reason, for example,
that linear programming can pick the optimal vertex of a
polytope with exponentially many vertices, but while working
only polynomially hard (and thus barely visiting even an
exponentially small fraction of the vertices). The advantage of
purely SPICE-based methods is the accuracy of the method.
The promised advantage of convex approaches is the poten-
tial for better solutions closer to the global optimum, but
without exhaustive search. The fundamental issue at hand is
when the inaccuracies of convex approaches overwhelm this
promise.

Thus, we now turn to some GP-based methods in the liter-
ature. The main pitfall is the inaccuracy of posynomial fitting
over a large range; this has been observed in the literature
[26], [29]. Accordingly, various attempts and approaches have
been developed in order to rectify this significant shortcoming.
In [26], the authors modeled transistor parameter behavior
using piecewise linear models, hence improving accuracy.
Unfortunately, this improved fit may lead to nonposynomial
and, in particular, nonconvex constraints. Elsewhere in the lit-
erature, the modeling error is either fully ignored [14], or local
refinement methods are used [29]. The work in [29] does local
search in a small vicinity of the current solution. This requires
directly fitting the circuit performance metrics. In comparison,
single-transistor fitting that requires three or four variables can
be done over a broader range with relatively better accuracy.
In [26], a simple strategy for robustification utilizes the worst-
case error. This can be highly overconservative because it may
introduce robustness where none is needed. As a consequence,
the feasible space of the optimization may be unduly and
significantly reduced, resulting in degraded performance, or in
the worst case, an inability to find a SPICE-simulation feasible
solution.

The model-building step involved in the proposed algorithm
is crucial. It is essential for the equation-based optimization
strategy that a single-flat model is built to drive optimization.
Another basic premise is that at some level such a model
is constructed via regression. We also need to differentiate
modeling needs at the MOS device (small-signal) level and the
circuit level. There are two major possibilities for building a
model and we distinguish: 1) a full regression model strategy;
and 2) a mixed symbolic-regression model strategy. In the full
regression model strategy, regression methods are used to fit
the circuit-level function directly via regression, with the help
of design of experiment methods. Fitting a highly accurate
model for large circuits in this manner is a challenging task.
Inevitably, the model that drives such a global exploration
is not as accurate in a given local region compared to a
locally fitted model (or a model-free algorithm performance
locally). But it is exactly the advantage of our algorithm that
we have a mechanism to explicitly account for errors and to
drive optimization in such a setting to a true feasible (TF)
point. Another issue is the number of SPICE simulations to
run in this characterization/fitting stage since the complexity
increase involved in flat versus hierarchical derivation of the
final model is quite dramatic; it is exponentially more difficult
in the number of transistors involved in an equation.

In the mixed symbolic-regression model strategy, device-
level parameters are fitted to monomials via regression, and
then combined according to a symbolic model. These symbolic
models can be either based on first-principles analysis, e.g.,
a model for single-stage amplifier gain, or can be automati-
cally derived using symbolic analyzers. If symbolic models
are available and are reasonably accurate, using them can
dramatically reduce the characterization effort in terms of
SPICE simulations to run. In the paper, we used the mixed
symbolic-regression model strategy for the first experiment
(the op-amp), and the full regression model for the second
experiment (the VCO). We discuss some further implications
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Optimization Iteration Evaluation Feedback MOS Model Circuit Model References

Convex optimization with
robustification and refinement

1) Direct SPICE validation
2) Mixed SPICE and

model-based validation

Regression fitted to
SPICE convex

1) Manual/symbolic convex
2) Regression fitted to

SPICE convex
This paper

Single-shot optimization None Manual convex Auto symbolic nonconvex [15], [16]

Single-shot optimization None Manual convex Manual convex global
[13], [14], [20], [21], [26]

Linearize constraints
and move to center of
max volume ellipsoid

SPICE SPICE SPICE [35]

Local convex SPICE SPICE SPICE [29]

Move to Pareto surface
generated by random sampling

Combination of Kriging
model-based and SPICE-based

depending on error
SPICE SPICE [38]

Local nonlinear
optimization OR some

variants of random search
such as GA, SA

SPICE SPICE SPICE
[27], [30], [32]–[34]

None SPICE SPICE SPICE [36]

of using different modeling strategies once the details of the
algorithm are presented.

We summarize this discussion, as well as the references,
in the table above, organized around the main categories
discussed: the driver of the optimization in the optimization
phase, the nature of the evaluation and feedback phase, and
the MOS model and circuit model choice.

As we detail below, the conceptual core of this paper is to
develop an approach that harnesses the power of convex opti-
mization, and the global information obtained from sampling,
to avoid a global search, while nevertheless obtaining locally
accurate results by introducing a robustness and refinement
(RAR) phase, and using direct SPICE simulations for the
evaluation phase of the iteration. Thus, this paper takes what
we believe are important steps toward developing a systematic
way of combining the accuracy of SPICE simulations, and
the global optimization offered by GP-based approaches. Our
work is based on the fundamental fact that fitting error creates
a divergence between model feasibility and true feasibility: the
solution is model feasible if it meets constraints under the
approximate fitted model, and it is TF when it meets accurate,
SPICE-verified constraints. The key idea is using data-driven
robustification of the nominal model to optimize approximate
functions.

B. Main Contributions and Outline

The central contribution of this paper is to harness the
power of the convex optimization approach, while providing
a principled way to find feasible solutions, thus moving us
closer toward automating analog design and optimization.
More specifically, the following is discussed.

1) We develop an efficient iterative algorithm that con-
verges to a good solution that meets multiple perfor-
mance constraint targets.

2) We address the (at times overwhelming) inaccuracies of
fitting GP-compatible functions while still exploiting the
benefits of an efficiently globally solvable formulation.
This is in sharp contrast to existing algorithms that may
result in solutions that may be off by upward of 30%
from the desired targets.

3) The key enabler for the algorithm is the notion of global
error-aware refinement via robustification. This uses the
error statistics from the regression fit of the GP to the
SPICE data, to build in custom-tailored and hence less
conservative robustness. This, in turn, allows us to find
a true feasible point, i.e., the point whose feasibility
is verified by SPICE. We then refine the fitting range
around that true feasible solution.

4) To allow robustification of multidimensional constraints,
we introduce the important notion of the coverage metric
for uncertainty set comparison. This allows us to map
fitting error to robust optimization uncertainty sets. We
show that this coverage metric serves as a successful
proxy for true feasibility.

5) In case our methods return infeasibility for the user-
given constraints due to insufficient coverage, we pro-
vide a scheme that finds a minimally relaxed set of
constraints for which we are able to find a feasible
solution.

Our method is independent of the fitting procedure used, and
hence is flexible and modular. Thus, we believe the tools
introduced here could be important for a broader class of
problems.

The focus of this paper is on nominal problems and on
effectively addressing modeling inaccuracy common to GP
and other equation-based optimization methods. It is worth
pointing out that if a feasible solution is overoptimized under
nominal conditions, it may become infeasible under stochas-
ticity of process and environmental variations. We view this
as an important, though distinct problem, and a fruitful area
for future work.

It is also important to identify the limitations of the pro-
posed algorithm. We expect our algorithm to do well when
symbolic models for circuit-level performances are available,
thus eliminating the need to extract a convex circuit-level
model via regression. In the absence of symbolic circuit-level
models, our algorithm is premised on the ability to build
a reasonably accurate convex circuit-level model via global
regression. This may be difficult to do when the number of
transistors is too high, i.e., for very large circuits, and the
resulting convex model is grossly inaccurate. We believe that a
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rapid initial sizing algorithm coupled with a more local SPICE-
based approach is a promising way to bring out the benefits of
this algorithm. Thus, the advantages of a convex optimization
approach could be reaped, followed up with a local and very
accurate SPICE-based approach.

The remainder of this paper is organized as follows. In
Section II, we lay out the conceptual framework of our
main approach. In Section III, we provide the details of the
optimization. In Section IV, we address the case of stringent
constraints and how to achieve constraint feasibility through
minimally relaxing the constraints in an automated way.
Finally, in Section V, we provide the numerical experiments
that show the performance of our algorithm.

II. Exploiting Modeling Error Statistics

to Drive Optimization

A. High-Level Algorithm and Approach

Our strategy is based on two key observations. First, while
any given posynomial model may have significant errors, we
can precisely assess the true feasibility of the solution using
SPICE. Thus, despite the difficulty in obtaining a globally
accurate fit, we have a local oracle of true feasibility. However,
while we can determine true feasibility of any given design
point (W, L, I), i.e., membership in the set of true feasible
points, we cannot optimize over this set, i.e., find the best set,
since this problem is known to be nondeterministic polyno-
mial (NP)-hard and hence intractable [9]. The second is the
observation that the fitting error is a consequence of seeking
a global fit. Obtaining a better fit over a smaller range is,
not surprisingly, much more readily achievable. Yet a brute-
force search for a “good” limited range of variables (width,
length, and others) over which to fit the transistor parameters
and, subsequently, to optimize, is a hopeless avenue, as its
computational complexity grows exponentially. Even seeking
to reduce the range of each variable by just a factor of 1/d

would lead to dN possible variable ranges to consider, where
N is the number of modeled transistor parameters.

Most equation-based optimization flows that have been
proposed rely on the following sequence of basic steps in
setting up the optimization [14], [26], [29]. (We refer to them
as the “standard approach”).

1) First, the simulation data generated by SPICE are used to
fit the parameters of each transistor, using linear least-
squares regression, as posynomial functions of width,
length, and biasing currents, computed over the full
initial range of the variables.

2) Second, the fitted models are used within equations that
capture the design specifications, such as gain, band-
width, and others; the result is a posynomial formulation
of the circuit optimization.

3) Finally, the resulting geometric program is solved using
standard or specialized convex optimization solvers [1],
[17]. We denote this solution by V ≡ (W, L, I), where
the bold face indicates vector notation, i.e., W, L, and
I are the vectors of all the width, length, and current
variables, respectively, in the circuit.

As our computational results demonstrate, this standard ap-
proach (and variants) is essentially unable to produce so-
lutions that are reliably, i.e., in a predictable manner, true
feasible. Two fundamental new ideas are required: robustness
to fitting error, and refinement. Adding robustness ensures
that we find solutions that SPICE simulations show to be
feasible to the design constraints, and subsequently refinement
allows for more accurate fitting. We note that feasibility
at intermediate stages is critical, as it is difficult to justify
refining the range of the variables around a point that is not
feasible.

We add robustness to fitting errors using the paradigm of
robust optimization (see [6] for the basic details, algorithms,
tractability). The essence of robust optimization is to build in
deterministic protection to parameter uncertainty in a chosen
uncertainty set U . That is, given U , the solution to the
resulting robust optimization problem is guaranteed to be
feasible under any variation of the optimization parameters in
the given uncertainty set. As an example, if we have a design
constraint that has the form

gm(V )

gd(V )
≥ c

the robust version of this would then become

gm(V ) · e1

gd(V ) · e2
≥ c ∀(e1, e2) ∈ U

meaning that the constraint must be satisfied for all values of
the error parameters e1 and e2 in the uncertainty set U . Using
duality techniques from convex optimization, we reformulate
these constraints in a tractably solvable fashion [6], [22]; see
the Appendix for details).

We can now give the high-level description of our
algorithm.

1) Initialize: apply the standard procedures to obtain V0 ≡
(W0, L0, I0).1

2) Evaluate feasibility of solution: if the solution V is true
feasible, then go to Step 4). If it is not true feasible, then
proceed to Step 3).

3) Increase uncertainty set size: increase the robustness of
the algorithm by increasing the size of the uncertainty
set U . Solve the robust GP with the uncertainty set U ,
to obtain V, and return to Step 2).

4) Refine variable range: given the feasible point V, we
refine the allowed range of the variables, and return to
Step 1), performing a new (and hence better) posynomial
fit to the transistor parameters. At each step, we refine
the range by shrinking it by a constant multiplicative
factor.

The difficult challenge that stems from the above formula-
tion is finding the “right” uncertainty set U . The size and the
form of the set control the amount of robustness built into the
problem: if too little robustness is used where more is needed,
we may not find a true feasible solution. If, however, too much
robustness is added where less is required, we may not be able
to find a model-feasible solution.

1That is, fitting parameters over a broad range, and solving the GP.
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The existing theory of robust optimization does not tell us
how the uncertainty sets should be chosen. The specific prob-
lem is that the uncertainty sets we create are multidimensional.
Not only is a brute-force search in this space hopeless (expo-
nential complexity), but there is no a priori well-defined way
to even compare two candidate uncertainty sets without run-
ning the full optimization. Developing precisely such a means
of comparison, and using it to find good uncertainty sets, is one
of the main contributions of this paper. We now turn to this.

B. Robustness and True Feasibility

Step 3) in our high-level algorithm description above re-
quires us to enlarge the uncertainty set each time the opti-
mization outputs a solution that is not true feasible, to “encour-
age” the subsequent solution to be true feasible, but without
overly penalizing the objective value. This is an important
open problem in robust optimization, with the primary issue
being computational complexity. Searching by brute force for
such an uncertainty set requires exponential efforts. On the
other hand, one can show that optimizing over the set of
uncertainty sets is nonconvex and hence intractable. This is
still true even over the more limited set of rectangular-type
uncertainty sets needed for Robust-GP to be tractable. A key
contribution of our work is in developing a fitting-error-driven
approach for selecting an uncertainty set, thus circumventing
such complexity problems.

What does not work. It is helpful to discuss two potential
naive approaches. One approach is to simply let U be a
uniform box of dimension equal to the number of transistor
parameters, and then slowly increase its size, hoping that a
true-feasible solution is found before the problem becomes
infeasible. This reduces the search to a single dimension (since
the dimensions of the box are scaled in the lock step) and
hence is tractable. While this strategy does sometimes succeed
in obtaining a true-feasible solution, we have found that it
also often leads to model infeasibility, and in either case, the
objective value suffers more than required. The intuition as to
why such an approach fails is simple: we may be adding too
much robustness where none is needed, and too little where
more is needed. Another possible approach is to solve the nom-
inal problem, look at constraints that are violated according to
SPICE, and increase the robustness requirement of the transis-
tor parameters participating in those true-infeasible constraints.
The conceptual, and as we have found, practical problems with
such an approach are that we are basing our uncertainty set
selection (and ultimately our iterative optimization strategy)
on the behavior of an infeasible point.

What does work. We need robustness because the fit is
inaccurate. Our key idea is to design the uncertainty sets based
on the error in the fit for each parameter. To do this, we define
the concept of coverage of an uncertainty set. The coverage
of an uncertainty set captures how much of the true function
behavior, as represented by SPICE-generated tables, is covered
by the fitted function with an added uncertainty set, and we
can measure it directly. We define coverage for each parameter
of a given transistor. Let f denote the posynomial function of
a given transistor parameter. Then given an uncertainty set U ,
we define the coverage metric of function f to be the fraction

Fig. 1. Growth of uncertainty set based on coverage increase is demonstrated
in the above 1-D optimization problem.

of entries in the SPICE-generated tables of transistor behavior
for which the error between the fitted function, f , and the
exact function, belongs to U

coverage(f, U) = Pn(error(fexact, fapprox) ∈ U)

where Pn denotes the empirical distribution, and
error(fexact, fapprox) denotes the error between fexact, and
fapprox, can be defined either additively, or multiplicatively,
as is more suitable for the GP constraint of interest here.
Thus, coverage is the fraction of points for which the error
falls inside the uncertainty set U . When U is empty, the
coverage is the fraction of points in the table for which the
fitted function is exact. As the uncertainty set U grows, the
coverage increases to 100% (Fig. 2). An attractive property of
the coverage metric that enhances its effectiveness as a guide
to optimization is that it is not sensitive to outliers, since it
simply computes the fraction of points whose fit is within the
tolerance of the uncertainty set.

Given multiple transistor parameters, we define their joint
coverage to be the minimum of their coverages. This gives us
a meaningful measure for the quality of the uncertainty set,
without the need for solving the robust optimization problem;
coverage becomes a proxy for how strongly a set pushes the
optimization problem to produce a true-feasible point. We use
this notion of coverage, to develop an algorithm for increasing
the uncertainty sets, to be used in Step 3) of the algorithm
above. Essentially, this is done by solving a bicriterion problem
that has the form of a geometric program. The key observation
is that maximizing coverage subject to the constraint that the
increase in the objective value of the problem corresponding to
the uncertainty set is no more than some fixed value α, can be
rewritten as a convex optimization problem. Thus, by replacing
the intractable condition that an uncertainty set guarantee true
feasibility, with the condition that the uncertainty set guarantee
a desired level of coverage, we now have a tractable algorithm
for selecting a coverage-optimal uncertainty set. We describe
the details in the next section, and here give the high-level
algorithm for Step 3).

Step 3):

1) If the problem from Step 3) is true-infeasible, increase
the coverage requirement by the chosen step-size, �:
p ← p + �.
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2) Find the uncertainty set U , which provides coverage at
least p and increases the objective value by the minimum
amount. As described in detail below, we show that
this can be done by solving a quasiconvex optimization
problem, which can thus be solved by a combination of
bisection and robust GP.

3) With this uncertainty set, solve the robust geometric
program. If the returned solution is true feasible, then
move on to Step 4) of the main algorithm. If it is not
true feasible, then increase the coverage requirement by
�, and return to Step b).

We end this section with two remarks. First, when
using the mixed symbolic-regression modeling strategy, the
robustification strategy is explicitly targeted largely at the
device-level inaccuracy. In other words, the premise is that
it is the device-level inaccuracy that is significant and that
the errors of the circuit-level model can be tolerated. If
the device-level models are accurate, but the circuit-level
model is not, our algorithm will terminate at a point that is
not true feasible after reaching coverage of 100%. We note
that SPICE evaluations easily reveal such a phenomenon;
we believe that our robustness methods could be adapted
to handle just such a case, although this is not part of this
paper. We believe that this point is still a good initial point
for local optimization methods, although we do acknowledge
that the main motivation for our work is the observation that
device-level inaccuracies are typically quite significant.

Second, as introduced above, the coverage metric is based
on the uniform weighing of all points in the table, since
coverage essentially counts points that fall in or out of the
uncertainty set. This approach is conceptually motivated. By
allowing a certain range for the optimization variables, implic-
itly, it is a statement that the variables can take on any values
in that range, and hence there is no reason to treat poor fitting
quality in one part of the range differently from another part
of the range. Nevertheless, the proposed algorithm is general
and flexible, and could be tailored to other side information
by using weighted coverage metrics.

III. Algorithm Details

We have described at a high level the key pieces of the
algorithm. We provide the details in this section, and put the
pieces together. First, we require the fitted model for each
transistor parameter needed to set up the constraints and the
objective, which are in terms of various performance metrics
such as bandwidth, loop gain, power. Let there be q transistor
parameters M = (m1, . . . , mq), where each mi is a monomial
function of (W, L, I). The nominal constraints of the circuit
optimization are built up from the {mi} in a manner consistent
with GP, namely, in a multiplicative manner. Thus, constraints
will take the form (The coefficients γs are restricted to be
positive and the exponents θs are real numbers to conform to
a posynomial format)

γ
∏

i∈I m
θi

i∑
l∈L γl

∏
j∈Jl

m
θl,j

j

≥ 1.

Parameter fitting: To fit the parameters of these constraints,
a set of SPICE simulations is carried out at the characteri-
zation phase to create a table typically capturing the values
of the channel conductance (gd) and transconductance (gm),
overdrive voltage (Vgt), and transistor capacitances (Cgs, Cgd ,
and Cgb). These measurements are made over a range of
transistor width, length and bias current values, separately
for NMOS and PMOS transistors. Next, a model is fitted
to the collected data. We perform a single-monomial (un-
known exponents) fit by applying a log transformation and
subsequently taking the exponential to recover the transistor
parameters as a single monomial. Via regression, we obtain
coefficients and exponents for the best-possible, in the least-
squares sense, monomial fit. Thus, for example, our model for
gm becomes gm ≈ aWbLcId , where the values a, b, c, and d

are determined through regression to the data in the table. In
this way, the coefficients of the constraints of the above form
are determined.

Robust optimization: Robust optimization is not tractable
for all possible uncertainty sets (see [6], the references therein
for more details). In our setting, robust GP is tractable for
rectangular and ellipsoidal uncertainty sets. In this paper, we
develop our framework using rectangular uncertainty sets, al-
though our framework is expandable to ellipsoidal uncertainty
as well. Moreover, for the robustified geometric program to
again be expressible as a geometric program, we formulate
the uncertainty as affecting the constraints in a multiplicative
manner, with an error parameter ei corresponding to each
transistor parameter mi. In the interval rectangular uncertainty
model, each ei is constrained to lie in an interval [−ki, ki].
For example, for the transconductance parameter gm, we have
gm = aWbLcId exp(e), where the error term e belongs to an
interval [−k, k].

For multiple constraints, we express the uncertainty set as

U �
= U(k) =

q∏

i=1

[−ki, ki].

Thus, an uncertainty set is characterized by the q-dimensional
vector k = (k1, . . . , kq). The robustified constraints now have
the form

γ
∏

i∈I m
θi

i · (exp ei)θi

∑
l∈L γl

∏
j∈Jl

m
θl,j

j · (exp ej)θl,j

≥ 1 ∀(e1, . . . , eq) ∈ U(k).

For a given uncertainty set U(k), letting M denote the set of
transistor parameters as above, and V denote the complete set
of variables (W, L, I) for each transistor, the robust GP that we
need to solve is (We use the notation Constraint(V, M, k) ≤ 1
to refer to a collection of posynomial constraints defined in
terms of variables V and M, and a vector of constants k)

MinV Objective(V ) (1)

s.t. Constraints(V, M, k) ≤ 1.

The objective function, like the constraints, is a posynomial
function of transistor parameters and variables in V . The
constraints are now additionally a function of the uncertainty
set U(k), which we also denote by k to shorten notation. The
nominal GP corresponds to setting k = 0.
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A. Selecting Coverage and Robustness

Each time the robust GP returns a solution that is not
feasible, we must increase the uncertainty set U , by increasing
the vector k. Note that this cannot be done by sweeping or
brute force, since any such attempt is exponential in q, the
number of transistor parameters.

Let Coverage(ki, i) denote the coverage of parameter mi,
and Coverage(k) the overall coverage. Then, given U(k),
Coverage(ki, i) is equal to the number of entries in the table
where the error is within a multiplicative factor of exp(±ki),
and Coverage(k) = Minq

i=1Coverage(ki, i). At each step where
a true-infeasible solution is returned, our algorithm calls for
us to increase the overall coverage, while minimally increas-
ing the objective value of the resulting robust optimization
problem. Thus, we want to solve the following coverage max-
imization problem (We represent by Constraint(V, M, k) ≤ 1
a collection of posynomial constraints defined in terms of
variables V, M, and ks):

Maximizek,V Coverage(k)

s.t. Objective(V ) ≤ obji ∗ (1 +
α

100
) (2)

Constraints(V, M, k) ≤ 1.

In the above problem, the constraint set is a collection of
posynomials; however, the objective is not. Moreover, we
found that it cannot be well approximated by a monomial
expression needed for GP compatibility. We also do not
have the option to use a posynomial fit with multiple terms
since this will violate GP compatibility. This is because we
are maximizing the objective, and hence have to invert the
objective in order to put it into a standard GP form (that
requires minimizing). We are able to show, however, that this
problem is quasiconvex. In particular, we show that finding
the uncertainty set that increases coverage by at least a factor
of β while not increasing the objective value by more than a
factor of α can be cast as a geometric program.

Notice that Coverage(ki, i) is essentially the empirical dis-
tribution of the absolute value of the fitting error for the log
of parameter mi. We treat exp(ki) as a problem variable.
Thus, we let k

′
i = exp(ki), and analogously for the vector:

k′ = exp(k). By taking the inverse of the distribution function,
we get k

′
i = exp(ki) ≥ exp(Coverage(ki, i)−1(β)). With these

new variables, we can check whether an uncertainty set exists,
which increases coverage by at least β, while increasing
the objective value by at most α, by solving the following
geometric program:

Maximizek′,V 1

s.t. Objective(V ) ≤ obji ∗ (1 +
α

100
)

Constraints(V, M, k′) ≤ 1 (3)

k
′
i ≥ exp(Coverage(ki, i)

−1(β)) ∀i ∈ [1, q].

Thus, via a line search over β, we can now solve the problem
of finding an uncertainty set that increases coverage while
minimally deteriorating the objective value.

We can now describe all the steps of the algorithm as
follows.

Input: SPICE table, initial range, user-selected parameter
�. Initialize α = 0 and k = 0.

1) Solve problem (1) to obtain solution V ≡ (W, L, I).
2) Use SPICE simulation to assess whether the solution is

true feasible.
3) If V is not true feasible, set α ← α+� and obtain a new

uncertainty set and hence new value k. Solve problem
(1) to obtain new solution V. Return to Step 2).

4) While the range is larger than the minimum size, shrink
the range around the true-feasible solution V, set α = 0
and k = 0, and return to Step 1).

5) Report true-feasible solution V.
We find that this algorithm is computationally efficient,

and results in greatly improved performance over competing
methods. Interestingly, we find that the difference between our
algorithm and standard GP algorithms is significant not only
in terms of the value of the solution. Indeed, as we report
in Section V, we find that often times our algorithm results
in a solution that is in a different part of the feasible region
than what standard GP returns. In particular, GP augmented by
local search (e.g., by first solving a GP and then using DFO to
find a local optimum) still performs worse, indicating that our
global search procedure is directly tied to the success of our
method. We report this and other computational experiments
in Section V.

IV. Handling Infeasibility by Relaxation

Given that optimizing circuit performance exactly is NP-
hard, an immediate although unfortunate corollary is that in the
worst case, even finding a true-feasible point is NP-hard. Thus,
any tractable method must be prepared for the contingency
that a true-feasible solution is not found. Specifically, in our
case, the increase of uncertainty set may lead to the solution
becoming model-infeasible, i.e., the algorithm not being able
to find any solution, before we find a true-feasible solution. To
deal with this, we demonstrate that using our framework, and
in particular, leveraging the concept of coverage, it is possible
to find the “least relaxed” set of specifications, for which our
method can find a true-feasible solution. The motivation and
goal in this effort is again that of automated design.

The central idea is the observation that the set of constraint
target values that have a given lower bound on coverage, in
fact, are posynomial representable. Indeed, this is the advan-
tage of coverage; it is a good proxy for true feasibility, yet it
is captured via posynomial constraints. Thus, the problem of
relaxation of constraint targets can be formulated as a GP prob-
lem. Our method provably provides the least amount that the
constraints can be relaxed to achieve high (any pre-specified
value) coverage. In our experiments, we find that a coverage
range of 50%–80% is usually sufficient for most cases. This
is inherently a multicriterion optimization problem, since it
involves the relaxation of potentially multiple constraints. Our
method is flexible, allowing the designer to specify which
constraints are more important, and subsequently performing
the relaxation according to a weighted ratio objective. Thus,
the constraints that are deemed more important are relaxed by
a smaller percentage while others can be relaxed more.
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The constraints we seek to modify are the circuit-
performance user-specified constraints. Other constraints
present in the problem capture the structural circuit constraints
and the internal current and voltage relations, and we are not
seeking to modify those. Let us explicitly denote the user-
specified constraints, including their right-hand sides (i.e., the
specified values) by

fi(V, M, k′) ≤ Pi ∀i ∈ C.

The vector P is the set of performance targets provided
by the user and it is this that we seek to minimally relax
in order to increase coverage. Thus, we treat the elements
in P as variables so that we can then describe the set
of constraint targets that allow high coverage β. We use
Constraints Str(V, M, k′) ≤ 1 to denote the structural con-
straints that are not being modified. The augmented problem
can be described by a set of posynomial constraints

Maximizek′,V,P 1

s.t. Objective(V ) ≤ obji ∗ (1 +
p

100
)

Constraints Str(V, M, k′) ≤ 1

fi(V, M, k′) ≤ Pi ∀i ∈ C

k
′
i ≥ exp(Coverage(ki, i)

−1(β)).

Since we may need to prioritize relaxation of individual con-
straints, rather than do that in a uniform manner, we introduce
a weighting factor is w. Finally, relax is the relaxation factor.
Then, the minimal constraint relaxation problem is as follows:

Minimizek′,V,relax relax

s.t. Objective(V ) ≤ obji ∗ (1 +
p

100
)

Constraints Str(V, M, k′) ≤ 1

fi(V, M, k′) ≤ Pi ∗ wi ∗ relax ∀i ∈ C

k
′
i ≥ exp(Coverage(ki, i)

−1(β)).

Table III explores the effectiveness of this approach.

V. Experimental Results

In this section, we report our numerical experiments to
validate the performance of presented algorithms. Devices
were characterized using 180 nm TSMC high-performance
technology models. First, we illustrate that the monomial
fitted to SPICE data using least-squares regression may exhibit
very high errors over certain portions of its range. In Fig.
2, we show the histogram of the fitting errors for the output
conductance parameter gd of a PMOS transistor. The transistor
is simulated in HSPICE to predict the gd and drain current
for a set of width, length, Vgs, and Vds values. The samples
are generated by varying the gate length from 180 nm to
1.8 μm and gate width varying from 180 nm to 18 μm, both in
increments of 20%. The Vgs ranges from 0.65 to 1.8 V and Vds

ranges from 0.35 to 1.8 V. Then, gd was fitted as a monomial
function of width, length, and drain current.

The fitted equation was gd = 0.079W0.22L−0.84I0.73, where
the unit of gds is μA

V
, W and L are in units of μm, and I is

Fig. 2. Histogram shows the distribution of fitting errors for gd for a PMOS
transistor.

Fig. 3. Fitting improvement with refinement of the fitting region. The errors
of the global fit are as large as 10%. The worst-case error is 1% for the
narrower region.

measured in units of μA. The fitting errors are significant. Fig.
2 shows that a high number of samples yielded a fitting error
higher than 20%. The rms error of the fit is 19%. Importantly,
the maximum error is 69%. This indicates that there is a danger
of optimizing around a region in which the model fit is very
poor. Similar trends are observed for other fitted functions.

We next demonstrate the improvement in fitting accuracy
through refinement by an example shown in Fig. 3. To simplify
presentation, we restrict the fit to a 1-D single-variable fit. We
do refinement by generating samples with W, L, and Vds fixed,
and varying only Vgs from 0.65 to 1.8 V in increments of 0.05.
We show the fitting of gd for a PMOS transistor as a monomial
function of current. The worst-case error is 10% when fitting
over the Vgs range of 0.65–1.8 V. However, when we restrict
the range of Vgs to be 1.05–1.8 V, the worst-case error is
reduced to 1.3%. The point is that even modest refinement
of the range (factor of 2 here) can dramatically improve the
fitting error (about a factor of 8).

We next report the outcomes of numerical experiments that
validate the performance of our algorithm, and, in particular,
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Fig. 4. Two-stage operational amplifier used for numerical experiments.

Fig. 5. Voltage-controlled oscillator used for numerical experiments.

compare our algorithm to the existing global GP-based solu-
tion. We compare the proposed RAR-based optimization with
the prior equation-based global search method employing GP.
We refer to the prior method as the standard optimization.
We demonstrate the effectiveness of our algorithm by using
it to optimize the area of a two-stage CMOS operational
amplifier and power for a voltage-controlled oscillator. These
two examples have been used as validation vehicles in several
prior related publications [10], [29] (Figs. 4, 5). The two-
stage amplifier circuit is made up of eight transistors. The
typical design metrics include gain, unity gain bandwidth, slew
rates, common-mode rejection ratios, phase margin, and areas.
For this circuit, we rely on the well-known, “first-principles”
models of circuit-level performances as functions of small-
signal device-level models, which we fit directly to SPICE
data. In Table I, we show several of the models used. (In
Table I, C1, C2, and Cout are the capacitances at the gates of
transistors M6, M3 and at the output node, respectively.) We
verified that these models have good accuracy as long as
the small-signal device-level models obtained from SPICE by
regression are accurate. For that reason, we used the mixed
SPICE and model-based validation strategy in this experiment.

TABLE I

Models of Circuit-Level Performances

Used in Optimization

Gain gm2×gm6
(gd2+gd4)×(gd6+gd7)

Pole (p1) gm1
2π×gain×Cc

Pole (p2) gm6×Cc

2πC1Cc+2πC1Cout+2πCcCout

Pole (p3) gm3
2πC2

Pole (p4) gm6
2πC1

UGB gm

2πCc

Phase margin π
2 − 0.75( ugb

p2
)0.7 − ugb

p3
− ugb

p4

As discussed previously, when circuit-level models are not
available, the full regression model strategy can be used.
In this case, we build models directly through DOE and
regression, relating circuit-level performance metrics directly
to device parameters (W, L, I). This is the modeling strategy
we use in the second experiment based on the voltage-
controlled oscillator (VCO) to fit the model of VCO frequency.
The voltage-controlled oscillator has minimum and maximum
frequency constraints, as well as saturation constraints for all
the transistors. We also have a constraint on transistor sizes,
which sets the transistor lengths and widths within the range
of 180 nm to 1.8 μm. In the initial iteration, we use a global
fit across the full range. In subsequent iterations, we refine
the fitting range by 20% in each iteration, after finding a true
feasible solution. In the validation phase, we use direct SPICE
simulation to establish true feasibility.

The paramount benefit of the proposed algorithm is that
it offers a guaranteed way of meeting multiple design spec-
ifications. Thus, the second set of experiments on solving
multiple-constraint problems aims at demonstrating the degree
to which the standard method can be infeasible, while our
method meets all of the constraints. We find that because
of the large fitting errors the standard optimization method
often produces solutions that grossly violate the constraints,
especially when multiple constraints are used.

In the experiment for the two-stage amplifier, we use area as
the objective to minimize, and have constraints on gain, unity
gain bandwidth (UGB), slew rate, common-mode rejection
ratio (CMRR), phase margin (PM), and negative power supply
rejection ratio (PSRR). In Table II, we present the compar-
ison results in terms of percentage of constraint violations
for minimum area optimization. As the results demonstrate,
while our algorithm meets the target constraints, the standard
optimization is unable to find a feasible solution, and the
solution produced in some cases grossly violates the target
constraints. We also used our method to perform a tradeoff
analysis between individual circuit performances. An example
of such a Pareto curve showing the tradeoff between the
gain and unity-gain bandwidth for the two-stage amplifier
circuit is given in Fig. 6. We note that the standard method
violates the target gain constraint on average by 26%. In this
experiment, the total number of design variables was 25. The
runtime of our method was, on average, 42 min on a 2.93
GHz processor, when using 10 as the number of refinement
steps and 21 as the number of coverage increment steps with
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TABLE II

Area Minimization for the Two-Stage Amplifier Benchmark Circuit

Performance Spec RAR Standard Spec RAR Standard Spec RAR Standard
% Violation % Violation % Violation % Violation % Violation % Violation

Gain (dB) ≥66 0 16 ≥67.3 0 18.5 ≥65.6 0 15.1
UGB (MHz) ≥5 0 0 ≥5.5 0 0 ≥6 0 0
Slew rate (V/μs) ≥9 0 1.7 ≥10 0 0 ≥5 0 0
CMRR (dB) ≥66 0 47.8 ≥65.9 0 31.7 ≥64.6 0 44.2
Phase margin (°) ≥60 0 0 ≥45 0 0 ≥60 0 0
Negative PSRR (dB) ≥74.8 0 17.8 ≥74.8 0 12.8 ≥74 0 11.4

Area (μm2) MIN 329 237 MIN 296.4 219 MIN 270.4 228.8

The standard method leads to significant constraint violations while the proposed method is able to meet all the constraints.

Fig. 6. Tradeoff curve between gain and bandwidth generated by our
method. The standard method violates the gain constraint on average by 26%.

a coverage increment of 5% per step. The number of actual
SPICE simulations to check true feasibility was 124. We show
a similar set of results for a voltage-controlled oscillator in
Table IV. In this experiment, the number of design variables
was 17. The average runtime was 47 min using 3 as the
number of refinement iterations, and using 11 as the number
of coverage iterations with a coverage step increment of 10%
per iteration. The number of SPICE simulations required was
27 for the verification of true feasibility.

We note that the objective function of the standard approach
appears better than what our approach finds—however, given
that the standard optimization produces solutions that violate
constraints by up to 47%, it is not clear that the objective
function value is meaningful, or even how to devise a fair
numerical comparison. A useful comparison would be based
on comparing Pareto surfaces, generated by sweeping the
values of all the constraints and plotting against the optimal
values obtained, which is difficult to do for problems with
multiple constraints.

Now, we consider a few cases wherein the constraints are
so stringent that we are not able to get a true feasible solution
using our robustification step. The primary reason is the low
coverage as discussed in Section III. We use the strategy
described in Section III to come up with a minimal relaxation
of the user-given constraints so that we can get a true feasible
solution. The results are depicted in Table III. We are able to

Fig. 7. Power versus gain Pareto curve. The proposed algorithm is uniformly
better and maximum power savings are 50% at fixed gain.

Fig. 8. Area versus gain Pareto curve. The proposed algorithm is uniformly
better and maximum area savings are 10% at fixed gain.

find a true feasible solution for the relaxed versions while the
standard solution is not able to find a true feasible solution
and violations are up to 30%.

We carried out the experiments to measure the goodness
of the global search versus the local refinement procedure.
For this we took for comparison a local refinement method
similar to the method proposed in [29]. The central idea of
the local refinement scheme is to do refinement and refitting
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TABLE III

Area Minimization Results With Stringent Constraints

Performance Spec Relaxed Spec RAR Standard Spec Relaxed Spec RAR Standard
% Violation % Violation % Violation % Violation

Gain (dB) ≥75.6 72 0 23 ≥72.5 70.4 0 23.2
UGB (MHz) ≥1 1 0 0 ≥4 4 0 0
Slew rate (V/μs) ≥1 1 0 0 ≥5 3.9 0 0
CMRR (dB) ≥75.6 74 0 36.5 ≥72.5 70.4 0 27.2
Phase margin (°) ≥70 62 0 0 ≥45 33.24 0 0
Negative PSRR (dB) ≥83.8 83 0 1.2 ≥74 72 0 0

Area (μm2) MIN MIN 303 251.6 MIN MIN 498.3 365

We obtain a true feasible solution after minimal constraint relaxation. The standard method leads to significant constraint violations even for the relaxed
constraints.

TABLE IV

Power Minimization in a Voltage-Controlled Oscillator Benchmark Circuit

Performance Spec RAR Standard Spec RAR Standard Spec RAR Standard
% Violation % Violation % Violation % Violation % Violation % Violation

Min VCO freq. (GHz) ≤1 0 30 ≤1.2 0 28.3 ≤1.2 0 30.8
Max VCO freq. (GHz) ≥1.25 0 0 ≥1.4 0 0 ≥1.5 0 0
Power (μW) MIN 69.9 36.7 MIN 69.4 44.6 ≥5 76.2 50.13

The standard method leads to significant constraint violations while the proposed method is able to meet all the constraints.

TABLE V

Proposed Global Solution Search Via Refinement and Robustification Is Able to Maintain a Global Search

for Seeking the Optimal Solution Which Is Superior to the Purely Local Search Based Method

Variable RAR Solution Local Refinement Variable RAR Solution Local Refinement
W1 (nm) 978 1404 L1 (nm) 1781 1780
W2 (nm) 978 1404 L2 (nm) 1781 1780
W3 (nm) 180 189 L3 (nm) 1782 1594
W4 (nm) 180 189 L4 (nm) 1782 1594
W5 (nm) 180 180 L5 (nm) 451 424
W6 (nm) 1782 1653 L6 (nm) 933 741
W7 (nm) 1783 1783 L7 (nm) 451 424
W8 (nm) 656 553 L8 (nm) 451 424

Objective (μm2) 243 267 Capacitance (fF) 250 274

in a very small region around the current solution, thus finding
a locally optimal solution. After solving the problem restricted
to this region, we get a new solution. The local neighborhood
of this solution serves as the local fitting region for the next
iteration. The fitting is done by using SPICE accurate values.
Clearly, this method to begin with requires an initial true
feasible point [29]. In order to provide this starting point,
we set the initial starting point as the solution produced by
our method in the first phase of robustification without any
refinement step. We demonstrate through a specific example
that the difference in performance between our algorithm and
the standard GP algorithm may not be due to merely local
improvement. That is, our combination of fitting-error-driven
robustification and gradual refinement is better suited to the
global exploration of the space, than what GP alone, or even
GP and robustness, can accomplish. We demonstrate this by
showing that local refinement can produce a solution that is far
from global optimal and in a different region from the solution
our algorithm produces. This is a fundamental affirmation
of the conceptual underpinnings of this paper, which seeks
to combine global methods (GP, and more generally convex

optimization) with local accuracy as given by SPICE. The
results are reported in Table V.

In some restricted cases—when only a single constraint is
used—it is possible to compare the Pareto optimality of our
method to that of the standard method across a range of design
values. The design process is intrinsically a multiobjective
optimization process and the optimal solutions lie on the multi-
dimensional Pareto surfaces. It is hard to present Pareto curves
in more than two dimensions, so we can largely demonstrate
the effectiveness of the algorithm by showing the value of the
objective function that can be obtained for a single constraint.
We show the value of amplifier gain (used as the constraint)
against the objective area, in one case, and power, in the other
case. In the first experiment, the Pareto curve was generated
by sweeping the value of target gain over the range of [74.3
db 75.3 db] and optimizing the power using the standard
optimization method that uses the nominal fitting models for
transistor parameters as well as the proposed RAR method.
The results are shown in Fig. 7 and indicate that we can obtain
uniformly better solutions with up to 50% savings in power.
We generated a similar tradeoff curve for minimum area in a
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different range of gain values. This experiment also demon-
strates that our algorithm produces uniformly better solutions
with up to 10% area savings. The results are shown in Fig. 8.

VI. Conclusion

In this paper, we presented a set of algorithmic solutions that
aimed to explicitly utilize the knowledge of modeling error in
the fitted equations to drive optimization. The algorithm was
based on two key concepts of refinement and robustness. A
novel concept of coverage was used to optimally construct
the uncertainty sets. The results were promising and showed
that significant improvements were possible in terms of the
value of the achievable cost functions, as well as in terms of
reliably meeting performance constraints in the presence of
large modeling errors.
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APPENDIX

TRACTABLE FORMULATION FOR GEOMETRIC PROGRAMMING

In the Appendix, we provide some details on how we
obtain tractable robust GP formulations. In this paper, we
have focused on rectangular uncertainty regions modeling
posynomial fitting errors. In cases where the corner point
of the rectangle gives the worst-case uncertainty, the robust
GP reduces to a nominal GP, and hence is formulated and
solved with the usual GP methods. The interesting setting
is when this is not the case. Here, we need to apply some
transformations to make the problem tractable. The first step
is the standard log-exponential transformation that converts the
GP into a convex form. It turns out that this log-exponential
transformation can be uniformly approximated to arbitrary
accuracy by a piecewise linear function. Thus, we replace
the constraints by piecewise linear functions, obtaining an LP.
Robust linear programming is well studied, and has tractable
reformulations [6]. For rectangular uncertainty, the robust LP
can be rewritten as equivalent LP; for ellipsoidal uncertainty,
the problem can be rewritten as an equivalent (convex) second-
order cone problem. Both of these can be solved efficiently.

Below, we illustrate this transformation process through
some examples. Suppose that we have a constraint of the form
gd

gm
+gm ≤ 1, where we model gm and gd as (uncertain) mono-

mials: gm = aWbLcIderror(gm) and gd = eWf LgIherror(gd).
In the rectangular uncertainty model, the error parameters
error(gm) and error(gd) belong to a box uncertainty set U .

In the posynomial form, the constraint becomes

e × error(gd)

a × error(gm)
Wf−bLg−cIh−d+

a × error(gm) × WbLcId ≤ 1.

We introduce variables W = exp(W), L = exp(L), I =
exp(I), and e = exp(e), a = exp(a). Similarly, we introduce
variables to model error parameters in the log domain by
error(gd) = exp(error(gd)), error(gm) = exp(error(gm)).

On plugging in these variables and taking the log, we get
the following convex constraint:

log(exp(e − a + error(gd) − error(gm)+

W × (f − b) + L × (g − c) + I × (h − d))+

exp(a + error(gm) + Wb + Lc + Id))) ≤ 0.

Using techniques from [22], we can approximate these con-
straints to arbitrary accuracy using a piecewise linearization
function. This can, in turn, be modeled as a linear program,
and in particular, the coefficients of this linear program will
be linear functions of the error parameters error(gm) and
error(gd). Consequently, the resulting optimization problem is
a robust linear program with polyhedral uncertainty. This can
then be converted to an equivalent LP, thus being efficiently
solved using out-of-the-box LP solvers [6].
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