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An Inequality for Nearly Log-concave Distributions
with Applications to Learning
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Abstract— We prove that given a nearly log-concave distribu-
tion, in any partition of the space to two well separated sets, the
measure of the points that do not belong to these sets is large. We
apply this isoperimetric inequality to derive lower boundson the
generalization error in learning. We further consider regression
problems and show that if the inputs and outputs are sampled
from a nearly log-concave distribution, the measure of points for
which the prediction is wrong by more than ǫ0 and less thanǫ1

is (roughly) linear in ǫ1−ǫ0, as long asǫ0 is not too small, andǫ1

not too large. We also show that when the data are sampled from
a nearly log-concave distribution, the margin cannot be large in
a strong probabilistic sense.

Index Terms— classification, generalization error, margin, sta-
tistical learning theory

I. I NTRODUCTION

Large margin classifiers (e.g., [1], [2] to name but a few
recent books) have become an almost ubiquitous approach in
supervised machine learning. The plethora of algorithms that
maximize the margin, and their impressive success (e.g., [3]
and references therein) may lead one to believe that obtaining a
large margin is synonymous with successful generalizationand
classification. In this paper we directly consider the question
of how much weight the margin must carry. We show that
essentially if the margin between two classes is large, thenthe
weight of the “no-man’s land” between the two classes must
be large as well. Our probabilistic assumption is that the data
are sampled from a nearly log-concave distribution. Under this
assumption, we prove that for any partition of the space into
two sets such that the distance between those two sets ist, the
measure of the “no man’s land” outside the two sets is lower
bounded byt times the minimum of the measure of the two
sets times a dimension-free constant. The direct implication
of this result is that a large margin is unlikely when sampling
data from such a distribution.

Our modelling assumption is that the underlying distribution
has a β-log-concave density. While this assumption may
appear restrictive, we note that many “reasonable” functions
belong to this family. We discuss this assumption in Section
II, and point out some interesting properties ofβ-log-concave
functions.
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Theory (COLT) 2004, Lecture Notes in Computer Science 3120,pages 534-
548.
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In Section III we prove an inequality stating that the
measure (under aβ-log-concave density) of the “no-man’s
land” is large if the sets are well separated. This result
relies essentially on the Prékopa-Leindler inequality which
is a generalization of the Brunn-Minkowski inequality (we
refer the reader to the excellent survey [4]). We note that
the isoperimetric inequality we prove (Theorem 2) was stated
in [5] for volumes, and in [6] for continuousβ-log-concave
distributions, in the context of efficient sampling from convex
bodies. However, the proof sketched in [6] relies in an essential
way on having a continuous density ([7]). We provide a
complete proof of the more general result using the Ham-
Sandwich Theorem (as in [5], but using a different method)
and a different reduction argument. We further point out a few
natural extensions.

In Section IV we specialize the isoperimetric inequality to
provide lower bounds for the generalization error in classifi-
cation under the assumption that the classifier will be tested
using aβ-log-concave distribution, which did not necessarily
generate the data. While this assumption is not in line with
the standard PAC (Probably Approximately Correct) learning
formulation (see, e.g., [8]), it is applicable to the setup where
data are sampled from one distribution and performance is
judged by another. Suppose, for instance, that the generating
distribution evolves over time, while the true classifier remains
fixed. We may have access to a training set generated by a
distribution quite different from the one we use to test our
classifier. Another important motivation is the case where the
data were indeed generated by the true distribution, but a
portion of the data were erased, or lost.

In the absence of further information about the generating
distribution or its evolution, or the data erasure, it becomes
natural to ask “how bad” the training data may be. We show
that if there is a large (in a geometric sense) family of
classifiers that agree with the training points, then for any
choice of classifier there exists another classifier compared to
which the generalization error is relatively large.

In Section V we investigate regression problems. We con-
sider several regression models and lower bound the measure
of a tube around the prediction with inner radiusǫ0 and outer
radiusǫ1. The measure of this tube represents the probability
of a prediction error betweenǫ0 and ǫ1 (equivalently, this
is the weight of samples that become erroneous when we
change the sensitivity parameter fromǫ1 to ǫ0 when using
ǫ-sensitive error). Our results imply that the margins of the
tube carry a significant portion of the measure. We start from
a simple additive model where the noise is independent of the
value of the independent variable. We show that the weight of
the tube around the true regressor is bounded from below by



2

ǫ1 − ǫ0 times a constant (as long asǫ0 is not too small, and
ǫ1 not too large). We then consider a setup where the noise
and the independent variable are drawn from a distribution
which is jointlyβ-log-concave and show that the result extends
to this setup. This setup is particularly interesting because it
applies to linear prediction when the measure is generated by
some other (unknown) linear function. We then extend the
result to a conditionalβ-log-concave distribution and show
that similar results still hold even if the independent variable
is drawn first from aβ-log-concave distribution, and then
the dependent variable is drawn from anotherβ-log-concave
distribution (with, perhaps, a differentβ).

In Section VI we consider the standard statistical machine
learning setup, and show that for any classifier the probability
of a large margin (with respect to that specific classifier)
decreases exponentially fast to 0 with the number of samples,
if the data are sampled from aβ-log-concave distribution.
It is important to note that theβ-log-concave assumption
applies to the input space. If we use classification methods
such as kernel methods that use Mercer kernels ([9], [10]),
the margin is typically measured in the feature space. Since
the induced distribution in the feature space is not necessarily
β-log-concave our results do not directly hold. If, however,the
kernel map is Lipschitz continuous with constantL, then we
can relate the “functional” margin in the feature space to the
“geometric” margin in the input space, and our results carry
over directly.

Some recent results such as [11], [12] argue that the success
of large margin classifiers is remarkable since most classes
cannot have a useful embedding in some Hilbert space. Our
results provide a different angle, as we show that having a large
margin is unlikely to start with. Moreover, if there happensto
be a large margin, it may well result in a large error (which is
proportional to the margin). A notable feature of our boundsis
that they are dimension-free and are therefore immune to the
curse of dimensionality (this is essentially due to theβ-log-
concave assumption). We note the different flavor of our results
from the “classical” lower bounds (e.g., [13], [14]) that are
mostly concerned with the PAC setup and where the sample
complexity is the main object of interest. We do not address
the sample complexity directly in this work.

II. N EARLY LOG-CONCAVE FUNCTIONS

We assume throughout the paper that generalization error
is measured using a nearly log-concave distribution. In this
section we define such distributions and highlight some of
their properties.

Definition 1: A function f : R
n → R is β-log-concavefor

someβ ≥ 0 if for any λ ∈ (0, 1), x1 ∈ R
n, x2 ∈ R

n, we
have that:

f(λx1 + (1 − λ)x2) ≥ e−βf(x1)
λf(x2)

1−λ. (II.1)

A function f is log-concaveif it is 0-log-concave.
A distribution is calledβ-log-concave if it is defined by a

β-log-concave density function. Henceforth, we refer to both
β-log-concave distributions and their associatedβ-log-concave
densities.

The class of log-concave distributions itself is rather rich.
For example, it includes the Gaussian, Uniform, Logistic, and
Exponential distributions. We refer the reader to [15] for an
extensive list of such distributions, sufficient conditions for a
distribution to be log-concave, and ways to “produce” log-
concave distributions from other log-concave distributions.
The class ofβ-log-concave distributions is considerably richer
since we allow a factor ofe−β in Ineq. (II.1). For example,
while log-concavity implies a distribution must have a continu-
ous density, this is not the case forβ-log-concave distributions.
They can even have densities with arbitrarily many disconti-
nuities, and without well-defined derivative. Nevertheless, we
see that while they are not regular in this respect, they have
enough structure that much can be said about them. We now
provide some results that are useful in the sequel. We start
from the following observation (see, e.g., [6]).

Lemma 1:The support of aβ-log-concave density is a
convex set. Also,β-log-concave densities are bounded on
bounded sets.
Densities that areβ-log-concave are not necessarily unimodal,
but possess a unimodal quality, in the sense of Lemma 2 below.
This simple lemma captures the properties ofβ-log-concavity
that are central to our main results and subsequent applica-
tions. It implies that if we have aβ-log-concave distribution
on an interval, there cannot be any big “holes” or “valleys” in
the mass distribution. Thus if we divide the interval into three
intervals, if the middle interval is large, it must also carry a
lot of the weight. In higher dimensions, essentially this says
that if we consider two subsets, then if the distance between
the two sets is large, the mass of the “no-man’s land” will also
be large. This is essentially the content of Theorem 2 below.

Lemma 2:Suppose thatf(x) : [u1, u2] → R is β-log-
concave on an interval[u1, u2]. Let u1 < x1 < x2 < u2.
Then for anyx ∈ [x1, x2], at least one of the following holds:

f(x) ≥ f(y) · e−β, for all y ∈ [u1, x1],

or

f(x) ≥ f(y) · e−β, for all y ∈ [x2, u2].

PROOF. Consider anyx ∈ [x1, x2], and suppose, in order
to obtain a contradiction, that there existsy1 ∈ [u1, x1] and
y2 ∈ [x2, u2], such thatf(x) < f(yi)e

−β, for i = 1, 2. Then,
there existsλ ∈ [0, 1] such thatx = λy1 +(1−λ)y2, and thus
by β-log-concavity off , we have:

f(x) = f(λy1 + (1 − λ)y2)

≥ e−βf(y1)
λf(y2)

1−λ

> e−β(f(x)eβ)λ(f(x)eβ)1−λ = f(x),

a contradiction. �

The following inequality has many uses in geometry, statis-
tics, and analysis (see [16] for a proof, and [4] for more
context, uses, and references). Note that it is stated with respect
to a specificλ ∈ (0, 1) and not to allλ.

Theorem 1 (Pŕekopa-Leindler Inequality):Let 0 < λ < 1,
andh, g1, g2 be nonnegative integrable functions onR

n, such
thath((1−λ)x+λy) ≥ g1(x)1−λg2(y)λ, for everyx, y ∈ R

n.
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Then
∫

Rn

h(x) dx ≥
(
∫

Rn

g1(x) dx

)1−λ(∫

Rn

g2(x) dx

)λ

.

The following lemma plays a key part in the reduction
technique we use below. It essentially says that the projection
of a β-log-concave distribution is stillβ-log-concave. Recall
that the orthogonal projection of a setK ⊆ R

n+m ontoR
n is

defined asK|Rn
△
= {x ∈ R

n : ∃y ∈ R
m s.t. (x, y) ∈ K}.

Lemma 3:Let f(x, y) be a β-log-concave density on a
convex setK ⊆ R

n+m. For everyx in K|Rn , consider the

sectionK(x)
△
= {(x, y) ∈ R

n+m : (x, y) ∈ K}. Then the

densityF (x)
△
=
∫

K(x) f(x, y) dy is β-log-concave onK|Rn .
PROOF. This is a consequence of the Prékopa-Leindler
inequality (as in [4] for log-concave functions). Fixx1, x2 ∈
K|Rn . Define the functionsgi(y) = f(xi, y) for i = 1, 2.
Thereforegi(·) is defined onK(xi), i = 1, 2. For λ ∈ (0, 1),
let x = λx1+(1−λ)x2, and define the functionh(y) = f(x, y)
defined onK(x). By the convexity ofK, λK(x1) + (1 −
λ)K(x2) ⊆ K(x). In particular, for anyyi ∈ K(xi), i = 1, 2,
the point(x, y) = λ(x1, y1)+ (1−λ)(x2, y2) ∈ K(x). By the
β-log-concavity off(x, y),

f(x, y) = f(λ(x1, y1) + (1 − λ)(x2, y2))
≥ f(x1, y1)

λ · f(x2, y2)
1−λe−β,

and therefore this impliesh(λy1 + (1 − λ)y2) ≥ g1(y1)
λ ·

g2(y2)
1−λe−β.

Denoting the indicator function byχ(·), we have

h(λy1+(1−λ)y2)χK(x)(y)≥ (g1(y1) · χK(x1)(y1))
λ·

(g2(y2) · χK(x2)(y2))
1−λe−β.

But then the functionsH(y) = eβh(y) · χK(x)(y), G1(y) =
g1(y) · χK(x1)(y), andG2(y) = g2(y) · χK(x2)(y), satisfy the
hypotheses of the Prékopa-Leindler Theorem, and thus we can
write F (λx1 + (1 − λ)x2) = F (x) as
∫

Rm

f(x, y) · χK(x)(y) dy =

∫

Rm

h(y) · χK(x)(y) dy

≥ e−β

(
∫

Rm

g1(y)χK(x1)(y) dy

)λ(∫

Rm

g2(y)χK(x2)(y) dy

)1−λ

= e−β

(
∫

Rm

f(x1, y) · χK(x1)(y) dy

)λ

·
(
∫

Rm

f(x2, y) · χK(x2)(y) dy

)1−λ

= F (x1)
λ · F (x2)

1−λe−β.

Since this holds for allλ ∈ (0, 1), F (x) is β-log-concave.�

There are quite a few interesting properties ofβ-log-
concave distributions. For example, the convolution of a
β1-log-concave and aβ2-log-concave density is(β1 + β2)-
log-concave; Gaussian mixtures areβ-log-concave; and
mixtures of distributions with bounded Radon-Nikodym
derivative are alsoβ-log-concave. Additional discussion of
these and other properties ofβ-log-concave distributions is
beyond the scope of this paper.

III. I SOPERIMETRICINEQUALITIES

In this section we prove our main result concerningβ-
log-concave distributions. We show that if two sets are well
separated, then the “no man’s land” between them has large
measure relative to the measure of the two sets. Results of
this nature exist in the literature for log-concave distributions.
Recent results along these lines (e.g., [17]; for a survey see
[18]) use a powerful localization lemma proved in [19] that
requires a continuity assumption (for related results using
generalized localization theorems, we refer the reader to [20]
and [21]). Here, we provide a different proof that requires no
such regularity.

We first prove the result for bounded sets and then provide
two immediate corollaries. Letd(x, y) denote the Euclidean
distance inR

n. We define the distance between two sets
K1 and K2 as d(K1, K2)

△
= infx∈K1,y∈K2 d(x, y) and the

diameter of a setK asdiam(K)
△
= supx,y∈K d(x, y). Given a

densityf we say thatµ(K) =
∫

K f(x) dx is the induced mea-
sure. A decomposition of a closed setK ⊆ R

n to a collection
of closed setsK1, K2, . . . , Kℓ satisfies that:

⋃ℓ
i=1 Ki = K

and ν(Ki ∩ Kj) = 0 for all i 6= j whereν is the Lebesgue
measure onRn.

Theorem 2:Let K be a closed and bounded convex set
with non-zero diameter inRn with a decompositionK =
K1∪B∪K2. For anyβ-log-concave densityf(x), the induced
measureµ satisfies

µ(B) ≥ e−β d(K1, K2)

diam(K)
min{µ(K1), µ(K2)}.

We remark that this bound is dimension-free. The ratio
d(K1, K2)/ diam(K) is necessary, as essentially it adjusts
for any scaling of the problem. We further note that the
minimummin{µ(K1), µ(K2)} might be quite small; however,
this appears to be unavoidable (e.g., consider the tail of a
Gaussian, which is log-concave).

The proof proceeds by induction on the dimensionn. The
steps are as follows.

(1) We prove the base case,n = 1, in Lemma 4. Here, the
setK is an interval. The key tool we use is Lemma 2.

(2) The inductive step uses a projection argument to reduce
to n − 1 dimensions. Lemma 5 reduces to the case of
an “ǫ-flat” set, i.e., a set contained in an ellipse whose
smallest axis is smaller than someǫ > 0.

(3) Once we have reduced to theǫ-flat case, we complete
the induction by projecting ton − 1 dimensions where
the result holds by inductive hypothesis. By properly
performing the projection, we show that if the result
holds for the projection, it holds for the original set.

We abbreviatet = d(K1, K2). The theorem trivially holds if
t = 0, so we can assume thatt > 0. From Lemma 1 above,
we know that the support off(x) is convex. Thus, we can
assume without loss of generality that sinceK is compact,
f(x) is strictly positive on the interior ofK.

Step 1:
Lemma 4:Theorem 2 holds forn = 1.

PROOF. If n = 1, then K is some interval,K = [u1, u2],
with diam(K) = |u2 − u1|. Since t = d(K1, K2) > 0, no
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point of K1 is within a distance (strictly less than)t from
any point of K2. Furthermore, there must be at least one
interval (b1, b2) ⊆ B such that|b2 − b1| ≥ t, and such that
(b1, b2) ∩ (K1 ∪ K2) = ∅. Fix someǫ > 0, with ǫ < t/2.

Define theǫ-expansion setŝK1
△
= {x ∈ K : d(x, K1) ≤ ǫ},

and K̂2
△
= {x ∈ K : d(x, K2) ≤ ǫ}. Define B̂ to be the

closure of the complement inK of K̂1 ∪ K̂2. Each set is
a union of a finite number of closed intervals, and thus we
have the decomposition[u1, u2] =

⋃m
i=1[ri−1, ri], where each

interval [ri−1, ri] is either aK̂1-interval, a K̂2-interval, or
a B̂-interval. We modify the sets so that if thêB-interval
[ri−1, ri] is sandwiched by twoK̂i-intervals (i = 1, 2) then
we add that interval tôKi. If the B̂-interval is either the first
interval [r0, r1], or the last interval,[rm−1, rm], then we add
it to whichever setK̂i is to its right, or left, respectively.

The three resulting setŝK1, K̂2, andB̂ are closed, intersect
at most at a finite number of points, and thus are a decompo-
sition of K. Each set is a union of a finite number of closed
intervals. Furthermore,̂t = d(K̂1, K̂2) ≥ t−2ǫ, andK̂1 ⊇ K1,
K̂2 ⊇ K2, andB̂ ⊆ B. By our modifications above, eacĥB-
interval must have length at leastt̂.

Consider anyB̂-interval [ri−1, ri]. Let x∗ be a maximizer1

of f(x) on [u1, u2], andxmin a minimizer off(x) on [ri−1, ri].
Suppose thatx∗ ≥ xmin. Then by Lemma 2, for anyy ≤ ri−1,
we must havef(xmin) ≥ f(y)e−β. Therefore,

e−βµ([u1, ri−1]) = e−β

∫ ri−1

u1

f(x) dx

≤ (ri−1 − u1)f(xmin)

≤ diam(K) · f(xmin)

≤ diam(K)

(ri − ri−1)

∫ ri

ri−1

f(x) dx

≤ diam(K)

t̂
µ([ri−1, ri]).

If instead we havex∗ ≤ xmin, then in a similar manner we
obtain the inequality

e−βµ([ri, u2]) ≤
diam(K)

t̂
µ([ri−1, ri]).

Therefore, in general, for anŷB-interval (ri−1, ri),

µ([ri−1, ri]) ≥ e−β t̂

diam(K)
min{µ([u1, ri−1]), µ([ri, u2])}.

Suppose, without loss of generality, that[r0, r1] is
a K1-interval. Consider the firstB̂-interval [r1, r2]. If
µ([r1, r2]) ≥ e−β(t̂/ diam(K))µ([r2, u2]), then µ(B̂) ≥
e−β(t̂/ diam(K))µ(K̂2) and we are done. So let us assume
that µ([r1, r2]) ≥ e−β(t̂/ diam(K))µ([u1, r1]). Similarly,
for the last B̂-interval (rm−2, rm−1), we can assume that
µ([rm−2, rm−1]) ≥ e−β(t̂/ diam(K))µ([rm−1, u2]) other-
wise the result immediately follows. This implies that there

1As in Lemma 2,f may not be continuous, so we may only be able to find a
point x∗ (xmin) that is infinitesimally close to the supremum (infimum) off .
For convenience of exposition, we assumef is continuous. This assumption
can be removed with an argument parallel to that given in Lemma 2.

must be two consecutivêB-intervals, say (rj−1, rj) and
(rj+1, rj+2) such that

µ([rj−1, rj ]) ≥ e−β(t̂/ diam(K))µ([u1, rj−1]),

and

µ([rj+1, rj+2]) ≥ e−β(t̂/ diam(K))µ([rj+2, u2]).

Since[u1, rj−1] ∪ [rj+2, u2] contains either all ofK̂1 or K̂2,
combining these two inequalities, and using the fact thatK̂i ⊇
Ki, andB̂ ⊆ B, we obtain

µ(B) ≥ µ(B̂) ≥ µ([rj−1, rj ] ∪ [rj+1, rj+2])

≥ e−β t̂

diam(K)
(µ([u1, rj−1])+µ([rj+2, u2]))

≥ e−β t̂

diam(K)
min{µ(K̂1), µ(K̂2)}

≥ e−β t − 2ǫ

diam(K)
min{µ(K1), µ(K2)}.

Since this holds for everyǫ > 0, the result follows. �

Step 2: We now prove then-dimensional case. The
first part of our inductive step is to show that it is enough
to consider an “ǫ-flat” set K. To make this precise, we use
the Löwner-John Ellipsoidof a setK. This is the minimum
volume ellipsoid E containing K (see, e.g., [22]). This
ellipsoid is unique. The key property we use is that if we
shrinkE from its center by a factor ofn, then it is contained
in K. We define anǫ-flat set to be such that the smallest axis
of its Löwner-John Ellipsoid has length no more thanǫ.

Lemma 5:Suppose the theoremfails by δ on K, for some
δ > 0, i.e.

(1 + δ)µ(B) ≤ e−β t

diam(K)
min{µ(K1), µ(K2)}. (III.2)

Then for anyǫ > 0, there exists someǫ-flat setK̃ ⊆ K with
decompositionK̃ = K̃1∪B̃∪K̃2, such thatK̃i ⊆ Ki, B̃ ⊆ B,
d(K̃1, K̃2) ≥ t, and diam(K̃) ≤ d, and such that the theorem
fails by δ, i.e., Ineq. (III.2) holds forK̃, K̃1, K̃2, B̃.
PROOF. Let K, K1, K2, B andδ be as in the statement above.
Pick someǫ > 0 much smaller thant. Suppose that all
axes of the Löwner-John ellipsoid ofK are greater thanǫ.
A powerful consequence of the Borsuk-Ulam Theorem, the
so-called Ham-Sandwich Theorem (see, e.g., [23]) says that
in R

n, given n Borel measuresµk, k = 1, . . . , n, such that
the weight of any hyperplane under each measure is zero,
there exists a hyperplaneH that bisects each measure, i.e.,
µk(H+) = µk(H−) = 1

2µk(Rn) for eachk, whereH+, H−

denote the two half-spaces defined byH . Now, since we
have n ≥ 2, the Ham-Sandwich Theorem guarantees that
there exists some hyperplaneH that bisects (in terms of the
measureµ) both K1 and K2. Let K ′ and K ′′ be the two
parts of K defined by H (K and B are not necessarily
bisected), and similarly defineK ′

1, K
′′
1 , K ′

2, K
′′
2 , andB′, B′′.

The minimum distance cannot decrease, i.e.,d(K ′
1, K

′
2) ≥ t,

andd(K ′′
1 , K ′′

2 ) ≥ t, and the diameter ofK cannot be smaller
than either the diameter ofK ′ or K ′′. Consequently, if the
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theorem holds, or fails by less thanδ, for both K ′ and K ′′,
then

(1 + δ)µ(B) = (1 + δ)µ(B′) + (1 + δ)µ(B′′)

≥ e−β t

diam(K)
(min {µ(K ′

1), µ(K ′
2)}+

min {µ(K ′′
1 ), µ(K ′′

2 )})
= e−β t

diam(K)
min{µ(K1), µ(K2)}.

Therefore the theorem must fail byδ for either K ′ or K ′′.
We note that this is thesameδ as above. Call the set for
which the theorem does not holdK(1), and similarly define
K

(1)
1 , K

(1)
2 andB(1). We continue bisectingK(j) in this way,

always focusing on the side for which the theorem fails byδ,
thus obtaining a sequence of nested sets

K ⊇ K(1) ⊇ · · · ⊇ K(j) ⊇ · · · .

We claim that eventually the smallest axis of the Löwner-
John ellipsoid will be smaller thanǫ. If this is not the case, then
the setK always contains a ball of radiusǫ/n. This follows
from the properties of the Löwner-John ellipsoid. Therefore,
letting Bǫ/n(x0) denote the ball of radiusǫ/n centered atx0,
we have

µ(K(j)) =

∫

K(j)

f(x) dx

≥ inf
Bǫ/n(x0)⊆K

(

∫

Bǫ/n(x0)

f(x) dx

)

≥ η > 0,

for someη > 0, independent ofj. We know thatη > 0 by
our initial assumption thatf(x) is non-zero onK.

However, by our choice of hyperplanes, the setsK
(j)
1 , K

(j)
2

are bisected with respect to the measureµ. Thusµ(K
(j)
1 ) =

2−jµ(K1), and µ(K
(j)
2 ) = 2−jµ(K2), and the measure of

each setK(j)
1 , K

(j)
2 becomes arbitrarily small asj increases.

Since the measure ofK(j) does not also become arbitrarily
small, the measure ofB(j) must also be bounded away from
zero. In particular,

µ(B(j)) ≥ η − 2−j(µ(K1) + µ(K2)),

and thus for

j ≥ log2(2(µ(K1) + µ(K2))/η),

we have

µ(B(j)) ≥ η/2 ≥ min{µ(K
(j)
1 ), µ(K

(j)
2 )}.

This contradicts our assumption that the theorem fails on
all elements of our nested chain of sets. The contradiction
completes the proof of the lemma. �

Step (3): We now perform the projection, proving the
inductive step. We put the steps together to complete the
proof.
Proof of Theorem 2: The proof is by induction on the number
of dimensions. By Lemma 4 above, the statement holds
for n = 1. Assume that the result holds forn dimensions.
Suppose we haveK ⊆ R

n+1, with the decomposition

K = K1 ∪B ∪K2 satisfying the assumptions of the theorem.
We show that for everyδ > 0:

(1 + δ)µ(B) ≥ e−β t

diam(K)
min{µ(K1), µ(K2)}.

Taking δ to zero yields our result. LetE be the Löwner-John
ellipsoid of K. By Lemma 5 above, we can assume that the
Löwner-John ellipsoid ofK has at least one axis of length
no more thanǫ. Figure 1 illustrates the bisecting process of
Lemma 5, and also the essential reason why the bisection
allows us to project to one fewer dimensions. We takeǫ smaller

H+
H�

B0

K2

K 02K 01

K1 E

K2
B

K1
(a) (b)

Fig. 1. The inductive step works by projectingK onto one less dimension.
In (a) above, a projection on the horizontal axis would yield a distance of
zero between the projectedK1 and K2. Once we bisect to obtain(b), we
see that a projection onto the horizontal axis would not affect the minimum
distance betweenK1 andK2.

than t/2, and also such that
√

t2 − 4ǫ2 > t/(1 + δ). Assume
that the(n+1)st coordinate direction is parallel to the shortest
axis of the ellipsoid, and the firstn coordinate directions span
the same plane as the othern axes of the ellipse (changing
coordinates if necessary). Call the last coordinatey, so that
we refer to points inRn+1 as (x, y), for x ∈ R

n, andy ∈ R.
Let Π denote the plane spanned by the othern axes, and
let KΠ = π(K) denote the projection ofK onto Π. Since
ǫ < t/2, no point in KΠ is the image of points in bothK1

andK2, otherwise the two pre-images would be at most2ǫ < t
apart. This allows us to define the sets

K̂1
△
= {(x, y) ∈ K : π(x, y) ∈ π(K1)},

K̂2
△
= {(x, y) ∈ K : π(x, y) ∈ π(K2)},

B̂
△
= {(x, y) ∈ K : π(x, y) /∈ π(K1) ∪ π(K2)}.

Note that µ(K̂i) ≥ µ(Ki), i = 1, 2, and µ(B̂) ≤ µ(B).
Again we have a decompositionK = K̂1 ∪ B̂ ∪ K̂2. On
KΠ, we also have a decomposition:KΠ = π(K̂1) ∪ π(B̂) ∪
π(K̂2). Since we project with respect to theL2 norm, by
the Pythagorean Theorem,d(π(K̂1), π(K̂2)) ≥

√
t2 − 4ǫ2. In

addition,diam(Kπ) ≤ diam(K).
For x ∈ KΠ, define the sectionK(x) = {(x, y) ∈ R

n+1 :

(x, y) ∈ K}. We define a function onKΠ ⊆ R
n: F (x)

△
=

∫

K(x) f(x, y) dy, wheref(x, y) is our β-log-concave density
on R

n+1. We have
∫

π(K̂i)

F (x) dx =

∫

K̂i

f(x, y) dx dy = µ(K̂i), i = 1, 2,

and similarly for B̂. By Lemma 3,F (x) is β-log-concave.
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Therefore, by the inductive hypothesis, we have that

µ(B) ≥ µ(B̂) =

∫

B̂

f(x, y) dx dy =

∫

π(B̂)

F (x) dx

≥ e−β

√
t2 − 4ǫ2

diam(Kπ)
min

{

∫

π(K̂1)

F (x) dx,

∫

π(K̂2)

F (x) dx

}

= e−β

√
t2 − 4ǫ2

diam(Kπ)
min

{
∫

K̂1

f(x, y) dx dy,

∫

K̂2

f(x, y) dx dy

}

> e−β t/(1 + δ)

diam(K)
min{µ(K̂1), µ(K̂2)},

and thus

(1 + δ)µ(B) ≥ (t/ diam(K))min(µ(K1), µ(K2)).

Since this holds for everyδ > 0, the result follows. �

Corollaries 1, 2, and Proposition 1 below offer some flexi-
bility for obtaining a tighter lower bound onµ(B).

Corollary 1: Let K be a closed and bounded convex set
with a decompositionK = K1 ∪ B ∪ K2 as in Theorem 2
above. Letf(x) be any density (not necessarilyβ-log-concave)
that is bounded away from zero onK, say f(x) > η for
x ∈ K. Then the induced measureµ satisfies

µ(B) ≥ η · d(K1, K2)

diam(K)
min{ν(K1), ν(K2)}.

whereν denotes Lebesgue measure.
PROOF. Consider the uniform distribution onK. Since it
is log-concave, Theorem 2 applies withβ = 0. Since the
Lebesgue measureν is just a scaled uniform distribution,
ν(B) ≥ (d(K1, K2)/ diam(K))min{ν(K1), ν(K2)}. The
corollary follows sinceµ(B) ≥ ην(B). �

The lower bound onµ(B) which we obtain from Theorem
2, depends inversely on the diameter of the setK, which we
take to be bounded. This poses two potential problems. First,
if the setK is unbounded, then the theorem cannot be applied,
and the isoperimetric inequality, as stated, is meaningless.
Second, even ifK is bounded, the inequality may be rendered
quite weak if the diameter is very large. Specifically, the
problem arises ifK has a very large diameter, while most of
the mass of the distribution is contained in a small-diameter
subset ofK, with light tails putting very little mass on the
rest ofK. A Gaussian is a prime example of aβ-log-concave
(in fact 0-log-concave) distribution with this behavior.

The following two results address both issues by truncating
K, and then applying Theorem 2 to the truncation. First we
give a corollary that does not assume any further knowledge
about the densityf(x). Then in Proposition 1 we give a
corollary that replaces the diamater in Theorem 2 by the
second moment off(x).

Corollary 2: Fix ǫ > 0. Let K be a closed, convex, but
not necessarily bounded set. LetK = K1 ∪ B ∪ K2 be a
decomposition ofK. Let f be aβ-log-concave density with
induced measureµ, such that there existsd(ǫ) > 0 for which
(1−ǫ)µ(K1) ≤ µ(K1∩Bd(ǫ)), (1−ǫ)µ(K2) ≤ µ(K2∩Bd(ǫ)),

and (1 − ǫ)µ(B) ≤ µ(B ∩ Bd(ǫ)), whereBd(ǫ) is a ball with
radiusd(ǫ) around the origin. Then

µ(B) ≥ e−β(1 − ǫ)2
d(K1, K2)

d(ǫ)
min{µ(K1), µ(K2)}.

PROOF. We have thatµ(K ∩Bd(ǫ)) ≥ (1− ǫ)µ(K). Let P =
µ(K ∩Bd(ǫ)), and note thatP ≥ 1− ǫ. Consider the measure
µ̂ defined onK ∩ Bd(ǫ) by the densityf̂(x) = f(x)/P . It
follows that f̂ is β-log-concave. We now apply Theorem 2 on
f̂ to obtain that:

µ̂(B∩Bd(ǫ))≥e−β(t/d(ǫ))min{µ̂(K1∩Bd(ǫ)), µ̂(K2∩Bd(ǫ))},

wheret ≥ d(K1, K2). It follows that

µ̂(K1 ∩ Bd(ǫ)) ≥ (1 − ǫ)µ(K1),

and similarly forK2, and also

µ(B)/(1 − ǫ) ≥ µ(B)/P ≥ µ̂(B ∩ Bd(ǫ)).

The result now follows by some algebra. �

If most of the mass of the distribution is contained in
a small-diameter set, so that the trace of the covariance
matrix is not too big, then it is possible to obtain a similar
result, replacing the termdiam(K) in the denominator by a
term involving the covariance.

Proposition 1: Let K, K1, K2, B andf andµ be as above,
and let x̄ = (x̄1, . . . , x̄n) be the mean of the densityf(x),
andσ2 the trace of the covariance off(x) (which we assume
to be finite):

σ2 △
=

∫

K

(

n
∑

i=1

(xi − x̄i)
2

)

f(x) dx =

∫

K

||x − x̄||22 f(x) dx.

Then the induced measureµ satisfies

µ(B) ≥ e−β d(K1, K2)

4σ
√

2
min{µ(K1)

3/2, µ(K2)
3/2}.

PROOF. Let us assume first thatµ(K1) ≤ µ(K2). We require
the following generalization of the Chebychev inequality to
multiple dimensions. For such generalized inequalities, see,
e.g., [24] or [25], and references therein. Here we use the
inequality

µ(K \ Bl(x̄)) = (µ({x : ||x − x̄||2 ≥ l}) ≤ σ2

l2
, (III.3)

whereBl(x̄) denotes thel-ball about the mean,̄x. Setting the
right hand side of Ineq. (III.3) equal toµ(K1)/2, we find

l = σ

√

2

µ(K1)
.

Now let K̂1, K̂2 andB̂ denote the truncations ofK1, K2 and
B, and letµ̂ denote the truncated and renormalized measure.
Using 2l as the diameter of the truncated set, and observing
that d(K̂1, K̂2) ≥ d(K1, K2), and then applying Theorem 2,
we find

µ̂(B̂) ≥ e−β d(K1, K2)

2l
min{µ̂(K̂1), µ̂(K̂2)}. (III.4)
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Noting thatµ(Bl(x̄)) ≥ 1 − µ(K1)/2 ≥ 3/4, we have

µ(B) ≥ µ(B ∩ Bl(x̄)) = µ(Bl(x̄))
µ(B ∩ Bl(x̄))

µ(Bl(x̄))

≥ 3

4
µ̂(B̂)

µ̂(K̂1) ≥ 4

3
µ(K1 ∩ Bl(x̄))

≥ 4

3
(µ(K1) − µ(K1)/2) =

2

3
µ(K1)

µ̂(K̂2) ≥ 2

3
µ(K2).

Together with inequality (III.4) we have

µ(B) ≥ e−β d(K1, K2)

4l
min{µ(K1), µ(K2)}

= e−β d(K1, K2)

4σ
√

2
µ(K1)

3/2.

A similar inequality results whenµ(K2) ≤ µ(K1), whence
the result follows. �

IV. L OWER BOUNDS ONGENERALIZATION ERROR

In this section we obtain lower bounds on the generalization
error of classification problems. The generalization erroris
the weight of the region where the chosen classifier and the
true classifier differ. This in turn is related to the weight of
the no-man’s land. Appealing to the isoperimetric inequality
of Theorem 2, we use the size (in the geometric sense of
distance between sets) of the no-man’s land, to obtain bounds
on the weight it must carry. Thus we show that the size of
the no-man’s land can be a tractable measure providing good
bounds on the measure of the set where two classifiers differ.
We also point out that in the absence ofβ-log-concavity, no
such bounds are valid.

Lower bounds on the generalization error in classification
require a careful definition of the probabilistic setup. In this
section we consider a generic setup where proper learning
is possible. We consider the standard classification problem
where data pointsx ∈ R

n and labelsy ∈ {−1, 1} are given,
and not necessarily generated according to any particular
distribution. We assume that we are given a set of classifiers
H which are functions fromR

n to {−1, 1}. For now, by a
slight abuse of notation, we useH to refer both to the full
family of classifiers, and the subset of classifiers that have
zero error on the training data. Thus when speaking of linear
classifiers, it is understood that byH we mean the subset
of linear classifiers that correctly classify the training data. In
our model, the performance of the classifier is measured using
some probability measure induced by aβ-log-concave density
f . We note that this model deviates from the “classical”
statistical machine learning setup.

Given a densityf , the disagreement of a classifierh ∈ H
with another classifierh′ is defined as:

∆(h; h′)
△
=

∫

Rn

1

2
(1 − h(x)h′(x))f(x)dx

= µ{x ∈ R
n : h(x) 6= h′(x)},

where µ is the probability measure induced byf . If there
exists a true classifierhtrue (not necessarily inH) such that

y = htrue(x) then the error ofh is ∆(h; htrue). For a classifier

h, let K+(h)
△
= {x ∈ K : h(x) = 1}, and similarlyK−(h)

△
=

{x ∈ K : h(x) = −1}. Given a pair of classifiersh1 andh2

we define the distance between them asdist(h1, h2), given by

max
{

d
(

K+(h1), K
−(h2)

)

, d
(

K−(h1), K
+(h2)

)}

.

We note thatdist(h1, h2) may equal zero even if the classifiers
are rather different. However, in some cases,dist(h1, h2)
provides a useful measure of difference; see Proposition 2
below. We consider later generalizations of ‘dist(·, ·)’ which
are interesting exactly when the classifiers are different,but
the distance defined above is zero.

Suppose we have to choose a classifier from a setH. This
may occur if, for example, we are given sample data points
and there are several classifiers that classify the data correctly.
The following theorem states that if the set of classifiers we
choose from is too large, then the error might be large as
well. Note that we have to scale the error lower bound by the
minimal weight of the positively/negatively labelled region.

Theorem 3:Suppose thatf is β-log-concave defined on a
closed and bounded setK with nonzero diameter2. Then for
everyh ∈ H, for everyǫ > 03, there existsh′ ∈ H such that

∆(h; h′) ≥ e−βP1

diam(K)
( sup
h1∈H

dist(h, h1) − ǫ) (IV.5)

≥ e−βP1

diam(K)

1

2
( sup
h1,h2∈H

dist(h1, h2)−ǫ), (IV.6)

whereP1 = inf h̃∈H min{µ(K+(h̃)), µ(K−(h̃))}.
Without the β-log-concavity assumption, this result need
not hold. Indeed, without it, we may have classifiers with
dist(h, h′) large, but with little or zero weight on the region
in which they differ.
PROOF. If suph1,h2∈H dist(h1, h2) = 0, the result fol-
lows, so we can assume this is not the case. For every
ǫ > 0 we can chooseh′ ∈ H such thatdist(h, h′) ≥
suph1∈H dist(h, h1) − ǫ. We consider the case where
dist(h, h′) = d(K+(h), K−(h′)); the other case where
dist(h, h′) = d(K−(h), K+(h′)) follows in a symmetric
manner. LetB = K \ (K+(h) ∪ K−(h′)). It follows from
Theorem 2 that

µ(B) ≥ e−β dist(h, h′)

diam(K)
min

{

µ(K+(h)), µ(K−(h′))
}

.

(IV.7)
From here the first inequality of the theorem follows.
Now for the second inequality, similarly to the
above, for every ε > 0 we can pick h1, h2 so
that dist(h1, h2) ≥ suph′

1,h′

2
dist(h1, h2) − ε. By

Theorem 2, letting B = K \ (K+(h1) ∪ K−(h2))
inequality (IV.7) holds with h1, h2 in place of
h, h′. Now, ∆(h; h1) ≥

∫

B
χ{h(x) 6=h1(x)}f(x)dx and

∆(h; h2) ≥
∫

B χ{h(x) 6=h2(x)}f(x)dx. Sinceh1(x) 6= h2(x)
on B, then either∆(h; h1) ≥ µ(B)/2 or ∆(h; h2) ≥ µ(B)/2.
Since P1 ≤ µ(K+(h1)) and P1 ≤ µ(K−(h2)),

2Unless explicitly noted, we assume throughout thatK is closed and
bounded with nonzero diameter.

3If H is compact in an appropriate sense, then we can setǫ = 0.
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and by substituting in Ineq. (IV.7), we obtain that
∆(h, hi) ≥ e−β dist(h1, h2)P1/(2 diam(K)) for i = 1
or i = 2. �

The following example demonstrates the power of Theorem
3 in the context of linear classification. Consider an input-
output sequence{(x1, y1), . . . , (xN , yN)} arising from some
unknown source (not necessarilyβ-log-concave) as in the
classical binary classification problem. DefineX+

N = {xi :
yi = 1} and X−

N = {xi : yi = −1}. Suppose that the true
error is measured according to aβ-log-concave distribution,
and thatX+

N andX−
N are linearly separable. Recall that a linear

classifierh is a function given byh(x) = sign(〈x, u〉 + b),
where ‘sign’ is the sign function and ‘〈·, ·〉’ is the standard
inner product inR

n. The following proposition provides a
lower bound on the true error. We state it for generic sets of
vectors, so the data are not assumed to be sampled from any
concrete source. The lower bound concerns the case where
we are faced with a choice from a set of classifiers, all of
which agree with the data (i.e., have zero training error). If
we commit to any specific classifier, then there exists another
classifier (whose training error is zero as well) such that the
true error of the classifier we committed to is relatively large
if the other classifier happens to equalhtrue.

Proposition 2: Suppose that we are given two sets of
linearly separable vectorsX+, X− ⊆ K and let t =
d(conv(X+), conv(X−)). Then for every linear classifierh
that separatesX+ and X−, and anyβ-log-concave density
f and induced measureµ defined on a bounded setK, there
exists another linear classifierh′ that separatesX+ and X−

as well, such that

∆(h; h′) ≥ e−βP1t/(2 diam(K)),

where

P1=min{µ{x : 〈x, u〉 ≥ 〈x+, u〉}, µ{x : 〈x, u〉 ≤ 〈x−, u〉}}

for somex± ∈ conv(X±) such thatd(x+, x−) = t andu =
(x+ − x−)/2.
PROOF. Let H be the set of all hyperplanes that separate
X+ from X−. It follows by a standard linear programming
argument (see [26]) thatsuph1,h2∈H dist(h1, h2) = t. This
is attained forh1(x) = sign(〈x, u〉 − 〈x+, u〉) and h2(x) =
sign(〈x, u〉 − 〈x−, u〉). We now apply Theorem 3 to obtain
the desired result. Note thatP1 in the declaration of the
proposition is tighter thanP1 in Theorem 3. This is the result
of calculatingµ(K+(h1)) andµ(K−(h2)) directly (instead of
taking the infimum as in Theorem 3). �

Finally, we note that inequality (IV.5) is in general strictly
stronger than (IV.6), since the inequalitysuph′ dist(h, h′) ≥
suph1,h2

dist(h1, h2)/2 is usually strict. If, on the other hand,
h is the maximum margin classifier, then the two bounds
coincide. In the linear case, the maximum margin classifier
is the “safest choice.” Thus we have a reinterpretation of the
maximum margin classifier as the “safest” classifier under
worst-case (minimax) assumptions.

A More General Notion of Distance

In the above discussion, we show how the
isoperimetric inequality can essentially use the measure
suph1,h2∈H dist(h1, h2) to obtain bounds on the
generalization error. As remarked above, Theorem 3
says nothing ifsuph1,h2∈H dist(h1, h2) = 0. Generalizing the
notion of ‘dist’ for classifiers, and considering the distance
from a single classifierh′ to a family H′ ⊆ H of classifiers,
we can obtain a stronger measure that again allows us to
derive a bound onsuph1,h2

∆(h1; h2), the generalization
error.

Definition 2: Given a classifierh, and r other classifiers
H′ = {h1, . . . , hr}, define the sets

K+ = K+({h} ∪ H′) = K+(h) ∩
r
⋂

i=1

K+(hi)

K− = K−({h} ∪ H′) = K−(h) ∩
r
⋂

i=1

K−(hi),

so thatK+({h} ∪ H′) is the set of points that all classifiers
in H′, and alsoh, label as‘+′, and similarly forK−. Now
we define the distance measure,dist(h,H′), from a classifier
h to a family of classifiersH, to be the Euclidean distance:

dist(h,H′) = dist(K+, K−).

If the intersection is empty, we define dist to be zero.
For k = 2, Figure 2 illustrates the generalized concept
of dist, and further shows that Theorem 3 holds with
suph1,h2∈H dist(h1, h2) replaced by the new distance concept,

sup
{h,h1,h2}⊆H

dist(h, {h1, h2}).

Indeed the phenomenon illustrated in Figure 2 holds in

t1
t3

t2h3
h2

h4 B2

B3

B1
h3
h2

h1h1 (a) (b)
Fig. 2. In (a) above we have three classifiers,{h1, h2, h3}, so that
for any two, dist(hi, hj) = 0. Nevertheless, for anyh ∈ {h1, h2, h3},
there existsh′ ∈ {h1, h2, h3} (with h′ 6= h) so that if htrue =
h′, then ∆(h; h′) ≥ µ(B1)/2, where B1 is the shaded area. To see
this, note for instance that ifh = h1, then B1 = ∆(h1;h2) ∪
∆(h1; h3). We can then get a bound onµ(B1) by using the isoperi-
metric inequality, and the fact thatdist(h, {hi, hj}) = t1. In (b) we
add a fourth classifierh4. Here we see that if we chooseh = h4,
then the worst case generalization error is lower bounded bycompar-
ing the two distance measures,suph1∈H dist(h, h1) (our previous dis-
tance measure) and(1/2) sup{h1,h2}⊂H dist(h, {h1, h2}). In this example,
suph1∈H dist(h, h1) = t3, andsup{h1,h2}⊂H dist(h, {h1, h2}) = t2.

general. We can restate Theorem 3 using the distance to a
fixed classifier. The statement of Theorem 3 now becomes:
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Theorem 3′: Under the assumptions of Theorem 3, for every
h ∈ H there existsh′ ∈ H such that

∆(h; h′) ≥ e−β

diam(K)
max

{

P1 sup
h1∈H

dist(h, h1),

1

2
P2 sup

{h1,h2}⊆H
dist(h, {h1, h2})

}

where we have

P1 = inf
h1∈H

min{µ(K+(h1)), µ(K−(h1))}

P2 = inf
{h1,h2}⊂H

min{µ(K+({h1, h2})), µ(K−({h1, h2}))}.

The proof follows directly. This restatement of Theorem 3 is
in fact somewhat stronger, since when the two inequalities of
Theorem 3 do not coincide, themax in the restatement picks
out the stronger lower bound.

We can obtain a general version of this result.
Theorem 4:Under the assumptions of Theorem 3, for every

h ∈ H and for anyǫ > 0, there existsh′ ∈ H such that
∆(h; h′) is bounded below by

e−β

diam(K)
max
r∈N

{

1

r
Pr( sup

{h1,...,hr}⊆H
dist(h, {h1, . . . , hr}) − ǫ)

}

,

wherePr is given by

inf
{h1,...,hr}⊂H

min{µ(K+({h1, . . . , hr})), µ(K−({h1, . . . , hr}))}.
(IV.8)

PROOF. This proof closely follows that of Theorem 3.4 For
everyǫ > 0 andr ∈ N, choose{h1, . . . , hr} ⊆ H that attain
the supremum on the right hand side of (IV.8) withinǫ. Let
K+ = K+(h, h1, . . . , hr), and K− = K−(h, h1, . . . , hr).
Now let B = K \ (K+ ∪K−). By Theorem 2, it follows that

µ(B) ≥ e−β dist(h, {h1, . . . , hr})
diam(K)

min{µ(K+), µ(K−)}.
(IV.9)

Now, we can writeB as the union ofr possibly overlapping
sets, where each set defines the area whereh differs with one
of the hi:

B =

r
⋃

i=1

{h 6= hi}

=

[

r
⋃

i=1

(K−(h) ∩ K+(hi))

]

∪
[

r
⋃

i=1

(K+(h) ∩ K−(hi))

]

=

r
⋃

i=1

[(

K−(h) ∩ K+(hi)
)

∪
(

K+(h) ∩ K−(hi)
)]

.

The second equality follows by the associativity of unions.For
the first equality, we have simply expanded out our definition
of K+ and K− from above: Take anyx ∈ B. Supposex ∈
K−(h). Sincex ∈ B, thenx /∈ K−, and thus there must exist
somei for whichx /∈ K−(hi), which meansx ∈ K+(hi), and
hencex ∈ K−(h) ∩ K+(hi). The reverse inclusion follows
similarly.

4Note again that ifH is compact, we can setǫ = 0. Furthermore, themax
over N is attained for some finiter ∈ N, since dist is bounded uniformly
with respect tor in N.

Consequently, we have

µ(B)≤r max
i

{

µ((K−(h) ∩ K+(hi))∪(K+(h) ∩ K−(hi)))
}

.

Letting i∗ be the maximizing index of the right hand side, we
have∆(h, hi∗) ≥ 1

r µ(B). Substituting in Equation IV.9, we
then have that∆(h, hi∗) is at least

e−β

diam(K)

(

min{µ(K+), µ(K−)}
) 1

r
dist(h, {h1, . . . , hr}).

This concludes the proof. �

V. REGRESSIONTUBES

In this section we consider regression problems, and provide
results of a different flavor. Throughout the section we letk be
a function fromR

n to R
m. We provide lower bounds on the

weight of tubes aroundk. The probabilistic setup is as follows.
We have a probability measureµ with densityf on R

n+m that
prescribes the probability of getting a pair(x, y) ∈ R

n ×R
m.

The densityf has support on the setK. For a specific function
k : R

n → R
m we consider the set

T k
ǫ0,ǫ1

△
= {(x, y) : ǫ0 ≤ ‖k(x) − y‖ ≤ ǫ1}.

This set represents all the pairs where the prediction ofk is
off by more thanǫ0 and less thanǫ1, or alternatively, the
set of pairs whose prediction is converted to zero error when
changing theǫ in an ǫ-insensitive error criterion fromǫ0 to ǫ1.
Different assumptions on the joint densityf lead to different
results. We start with a simple case representing an additive
independent noise model, and then consider the case wheref
is β-log-concave jointly inx and y. We finally consider the
more complicated case, wheref is β-log-concave inx andβ′-
log-concave iny conditioned onx. We provide a lower bound
on the measure of the tube under some continuity assumptions.

As a motivation, consider the classical regression setup
where

Y = k(X) + N, (V.10)

whereX is the independent random variable,N is additive
noise, andY is the dependent variable. The results of this
section apply to non-additive noise models as well. If the
noise N is arbitrary, we cannot hope to obtain a bound on
the measure of the intermediate tube in terms of the inner
and outer tubes, since the noise may alternate between putting
the weight on the inner and the outer tubes. We make certain
specific assumptions concerning the continuity of the noise
process.

Let us define the projection of a tube for a specificx by

T k
ǫ0,ǫ1(x)

△
= {y : ǫ0 ≤ ‖k(x) − y‖ ≤ ǫ1}.

We denote the marginal density byfx and the conditional
density byfy|x. The associated measures are then denoted by
µx andµy|x.

If the noise in (V.10) is independent ofx, we can straight-
forwardly derive a lower bound on the measure of the inter-
mediate tube.

Corollary 3: Consider the model of Eq. (V.10). Suppose
that N is independent ofx and has aβ-log-concave distribu-
tion. Suppose further thatN has bounded supportKY , with
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0 ∈ KY (this is always true ifN has zero mean). Then for
every probability measure onX , we have that:

µ(T k
ǫ0,ǫ1) ≥

(ǫ1 − ǫ0)e
−β

diam(KY )
min

{

µ(T k
0,ǫ0), µ(T k

ǫ1,diam(KY ))
}

.

(V.11)
PROOF. SinceN is independent ofx and using Theorem 2,
we have that for everyx:

µy|x(T k
ǫ0,ǫ1(x)) ≥ e−β ǫ1 − ǫ0

diam(KY )
·

min
{

µy|x(T k
0,ǫ0(x)), µy|x(T k

ǫ1,diam(KY )(x))
}

.

By definition,

µ(T k
0,ǫ0) =

∫

Rn

fx(x)µy|x(T k
0,ǫ0(x))dx,

and similarly forT k
ǫ0,ǫ1 andT k

ǫ1,∞. Sinceµy|x(T k
0,ǫ0(x)) is the

same for allx, we obtain (V.11). �

It is worth mentioning that Corollary 3 does not require
any assumptions onX , and in particular the support offx is
not assumed bounded. For the case of unbounded noise with
finite variance (e.g., Gaussian noise) one can use Proposition
1 instead of Theorem 2 and obtain a similar bound (replacing
diam(KY ) with 4

√
2σ and having power of3/2 inside the

minimum).
We next consider the case where the densityf(x, y) is β-

log-concave jointly inx andy. This may arise in a situation
where Eq. (V.10) holds withN independent ofx, but we do
not know what is the truek function. In that case we can still
consider the measure of the intermediate tube defined by some
other functionk′. The linear case is particularly simple as the
next lemma shows:

Lemma 6:Suppose that the model of Eq. (V.10) holds and
that X is β-log-concave. IfN is β′-log-concave and ifk(x)
is linear, we have thatf(x, y) is (β + β′)-log-concave.
PROOF. We have thatf(x, y) = fx(x)fy|x(y|x) = fx(x)g(y−
Ax), whereA is some matrix (k(x) = Ax) andg is aβ′-log-
concave conditional noise density. Forλ ∈ [0, 1] we have that

f(λ(x1, y1) + (1 − λ)(x2, y2))

= f(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

= fx(λx1 + (1 − λ)x2) ·
g(λy1 + (1 − λ)y2 − A(λx1 + (1 − λ)x2))

= fx(λx1 + (1 − λ)x2) ·
g(λ(y1 − Ax1) + (1 − λ)(y2 − Ax2))

≥ e−βfx(x1)
λfx(x2)

1−λe−β′

g(y1−Ax1)
λg(y2−Ax2)

1−λ

= e−(β+β′)f(x1, y1)
λf(x2, y2)

1−λ.

�

Corollary 4: Suppose thatf(x, y) is β-log-concave on a
bounded setK ⊆ R

n+m, with induced measureµ. Assume
that k is Lipschitz continuous with constantL, and that
(x, k(x)) ∈ K for every x ∈ K|X . Then for everyǫ1 >
ǫ0 > 0,

µ(T k
ǫ0,ǫ1)≥

(ǫ1 − ǫ0)e
−β

√
L2+1diam(K)

min
{

µ(T k
0,ǫ0), µ(T k

ǫ1,diam(K))
}

.

(V.12)

PROOF. We use Theorem 2 with the decompositionK1 =
T k

0,ǫ0, B = T k
ǫ0,ǫ1 and K2 = T k

ǫ1,diam(K). By the Lips-
chitz continuity of k, we getd(T k

0,ǫ0 , T
k
ǫ1,diam(K)) ≥ (ǫ1 −

ǫ0)/
√

L2 + 1, as follows. Take any(x1, y1) ∈ T k
0,ǫ0 , and

(x2, y2) ∈ T k
ǫ1,diam(K). Let η = ||x1 − x2||. Then ||k(x1) −

k(x2)|| ≤ Lη, and thus||y1 − y2|| ≥ (ǫ1 − ǫ0)−Lη, and thus
d((x1, y1), (x2, y2))

2 ≥ η2 + ((ǫ1 − ǫ0) − Lη)2. Optimizing
this bound overη we find thatη = (ǫ1 − ǫ0)L/(1+L2) gives
the desired bound. �

A direct implication of Corollary 4 and Lemma 6 is that if
the true model is linear, and bothX and Y |x are β and β′

log-concave, respectively, then every function (not necessarily
linear) satisfies inequality (V.12).

We now consider a different model where instead of assum-
ing thatx andy are jointly β-log-concave, we assume thatx
is β-log-concave and thaty is β′-log-concave conditioned on
x. We defineK|X to be the projection ofK on the firstn
dimensions.

Definition 3: A density f(x, y) is β-β′ conditional log-
concave if the marginalf(x) =

∫

Rm f(x, y) is β-log-concave
and if the conditionalf(y|x) = f(y, x)/f(x) is β′-log-
concave for allx ∈ K|X .

The following theorem asserts that a similar bound to (V.12)
can be obtained even forβ-β′ conditional log-concave distri-
butions. The setup is, however, considerably more general.
It includes, for example, regression where the independent
parameter,x, is sampled from a uniform distribution, and the
dependent parameter equalsy = k(x) + N , whereN is some
β-log-concave function that depends onx. We denote byBℓ

the unit ball inR
ℓ.

Theorem 5:Suppose thatf(x, y) is β-β′ conditional log-
concave on a bounded setK ⊆ R

n+m, with induced measure
µ. Fix ǫ1 > ǫ0 > 0. Assume further that there exist constants
C > 0, δ0 > 0, andρ > 0 such that for all(x, y) ∈ T k

ǫ0,ǫ1 ,
δ, δ′ < δ̂ ≤ δ0, ux ∈ Bm, anduy ∈ Bn:

∣

∣

∣

∣

1 − fy|x(y + δuy|x + δ′ux)

fy|x(y|x)

∣

∣

∣

∣

≤ Cδ̂ρ.

Assume thatk is Lipschitz continuous with constantL. Then:
µ(T k

ǫ0,ǫ1) is lower bounded by

1

18

(ǫ1 − ǫ0)e
−(β+β′)

diam(K)
min

{

1,
min{δ0, 1/(2C)1/ρ}
diam(K)max{1, L}

}

·

min
{

µ(T k
0,ǫ0), µ(T k

ǫ1,diam(K))
}

.

PROOF. Fix positiveǫ0 < ǫ1. For a setX ⊆ K|X (this is a
set in R

n) we denote the extension to a set inR
n × R

m by
extK(X ) = {(x, y) : x ∈ X and (x, y) ∈ K}. We now define
two sets:

X in =
{

x : µy|x

(

T k
0,ǫ0(x)

)

≥ µy|x

(

T k
ǫ1,diam(K)(x)

)}

X out =
{

x : µy|x

(

T k
0,ǫ0(x)

)

≤ µy|x

(

T k
ǫ1,diam(K)(x)

)}

.

Note thatX in∪X out = K|X . We consider the following three
cases.
Case 1:X in = K|X , that is, the inner tube is always heavier
than the outer tube. In this case, for everyx we apply Theorem
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2 to the conditional measure, to obtain:

µy|x

(

T k
ǫ0,ǫ1(x)

)

≥ e−β′ ǫ1 − ǫ0
diam(K)

µy|x

(

T k
ǫ1,diam(K)(x)

)

.

Similarly to Corollary 3, integrating over allx ∈ K|X , we
obtain that

µ
(

T k
ǫ0,ǫ1

)

=

∫

K|x

fx(x)µy|x(T k
ǫ0,ǫ1(x)) dx

≥ e−β′ ǫ1 − ǫ0
diam(K)

µ
(

T k
ǫ1,diam(K)

)

.

So the result holds.
Case 2:X out = K|X . In this case the outer tube is heavier for
all x. In a similar manner to the previous case we can prove
that

µ
(

T k
ǫ0,ǫ1

)

=

∫

K|x

fx(x)µy|x(T k
ǫ0,ǫ1(x)) dx

≥ e−β′ ǫ1 − ǫ0
diam(K)

µ
(

T k
0,ǫ1

)

.

Case 3: Both X in 6= K|X and X out 6= K|X . In that case
it follows from continuity of f and k that the setX eq =
X in ∩ X out is not empty. For everyx in X eq we have from
Theorem 2 that:

µy|x(T k
ǫ0,ǫ1(x)) ≥ e−β′ ǫ1 − ǫ0

diam(K)
µy|x(T k

0,ǫ0(x)).

Sinceµy|x(T k
ǫ0,ǫ1(x)) + 2µy|x(T k

0,ǫ0(x)) = 1 for x ∈ X eq, by
solving forµy|x(T k

0,ǫ0(x)), substituting in the inequality above
and collecting terms, we obtain that

µy|x(T k
ǫ0,ǫ1(x)) ≥ e−β′ ǫ1 − ǫ0

diam(K)
· 1

2 + e−β′ ǫ1−ǫ0
diam(K)

≥ e−β′

3

ǫ1 − ǫ0
diam(K)

.

We first consider the continuity ofµy|x(T k
ǫ0,ǫ1(x)) as a

function of x.
∣

∣µy|x(T k
ǫ0,ǫ1(x)) − µy|x(T k

ǫ0,ǫ1(x
′))
∣

∣

=

∣

∣

∣

∣

∣

∫

T k
ǫ0,ǫ1

(x)

fy|x(y|x) −
∫

T k
ǫ0,ǫ1

(x′)

fy|x(y|x′)

∣

∣

∣

∣

∣

dy

=

∣

∣

∣

∣

∣

∫

T k
ǫ0,ǫ1

(x)

fy|x(y|x)−
∫

T k
ǫ0,ǫ1

(x)

fy|x(y−k(x)+k(x′)|x′)

∣

∣

∣

∣

∣

dy

=

∣

∣

∣

∣

∣

∫

T k
ǫ0,ǫ1

(x)

fy|x(y|x)(1 − fy|x(y − k(x) + k(x′)|x′)

fy|x(y|x)
)

∣

∣

∣

∣

∣

dy

≤
∫

T k
ǫ0,ǫ1

(x)

∣

∣

∣
fy|x(y|x) ·

(1− fy|x(y + L‖x− x′‖uy|x + ‖x − x′‖ux)

fy|x(y|x)
)
∣

∣

∣
dy,

where the last inequality is due to the Lipschitz continuityof
k andux ∈ Bm anduy ∈ Bn. It follows from the continuity
assumption onfy|x that if max{L, 1}‖x− x′‖ ≤ δ0,
∣

∣µy|x(T k
ǫ0,ǫ1(x)) − µy|x(T k

ǫ0,ǫ1(x
′))
∣

∣

≤ µy|x(T k
ǫ0,ǫ1(x))C (max{L, 1}‖x− x′‖)ρ .

Fix δ = min{δ0, 1/(2C)1/ρ}/ max{1, L}. Then for everyx′

such that‖x − x′‖ ≤ δ, we have that

µy|x(T k
ǫ0,ǫ1(x

′)) ≥ 1

2
µy|x(T k

ǫ0,ǫ1(x)). (V.13)

DefineX eq,δ to be theδ expansion ofX eq , that is

X eq,δ = {x ∈ K|X , ‖x − x′‖ ≤ δ for somex ∈ X eq}.

Assume first thatµ(T k
0,ǫ0) ≤ µ(T k

ǫ1,diam(K)). We bound
µ(T k

ǫ0,ǫ1) in terms ofµ(T k
0,ǫ0). We have that:

µ(extK(X out \ X eq,δ) ∩ T k
0,ǫ0) + µ(extK(X eq,δ) ∩ T k

0,ǫ0)

+µ(extK((X in \ X eq,δ)) ∩ T k
0,ǫ0) = µ(T k

0,ǫ0). (V.14)

One of the summands in (V.14) must be at leastµ(T k
0,ǫ0)/3.

We consider each case separately:
Case 3.1:µ(extK(X out\X eq,δ)∩T k

0,ǫ0) ≥ µ(T k
0,ǫ0)/3. In that

case we have that

µ(T k
ǫ0,ǫ1) ≥

∫

X out\X eq,δ

fx(x)µy|x(T k
ǫ0,ǫ1(x))

≥
∫

X out\X eq,δ

fx(x)e−β′ ǫ1 − ǫ0
diam(K)

µy|x(T k
0,ǫ0(x))

= e−β′ ǫ1 − ǫ0
diam(K)

∫

X out\X eq,δ

fx(x)µy|x(T k
0,ǫ0(x))

≥ e−β′ ǫ1 − ǫ0
diam(K)

µ(T k
0,ǫ0)

3
. (V.15)

Case 3.2:µ(extK(X eq,δ) ∩ T k
0,ǫ0) ≥ µ(T k

0,ǫ0)/3. As before,

µ(T k
ǫ0,ǫ1) ≥

∫

X eq,δ

fx(x)µy|x(T k
ǫ0,ǫ1(x)).

Since Ineq. (V.13) holds for allx ∈ X eq,δ for our choice of
δ, we obtain:

µ(T k
ǫ0,ǫ1) ≥

∫

X eq,δ

fx(x)
1

6
e−β′ ǫ1 − ǫ0

diam(K)

=
1

6
e−β′ ǫ1 − ǫ0

diam(K)
µ(extK(X eq,δ))

≥ 1

6
e−β′ ǫ1 − ǫ0

diam(K)

µ(T k
0,ǫ0)

3
. (V.16)

Case 3.3:µ(extK(X in \X eq,δ)∩T k
0,ǫ0) ≥ µ(T k

0,ǫ0)/3. In that
case we have thatµx(X in \ X eq,δ) ≥ µ(T k

0,ǫ0)/3. Since we
assumed thatµ(T k

0,ǫ0) ≤ µ(T k
ǫ1,diam(K)) one of the three cases

must hold:
Case 3.3.1:µ(extK(X in\X eq,δ)∩T k

ǫ1,diam(K)) ≥ µ(T k
0,ǫ0)/3.

In this case we can use the same maneuver as in Case 3.1
(applied toX in) and (V.15) holds.
Case 3.3.2:µ(extK(X eq,δ) ∩ T k

ǫ1,diam(K)) ≥ µ(T k
0,ǫ0)/3. In

this case we can use the same maneuver as in Case 3.2 and
(V.16) holds.
Case 3.3.3: µ(extK(X out \ X eq,δ) ∩ T k

ǫ1,diam(K)) ≥
µ(T k

0,ǫ0)/3. In this case we have thatµx(X out) ≥ µ(T k
0,ǫ0)/3

and µx(X in) ≥ µ(T k
0,ǫ0)/3. We can use Theorem 2 forµx

and obtain that:

µx(X eq,δ) ≥ e−β δ

diam(K)
µ(T k

0,ǫ0)/3.
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Substituting the value ofδ, and similarly to Case 3.2:

µ(T k
ǫ0,ǫ1)

≥
∫

X eq,δ

fx(x)
1

6
e−β′ ǫ1 − ǫ0

diam(K)

=
1

6
e−β′ ǫ1 − ǫ0

diam(K)
µ(extK(X eq,δ))

≥ 1

6
e−(β′+β) ǫ1 − ǫ0

diam(K)2
min{δ0, 1/(2C)1/ρ}

max{1, L}
µ(T k

0,ǫ0)

3
.

The case whereµ(T k
0,ǫ0) > µ(T k

ǫ1,diam(K)) follows similarly.
The result follows by taking the worst case of the five cases.
�

Several remarks are in order. First, the boundedness assump-
tion can be relaxed in a similar manner to Corollary 2 or
Proposition 1, with appropriate changes. Second, a continuity
assumption ofk is necessary, and counterexamples where dis-
continuity invalidates the theorem can be easily derived. Third,
as a result of the continuity requirement onf , Theorem 5 is
dimension independent. Iff is instead Lipschitz continuous,
one can still retain a similar result, however, a dimension
dependent constant would be needed for Case 3.3.3.

VI. B OUNDING THE SIZE OF THE MARGIN

In this section we consider the problem of computing the
likelihood that data generated by aβ-log-concave distribution
will have a large margin, and again show that this question can
be approached using the isoperimetric inequality. We consider
the standard machine learning setup, and assume that the data
are sampled from aβ-log-concave distribution. We examine
the geometric margin as opposed to the “functional” margin
which is often defined with respect to a real valued functiong.
In that case classification is performed by consideringh(x) =
sign(g(x)) and the margin ofg at (x, y) ∈ R

n×{−1, 1} is de-
fined asg(x)y. If such a functiong is Lipschitz with a constant
L, then forx ∈ K+(h) the event that{d(x, K−(h)) < γ} is
contained in the event that{g(x) < γL} (and forx ∈ K−(h)
if d(x, K−(h)) < γ then−g(x) < γL). Consequently, results
on the geometric margin can be easily converted to results on
the “functional” margin as long as the Lipschitz assumption
holds.5

Suppose now that we have a classifierh, and we ask
the following question: what is the probability that if we
sample N vectors XN = x1, . . . , xN from f , they are
far away from the boundary betweenK+(h) and K−(h).
More precisely, we want to bound the probability of the
event

{

mini:xi∈K+(h) d(xi, K
−(h)) > γ

}

, and similarly for
negatively labelled samples. We next show that the probability
that a sampled point is some distance from the boundary, is
almost linear in this distance. An immediate consequence is
an exponential concentration inequality.

Proposition 3: Suppose we are given a classifierh defined
on a bounded setK. Fix someγ > 0 and consider the set

5This is the case if, for instance, we consider kernel machines where the
resulting classifier is of the formsgn(

P
i αik(xi, x)), where the kernel itself

is Lipschitz continuous, and we also have that the sum of the coefficients is
controlled, i.e.,

P
i |αi| is finite. AnL1 regularization certainly achieves this.

L2 regularization along with a separate sparseness conditionis also sufficient.

B = {x ∈ K−(h) : d(x, K+(h)) < γ}. Let f be aβ-log-
concave density onK with induced measureµ. Then

µ(B) ≥ γ
e−β

diam(K)
min

{

µ(K+(h)),
µ(K−(h))

1 + γe−β/ diam(K)

}

.

PROOF. Consider the decomposition ofK to K1 = K+(h),
B, and K2 = K−(h) \ B. By Theorem 2 we know that
µ(B) ≥ γe−β min{µ(K1), µ(K2)}/ diam(K). We also know
that µ(B) = µ(K−(h)) − µ(K2). So that

µ(B) ≥ max{γe−β min{µ(K1), s}/
diam(K), µ(K−(h)) − s}, (VI.17)

where s = µ(K2). Minimizing over s in the interval
[0, µ(K−(h))], it is seen that the minimizers is either at the
point whereµ(K−(h))−s = γe−βµ(K1)/ diam(K) or at the
point whereµ(K−(h)) − s = sγe−β/ diam(K). Substituting
thoses in Ineq. (VI.17) and some algebra gives the desired
result. �

A similar result holds by interchangingK+ and K−

throughout Proposition 3 and the definition ofB. The fol-
lowing corollary is a two-sided version of Proposition 3. It
does not haveγe−β/ diam(K) inside the minimum.

Corollary 5: Suppose we are given a classifierh defined
on a bounded setK. Fix someγ > 0 (diam(K) ≥ γ) and
consider the setBsymm = {x ∈ K−(h) : d(x, K+(h)) <
γ} ∪ {x ∈ K+(h) : d(x, K−(h)) < γ}. Let f be aβ-log-
concave density onK with induced measureµ. Then

µ(Bsymm) ≥ γ
e−β

diam(K)
min

{

µ(K+(h)), µ(K−(h))
}

.

PROOF. Let B+ = {x ∈ K+(h) : d(x, K−(h)) < γ} and
B− = {x ∈ K−(h) : d(x, K+(h)) < γ}. We have that
µ(Bsymm) = µ(B+) + µ(B−). From Proposition 3 we have
that

µ(B−)≥ γ
e−β

diam(K)
min

{

µ(K+(h)),
µ(K−(h))

1 + γe−β/ diam(K)

}

and

µ(B+)≥ γ
e−β

diam(K)
min

{

µ(K−(h)),
µ(K+(h))

1 + γe−β/ diam(K)

}

.

If the minimum is obtained byµ(K+(h)) for µ(B−) or by
µ(K−(h)) for µ(B+), then the result holds. Suppose that the
minimum is obtained by the second term for bothµ(B−) and
µ(B+). We therefore have in that case that

µ(Bsymm) = µ(B+) + µ(B−)

≥ γ
e−β

diam(K)

µ(K−(h)) + µ(K+(h))

1 + γe−β/ diam(K)

= γ
e−β

diam(K)

1

1 + γe−β/ diam(K)

≥ γ
e−β

diam(K)

1

2
,

where the last inequality follows sinceγ ≤ diam(K). The
result follows. �

Corollary 6: Suppose that N samples XN =
{x1, . . . , xN} are drawn independently from aβ-log-
concave densityf defined on a bounded setK. Let h be a
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classifier. Then for everyγ > 0:

Pr

(

min
{i : xi∈K−(h)}

d(xi, K
+(h)) > γ

)

≤ exp

(

−NγC min

{

µ(K+(h)),
µ(K−(h))

1 + γC

})

,

wherePr is the probability measure of drawingN samples
from f andC = e−β/ diam(K).
PROOF. The proof follows from Proposition 3 and the
inequality(1− a)N ≤ exp(−aN) for a ∈ [0, 1] andN ≥ 0.�

Corollary 6 is a dimension-free inequality. It implies that
when sampling from aβ-log-concave distribution, then for
any specific classifier we cannot hope to have a large margin.
It does not claim, however, that the empirical margin is small.
Specifically, forXN = {x1, . . . , xN} one can consider the
probabilistic behavior of the following empirical gap between
the classes:gap(XN ; h) = mini,j:h(xi) 6=h(xj) d(xi, xj). The
probability that this quantity is larger thanγ cannot be
bounded in a dimension-free manner. The reason is that as the
number of dimensions grows to infinity the distance between
the samples may become bounded away from zero. To see
this, consider uniformly distributed samples on the unit ball
in R

n. If n is much bigger thanN , it is not hard to prove that
all the sampled vectors will be (with high probability) equally
far apart from each other. Sogap(XN ; h) does not converge
to 0 (for every non-trivialh) in the regime wheren increases
fast enough withN . For every fixedn one can bound the
probability thatgap(XN ; h) is large using covering number
arguments, as in [27], but such a bound must be dimension-
dependent.

A quantity related to the empirical margin, is the margin to a
set of classifiers with more than one, indeed possibly infinite,
classifiers. In such cases, a uniform bound in the spirit of
Corollary 6 is of interest. Specifically, let the empirical margin
of a classifierh on sample pointsXN be denoted by:

margin(XN ; h)
△
=

min{d((XN ∩K−(h)), K+(h)), d((XN ∩K+(h)), K−(h))}.
It is of interest to boundPr (suph∈H margin(XN ; h) ≥ γ).
This bound, necessarily, must depend on the size of the space
of classifiers, much like a bound on the empirical gap must
depend on the dimension. This is an appropriate bound to
consider whenH consists of a set of, in some sense, equally
reasonable classifiers. That is to say, if, for example,µ is a
one-dimensional Gaussian distribution, then ifH contains a
(linear) classifier far out in the tail of the distribution, the
uniform bound on the margin will be useless, as that classifier
will essentially dominate the probability that there is a large
margin.

If H = {h1, . . . , hm}, then by an appeal to the union bound,
we have

Pr

(

max
h∈H

margin(XN ; h) ≥ γ

)

≤

m max
h∈H

{Pr (margin(XN ; h) ≥ γ)} .

Using covering numbers we can extend the use of the union
bound to infinite classifier families. We construct theε-net

using the metric structure of the sample space, i.e., using
the same distance as that used to compute the sizeγ of the
margin. We define for this purpose the distanceϕ between
two classifiersh′, h′′ ∈ H as

ϕ(h′, h′′)
△
=

max

{

sup
x∈K−(h′)

inf
y∈K−(h′′)

d(x, y); sup
x∈K+(h′)

inf
y∈K+(h′′)

d(x, y)

}

.

Note that this definition is symmetric inh′ andh′′. Therefore,
given anyε > 0, and h ∈ H, the ε-ball abouth is the set
Bε,ϕ(h) ⊆ H of classifiersh′ ∈ H, with ϕ(h, h′) ≤ ε.
Therefore, as usual, anε-cover Hε of H is a collection
{h1, . . . , hNε} ⊆ H such that for anyh ∈ H, there exists
somehj ∈ Hε with ϕ(h, hj) ≤ ε. Then, we have the following
corollary of Proposition 3 and Corollary 6.

Corollary 7: Let H be a family of classifiers. Forε > 0,
let Hε be anε-cover, with covering numberNε,ϕ. Then,

Pr

(

max
h∈H

margin(XN ; h) ≥ γ

)

≤

inf
ε,Hε,ϕ

{

Nε,ϕ max
h∈Hε

Pr
(

margin(XN ; h) ≥ γ − ε
)

}

Thus for the best bound obtainable in this fashion, we must
find the optimal tradeoff between the fineness of the covering,
and the size of the resulting cover.

Computingε-covers with this metric, and thus the subse-
quent optimization problem, can be readily done in a number
of common cases. For example, this is the case ifH is the set
of linear classifiers through the origin, andK is compact, or
if H is the set of classifiers parallel to a given hyperplane.
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[20] M. Fradelizi and O. Guédon. The extreme points of subsets ofs-concave
probabilities and a geometric localization theorem.Discrete Comput.
Geom., 31(2):327–335, 2004.
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