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Abstract— We prove that given a nearly log-concave distribu- In Section Il we prove an inequality stating that the
tion, in any partition of the space to two well separated setsthe  measure (under @-log-concave density) of the “no-man’s
measure of the points that do not belong to these sets is largé/e land” is large if the sets are well separated. This result

apply this isoperimetric inequality to derive lower boundson the . . , . . .
generalization error in learning. We further consider regression relies essentially on the Prékopa-Leindler inequalityiaith

problems and show that if the inputs and outputs are sampled IS & generalization of the Brunn-Minkowski inequality (we
from a nearly log-concave distribution, the measure of poits for  refer the reader to the excellent survey [4]). We note that
which the prediction is wrong by more than ¢y and less thane:  the isoperimetric inequality we prove (Theorem 2) was state
is (roughly) linear in ¢; —¢€o, as long ase is not too small, ande; in [5] for volumes, and in [6] for continuous-log-concave
not too large. We also show that when the data are sampled from distributions, in the context of efficient sampling from ger

a nearly log-concave distribution, the margin cannot be lage in ] ’ ) Y )

a strong probabilistic sense. bodies. However, the proof sketched in [6] relies in an disen
way on having a continuous density ([7]). We provide a
complete proof of the more general result using the Ham-
Sandwich Theorem (as in [5], but using a different method)
and a different reduction argument. We further point outva fe

. INTRODUCTION natural extensions.

In Section IV we specialize the isoperimetric inequality to
rovide lower bounds for the generalization error in cliassi
Jlion under the assumption that the classifier will be teste

ing afB-log-concave distribution, which did not necessarily
enerate the data. While this assumption is not in line with
he standard PAC (Probably Approximately Correct) leagnin
formulation (see, e.g., [8]), it is applicable to the setupeve

ata are sampled from one distribution and performance is

dged by another. Suppose, for instance, that the gengrati

Index Terms— classification, generalization error, margin, sta-
tistical learning theory

Large margin classifiers (e.g., [1], [2] to name but a fe
recent books) have become an almost ubiquitous approac
supervised machine learning. The plethora of algorithras t
maximize the margin, and their impressive success (e..,
and references therein) may lead one to believe that obtaai t
large margin is synonymous with successful generalizatiah
classification. In this paper we directly consider the goest
of how much weight the margin must carry. We show th
essentially if the margin between two classes is large, then
weight of the “no-man’s land” between the two classes m

are sampled from a nearly log-concave distribution. Unkiisr_t lassifier. Another important motivation is the case whaee t

?ssumftlon,t:/\{{er] ar;)r:/e(;h?t for 5;)”): part|t|t<;]n of tthe sp?;_e ""fhta were indeed generated by the true distribution, but a
Wo sets such that the distance between those two SEteis gPrtion of the data were erased, or lost.

Lneas(tjjrg gf tf:g notrr1]1an§ Ignd ouftstlr(]je the two se;strl]s l?W In the absence of further information about the generating
ounded byl times the minimum of the measure of the Wistribution or its evolution, or the data erasure, it beesm

(S):?ttiigr?:ssul?igI:Ezpzl?gr-freefn;??ﬁtﬁsnﬁn-IEITSI d\'/\rlﬁgn'r:;)m?itr']natural to ask “how bad” the training data may be. We show
data f h a di t'bgt' 9 y MMMNat if there is a large (in a geometric sense) family of
ata from such a distribution. classifiers that agree with the training points, then for any

Our modelling assumption s that.the upderlying di§tributi choice of classifier there exists another classifier contpare
has af-log-concave density. While this assumption Ma¥hich the generalization error is relatively large.

appear restrictive, we note that many “reasonable” funstio In Section V we investigate regression problems. We con-

belong to_thls family. We d|scgss this as_sumpt|on In SeCtIQﬂder several regression models and lower bound the measure
Il, and point out some interesting propertiesffog-concave of a tube around the prediction with inner radiagsand outer

functions. radiuse;. The measure of this tube represents the probability
A preliminary version appeared in the 17th Annual Confeeenic Learning F)f a pred!ctlon error betweer, and ¢ (equwalently, this
Theory (COLT) 2004, Lecture Notes in Computer Science 3p2@es 534- is the weight of samples that become erroneous when we
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€1 — €o times a constant (as long ag is not too small, and The class of log-concave distributions itself is rathehric
€1 not too large). We then consider a setup where the noiSer example, it includes the Gaussian, Uniform, Logistig] a
and the independent variable are drawn from a distributi@xponential distributions. We refer the reader to [15] for a
which is jointly 8-log-concave and show that the result extendsctensive list of such distributions, sufficient condiscior a
to this setup. This setup is particularly interesting beeait distribution to be log-concave, and ways to “produce” log-
applies to linear prediction when the measure is generateddoncave distributions from other log-concave distribasio
some other (unknown) linear function. We then extend thihe class ofj-log-concave distributions is considerably richer
result to a conditional3-log-concave distribution and showsince we allow a factor o£=# in Ineq. (11.1). For example,
that similar results still hold even if the independent able while log-concavity implies a distribution must have a dount
is drawn first from ag-log-concave distribution, and thenous density, this is not the case félog-concave distributions.
the dependent variable is drawn from anotl¥elog-concave They can even have densities with arbitrarily many diseonti
distribution (with, perhaps, a differer). nuities, and without well-defined derivative. Neverths|ese
In Section VI we consider the standard statistical machiisee that while they are not regular in this respect, they have
learning setup, and show that for any classifier the prottgbilenough structure that much can be said about them. We now
of a large margin (with respect to that specific classifiegrovide some results that are useful in the sequel. We start
decreases exponentially fast to 0 with the number of samplé&®m the following observation (see, e.g., [6]).
if the data are sampled from @&-log-concave distribution. Lemma 1:The support of a3-log-concave density is a
It is important to note that thes-log-concave assumptionconvex set. Also,3-log-concave densities are bounded on
applies to the input space. If we use classification methodsunded sets.
such as kernel methods that use Mercer kernels ([9], [10Densities that arg-log-concave are not necessarily unimodal,
the margin is typically measured in the feature space. Singgt possess a unimodal quality, in the sense of Lemma 2 below.
the induced distribution in the feature space is not nec&gssaThis simple lemma captures the propertiegsebg-concavity
B-log-concave our results do not directly hold. If, howewkee that are central to our main results and subsequent applica-
kernel map is Lipschitz continuous with constdntthen we tions. It implies that if we have @-log-concave distribution
can relate the “functional” margin in the feature space ® tipn an interval, there cannot be any big “holes” or “valleys” i
“geometric” margin in the input space, and our results cargife mass distribution. Thus if we divide the interval intoei
over directly. intervals, if the middle interval is large, it must also gaer
Some recent results such as [11], [12] argue that the succegsof the weight. In higher dimensions, essentially thigssa
of large margin classifiers is remarkable since most classfat if we consider two subsets, then if the distance between
cannot have a useful embedding in some Hilbert space. Qué two sets is large, the mass of the “no-man’s land” wilbals
results provide a different angle, as we show that havinggla be large. This is essentially the content of Theorem 2 below.
margin is unlikely to start with. Moreover, if there happeas | emma 2: Suppose thatf(z) : [u1,us] — R is j-log-
be a large margin, it may well result in a large error (which igoncave on an intervaliy, us]. Let uy < z1 < x2 < us.

proportional to the margin). A notable feature of our bouisds Then for anyz € [z1, z2], at least one of the following holds:
that they are dimension-free and are therefore immune to the

curse of dimensionality (this is essentially due to thog- f(x) > fly)- e P, forallye [uy, 21],
concave assumption). We note the different flavor of ourltesu

from the “classical” lower bounds (e.g., [13], [14]) thatear or

mostly concerned with the PAC setup and where the sample F@)> fly)-e P
complexity is the main object of interest. We do not addre - ’
the sample complexity directly in this work.

for all y € [x2, us).

PRoOF  Consider anyr € [z1,xz2], and suppose, in order

to obtain a contradiction, that there exigts € [u1,z1] and

Yo € [w2,u2], such thatf(z) < f(yi)e ?, for i = 1,2. Then,
Il. NEARLY LOG-CONCAVE FUNCTIONS there exists\ € [0, 1] such that: = Ay; + (1 — \)ys, and thus

We assume throughout the paper that generalization erfyr-log-concavity off, we have:
is measured using a nearly log-concave distribution. Is thi
section we define such distributions and highlight some of /(%) fOwr + (1 - )\)?42)A
17

their properties. > e Pfy) f(yo)
Definition 1: A function f : R™ — R is -log-concavefor > e P(f(@)e’) (f(2)e®) N = f(x),
someg > 0 if for any A € (0,1), 1 € R"?, 25 € R", we
have that: a contradiction. O
_ A 1-A The following inequality has many uses in geometry, statis-
@1+ (1= Na) 2 e fla1) f(z2) (1-1) tics, and analysis (see [16] for a proof, and [4] for more
A function f is log-concavef it is 0-log-concave. context, uses, and references). Note that it is stated esyberct

A distribution is calleds-log-concave fif it is defined by a to a specifich € (0,1) and not to all\.
(B-log-concave density function. Henceforth, we refer tohbot Theorem 1 (Pekopa-Leindler Inequality)Let 0 < A < 1,
(B-log-concave distributions and their associabeldg-concave andh, g1, go be nonnegative integrable functions Bft, such
densities. thath((1—\)z+Xy) > g1(z) " g2(y)?, for everyz, y € R™.



Then IIl. | SOPERIMETRICINEQUALITIES

1-X A In this section we prove our main result concernifig
h(z)dx > (/ g1(x) dx) / g2(w)dz | . log-concave distributions. We show that if two sets are well
The following lemma plays’a key gart in the’ reductiofeParated, then the “no man’s land” between them has large
technique we use below. It essentially says that the piojectMeasure relative to the measure of the two sets. Results of
of a -log-concave distribution is stilB-log-concave. Recall this nature exist in the Ilteratgre for log-concave disttibns.
that the orthogonal projection of a s&t C R"+™ ontoR” is Recent results along these lines (e.g., [17]; for a survey se
defined ask| A (z €R": 3y € R™ st (2,y) € K} [18]) use a powerful localization lemma proved in [19] that
Lemma 3'E;t_f(a: ) be’ ayﬁ-log-coﬁ;:a\;ey densit)'/ on arequires a continuity assumption (for related results gisin

e . . generalized localization theorems, we refer the reade2@ [
convex seti ¢ R - For everyz in K|gn, consider the and [21]). Here, we provide a different proof that requires n

section K () 2 {(z,y) € R™*™ : (z,y) € K}. Then the g,ch regularity.

density F'(x) 2 fK(I) f(z,y) dy is f-log-concave onk |gn. We first prove the result for bounded sets and then provide
PrROOF This is a consequence of the Prékopa-Leindléwo immediate corollaries. Lef(x,y) denote the Euclidean
inequality (as in [4] for log-concave functions). Fix,z2 € distance inR™. We define the distance between two sets
K|g~. Define the functiongy;(y) = f(z;,y) for i = 1,2. K; and K, as d(K1, Ka) 2 infyek, yer, d(z,y) and the

Thereforeg;(-) is defined onk (z;), i = 1,2. For A € (0,1),  diameter of a sek asdiam(K) 2 sup, sex d(z,y). Given a
letz = Az1+(1-A)zz, and define the functioh(y) = f(z.y)  density f we say thap(K) = [, f(x)dx is the induced mea-
defined onK (z). By the convexity of K, AK(z1) + (1 —  gsyre. A decomposition of a closed g6tC R to a collection
A K (z2) € K(z). In particular, for anyy; € K(z;), i =1,2, of closed setsk, Ko, ..., K, satisfies thatU‘f_1 K, =K
the point(z, y) = Mx1,51) + (1= A)(22,52) € K(x). By the andy(K; N K,) = 0 for all i # j wherev is the Lebesgue

B-log-concavity of f(z, y), measure orR™.
Theorem 2:Let K be a closed and bounded convex set
, = Mz, 1-A , . . ‘ ; -
I(@.y) > ;Exixél)yi) —}—(552 y2))1(_x,\263_/25)) with non-zero diameter iR™ with a decompositionx’ =

K1UBUK,. For anyg-log-concave density(z), the induced
and therefore this implied(\y; + (1 — \)y2) > gi(y1)* - Measureu satisfies
g2(y2)' e P d(K., K
Denoting the indicator function by(-), we have w(B) = eﬁd(iﬁ’;)) min{u (K1), n(K2)}
\ We remark that this bound is dimension-free. The ratio
h(Ay1+ (1= N)y2) X (2) (¥) = (91(y1) - ml)(yl))l'_)\ s d(K, K,)/diam(K) is necessary, as essentially it adjusts
(92(y2) )(B2) e oy any scaling of the problem. We further note that the
But then the functionsH (y) = e®h(y) - Xxc(x) (1), G1(y) = minimummin{(K1), 4(K2)} might be quite small; however,
91(1) - Xsc(an) (), ANAGa(y) = g2(y) - Xk (aa) (), SAiSTY the this appears to be unavoidable (e.g., consider the tail of a

hypotheses of the Prékopa-Leindler Theorem, and thus we aussian, which is Iog-concave). . )
write F(Az1 + (1 — A)z2) = F(z) as The proof proceeds by induction on the dimensiarnThe

B steps are as follows.

z,y) - . duy — hv) - . d (1) We prove the base case—= 1, in Lemma 4. Here, the
1@:9) xxe (W) dy /Rm W) X)) dy set K is an interval. The key tool we use is Lemma 2.

XK(
XK(

x2

Rm
s A A (2) The inductive step uses a projection argument to reduce
e /mgl (Y)XK @) (y) dy /ngﬂy)XK(rz)(y) dy to n — 1 dimensions. Lemma 5 reduces to the case of
A an “e-flat” set, i.e., a set contained in an ellipse whose
— B ( F@1,Y) - XK (@) () dy) . smallest axis is smaller than sorae> 0.
R™ (3) Once we have reduced to theflat case, we complete

1=A the induction by projecting taw — 1 dimensions where
o Fl@2,y) Xk (a2) (y) dy the result holds by inductive hypothesis. By properly
— F() - Flzs) e ", performing the projection, we show that if the result

holds for the projection, it holds for the original set.

Since this holds for alh € (0,1), F(z) is 8-log-concave.J] We abbreviate = d(K;, K2). The theorem trivially holds if

t = 0, so we can assume that- 0. From Lemma 1 above,
There are quite a few interesting properties @flog- we know that the support of (z) is convex. Thus, we can
concave distributions. For example, the convolution of assume without loss of generality that sinkeis compact,
(1-log-concave and &,-log-concave density i$8; + [2)- f(z) is strictly positive on the interior of.
log-concave; Gaussian mixtures arg-log-concave; and
mixtures of distributions with bounded Radon-NikodynStep 1:
derivative are alsq3-log-concave. Additional discussion of Lemma 4:Theorem 2 holds fon = 1.
these and other properties @flog-concave distributions is PROOE If n = 1, then K is some interval, K = [uq, us],
beyond the scope of this paper. with diam(K) = |uz — u1|. Sincet = d(Ki, K2) > 0, no



point of K, is within a distance (strictly less tham)from must be two consecutive3-intervals, say (rj—1,7;) and
any point of K. Furthermore, there must be at least on@-;;1,r;42) such that

interval (b1,b2) C B such that|bs — b1] > ¢, and such that 803

(b1,b2) N (K1 U K») = 0. Fix somee > 0, with ¢ < ¢/2. plrj—1, 7)) = e77(t/ diam(K))p([ug, 75-1]),
Define thee-expansion seté; = {r e K : d(z,K1) <€}, and

and Ky £ {z € K : d(z,K») < ¢}. Define B to be the P

closure of the complement i of K; U K,. Each set is pllriens rjte]) = e (8/ diam(K))p([rjy2, ug])-

a union of a finite number of closed intervals, and thus WEice [ur,75-1] U [rj12, us] contains either all ofk, or K
)= J ’ !

" o ‘ [u _ or _ R
have the decomplosm.o[ml, ug) = _Uizl[”—l’rf]' yvhere each combining these two inequalities, and using the fact fiaD
interval [ri—1,7;] is either aK;-interval, a Ks-interval, or K, andB C B, we obtain

a B-interval. We modify the sets so that if thB-interval
[ri—1,7] is sandwiched by twdX;-intervals ¢ = 1,2) then (B) > u(B) > u([rj_1,75] U [Fj41,7j42])
we add that interval td<;. If the B-interval is either the first ¢

interval [ro, 1], or the last intervalfry, 1, 7], then we add > efﬁm(ﬂ([ula7“.7‘—1])+M([7°j+2aU2]))
it to whichever setk;; is to its right, or left, respectively. R

The three resulting sets, K, and B are closed, intersect > 675; min{u(K1), u(Ka)}
at most at a finite number of points, and thus are a decompo- diam(K)
sition of K. Each set is a union of a finite number of closed > o B_t= 2¢ min{u(K1), p(K2)}.
intervals. Furthermoré,= d(K1, K») > t—2¢, andK; 2 Kj, - diam(K) ’
K3 2 Ky, and B C B. By our modifications above, eadd-  gjnce this holds for every > 0, the result follows. O

interval must have length at leaist

Consider anyB-interval [r;_, 7). Let 2 be a maximizef step 2: We now prove then-dimensional case. The
of f(x) on[us, uz], andzmin & Minimizer off(x) on[ri—1,7i].  first part of our inductive step is to show that it is enough
Suppose that™ > zmin. Then by Lemma 2, forany < ri_1, to consider an é-flat” set K. To make this precise, we use

we must havef (zmin) > f(y)e ", Therefore, the Lowner-John Ellipsoicbf a setk. This is the minimum
ri1 volume ellipsoid £ containing K (see, e.g., [22]). This
e Pu(fur,ricl]) = e*"/ f(z)dx ellipsoid is unique. The key property we use is that if we
U1 shrink E from its center by a factor of, then it is contained
< (rier —w1) f(@min) in K. We define are-flat set to be such that the smallest axis
< diam(K) - f(Zmin) of its Lowner-John Ellipsoid has length no more than
diam(K) [ Lemma 5: Suppose the theorefails by § on K, for some
< SR f)de ,
(ri — Ti—l) o 6>0,ie.
< P s, (14 0)u(B) < ¢ gt min{u().u(K)}. (112
If instead we haver* < zp,, then in a similar manner we Then for anye > 0, there exists someflat setK C K with
obtain the inequality decompositiork = K1 UBUK>, such thatk; C K;, B C B,
diam(K) d(K1, K3) > t, and dianiK) < d, and such that the theorem
e Pulri, uz]) < ———2u([ri—1,74)). fails by ¢, i.e., Ineq. (lIl.2) holds forK, K1, K», B.
t PrROOF Let K, K7, K5, B andé be as in the statement above.
Therefore, in general, for ang-interval (r;_1, 7;), Pick somee > 0 much smaller thart. Suppose that all

axes of the Lowner-John ellipsoid df are greater thanm.
i, i) > e t mind([ur, i1, (s, us])} A powerful consequence of the Borsuk-Ulam Theorem, the
TR =T diam(K) P T ) AT U2)) 5 g0-called Ham-Sandwich Theorem (see, e.g., [23]) says that
in R™, givenn Borel measuregy,k = 1,...,n, such that
Suppose, without loss of generality, thao,r1] IS the weight of any hyperplane under each measure is zero,
a Ki-interval. Consider the firstB-interval [r1,72]. If there exists a hyperpland that bisects each measure, i.e.,
p([riyra)) > e Pt/ diam(K))u([rz, uz]), then u(B) > (H+) = p (H™) = Lui(R™) for eachk, where H+, H~-
e~ P(t/ diam(K))u(K>) and we are done. So let us assumgenote the two half-spaces defined B Now, since we
that u([ri,r2]) > e P(f/diam(K))u([u1,7]). Similarly, hayepn > 2, the Ham-Sandwich Theorem guarantees that
for the last B-interval (ry,—2,rm—1), We can assume thatihere exists some hyperplaf# that bisects (in terms of the
p([rm—2,rm—1]) = e P(t/ diam(K))p([rm—1,u2]) other- measureu) both K, and Ko. Let K’ and K” be the two
wise the result immediately follows. This implies that telerparts of K defined by ' (K and B are not necessarily
bisected), and similarly defin&’;, K, K}, K/, and B’, B".
?As ii’l Lemma 2j_m§1y_n9t b_e continuous, so we may only b_e gble tofind ¥he minimum distance cannot decrease, ﬂéK{,Ké) > ¢,
point 2™ (xmin) that is infinitesimally close to the supremum (infimum)fof andd(K!, K% > t, and the diameter ok cannot be smaller

For convenience of exposition, we assughés continuous. This assumption i ’ :
can be removed with an argument parallel to that given in Lar@m than either the diameter ok’ or K”. Consequently, if the



theorem holds, or fails by less than for both K/ and K/, K = K;U BU K, satisfying the assumptions of the theorem.

then We show that for every > 0:
1) = 5 / 5 1
D S i (L4 8)u(B) 2 e ey mind (), 1K)}
> gy min (D, (K3} + o

min {u(K7Y), p(KY)})  Takingd to zero yields our result. Lek’ be the Lowner-John
s ¢ . ellipsoid of K. By Lemma 5 above, we can assume that the
T min{u(K1), p(K2)} Lowner-John ellipsoid ofK has at least one axis of length
no more thare. Figure 1 illustrates the bisecting process of
Therefore the theorem must fail by for either K’ or K”. | emma 5, and also the essential reason why the bisection

We note that this is theamed as above. Call the set forajjows us to project to one fewer dimensions. We takenaller
which the theorem does not hold"), and similarly define

KW KM and BW. We continue bisectinds @) in this way,
always focusing on the side for which the theorem failssby
thus obtaining a sequence of nested sets

KQK(I)Q---QK(j)Q---. |

We claim that eventually the smallest axis of the Lowner-
John ellipsoid will be smaller than If this is not the case, then
the setK always contains a ball of radiugn. This follows
from the properties of the Lowner-John ellipsoid. Therefo Fig. 1. The inductive step works by projectirfg onto one less dimension.

; ; In (a) above, a projection on the horizontal axis would yield aatise of
letting BE/"(xO) denote the ball of radlus/n centered ato, zero between the projectef; and K>. Once we bisect to obtaifb), we

we have see that a projection onto the horizontal axis would notcaffae minimum
distance betweer; and K.
/ (x) dx
KO

(KD =
thant/2, and also such thayt2 — 4e2 > t/(1 + ¢). Assume
inf / f(x)dz | >n>0, that the(n+1)** coordinate direction is parallel to the shortest
Be/n(w0)SK \ JB, ), (w0) axis of the ellipsoid, and the first coordinate directions span
the same plane as the otheraxes of the ellipse (changing

our initial assumption thaf () is non-zero onk coordinates if necessary). Call the last coordingteso that

. ; ; ints imR™*+! for z € R, andy € R.
H b h fh | the ) gl we refer to points inR as(z,y), , y
OWEVET, by OUT Ehoice ot yperpianes, e {é (’j))2_ Let IT denote the plane spanned by the otheaxes, and

are bisected with re(sgect o the measurerhus (K let K = w(K) denote the projection o onto II. Since
—q 7 . — .

2 J“(Kl)'(g”d /(LJ_()K2 ) = 277u(ks), and the.measure of ¢ < ¢/2, no point in K is the image of points in bottk;

each setk;”’, Ky~ becomes arbitrarily small agincreases. anqr,, otherwise the two pre-images would be at nist ¢

Since the measure df¥) does not also become arb|trarllyapart_ This allows us to define the sets

small, the measure aB) must also be bounded away from

v

for somen > 0, independent ofi. We know thaty > 0 by

zero. In particular, K, & ((z,9) € K : n(x,y) € n(K1)}
p(BY) = =277 (u(Ky) + p(Ko)), Ky 2 {(x,y) €K : nlx,y) € m(K>)},
and thus for B £ {(wy) €K : alz,y) ¢ n(K) Un(Ky)}.

™~ K )
we have Again we have a decompositioR’ = K; UBUK,. On
, : ; Ky, we also have a decompositioR = «(K;) U n(B) U
) : (7) () g A : P Il 1

p(BY) 2 /2 = min{p(K17), p(K37)}- 7(K3). Since we project with respect to the® norm, by
This contradicts our assumption that the theorem fails $R€ Pythagorean Theorenlw (K1), m(K2)) = Vi* —4e2. In
all elements of our nested chain of sets. The contradicti@ﬁld't'on,dlam(Kfr)_S dlam(K):
completes the proof of the lemma. O Forz € Kp, define the sectio (z) = {(z,y) € R"*" :

(z,y) € K}. We define a function oy C R™: F(z) 2

Step _(3): We now perform the projection, proving tth(w) f(z,y) dy, where f(z,y) is our 8-log-concave density
inductive step. We put the steps together to complete thg R»+!. We have
proof.
Proof of Theorem 2The proof is by induction on the number F(z)dx = / fla,y)dedy = p(K,), i=1,2,
of dimensions. By Lemma 4 above, the statement holds/ (%) R;
for n = 1. Assume that the result holds fer dimensions. A
Suppose we havek C R"*t!, with the decomposition and similarly for B. By Lemma 3,F(z) is 3-log-concave.



Therefore, by the inductive hypothesis, we have that and (1 — e)u(B) < u(B N By()), Where By, is a ball with
radiusd(e) around the origin. Then
M(B)ZM(E)Z/f(x,y)dxdy=  F(z)da AWK K
B =(B) w(B) >e P - 6)2% min{p(K1), p(K2)}.
/12 2
e—ﬁfille min: / F(z) dx, F(z)dx PrROOF. We have thap (K NBgy)) > (1 —€)u(K). Let P =
diam(K) (K1) ) 1(K N By)), and note thaf > 1 — e. Consider the measure
NG fi defined onK N By by the densityf(z) = f(z)/P. It
diam(K,) i f(x y) dz dy/f z,y) dz dy} follows that f is 3-log-concave. We now apply Theorem 2 on
f to obtain that:

e min{u(y). (), : y . A
[i(BNBa(ey) Z e~ " (t/d(€)) min{i( K1NBye)), A K2NBg(e) )}
and thus wheret > d(K, K»). It follows that
(1+6)u(B) = (t/ diam(K)) min(u(K1), u(K2)). fi(K1 N Bago) > (1 — e)u(K1),
Since this holds for every > 0, the result follows. O and similarly forK,, and also
Corollaries 1, 2, and Proposition 1 below offer some flexi- w(B)/(1 =€) =2 u(B)/P = i(B N By(e))-

bility for obtaining a tighter lower bound on(B). The result now follows by some algebra. 0
Corollary 1: Let K be a closed and bounded convex set

with a decomposition’ = K; U B U K> as in Theorem 2 ¢ qqt of the mass of the distribution is contained in

above. Letf(x) be any density (not necessariilog-concave) 5 gmajl.diameter set, so that the trace of the covariance

that is bounded away from zero o, say f(z) > 7 for \napiy is not too big, then it is possible to obtain a similar

@ € K. Then the induced measufesatisfies result, replacing the termdiam(K) in the denominator by a

d(Ky, Ks) | term involving the covariance.
w(B) =mn- “diam(K) min{v(K1),v(K2)}. Proposition 1: Let K, K, K>, B and f andx be as above,
and letz = (z4,...,%,) be the mean of the densitf(x),
wherer denotes Lebesgue measure. ando? the trace of the covariance ¢fx) (which we assume

PrROOFR Consider the uniform distribution of. Since it to be finite):

is log-concave, Theorem 2 applies with = 0. Since the "

Lebesgue measure is just a scaled uniform distribution, 2 é/ <Z(Il _1_71')2> F(z) da :/ |z — 2|2 f(z) dx
v(B) > (d(Ki,Ks)/diam(K))min{v(K,),v(K2)}. The K\ K

coroliary follows sinceu(5) = nv(5). Then the induced measuresatisfies

The lower bound onu(B) which we obtain from Theorem _4d(K, K.
2, depends inversely or(1 tr)1e diameter of the Ketwhich we wB) = p 21, %2) min{pu(K1)*2, pn(K2)*?}.
take to be bounded. This poses two potential problems., FirBRooF. Let us assume first that(K;) < u(Ks). We require
if the setK is unbounded, then the theorem cannot be appliatie following generalization of the Chebychev inequality t
and the isoperimetric inequality, as stated, is meanisglemultiple dimensions. For such generalized inequalitie®, s
Second, even i is bounded, the inequality may be rendered.g., [24] or [25], and references therein. Here we use the
quite weak if the diameter is very large. Specifically, thinequality

problem arises if has a very large diameter, while most of )

the mass of the distribution is contained in a small-diamete WK\ Bi(2)) = (u({z : [lz— |2 >1}) < 0_2’ (111.3)

subset of K, with light tails putting very little mass on the !

rest of K. A Gaussian is a prime example ofjalog-concave whereB;(z) denotes thé-ball about the mears. Setting the

(in fact 0-log-concave) distribution with this behavior. right hand side of Ineq. (II1.3) equal to(X)/2, we find
The following two results address both issues by truncating

K, and then applying Theorem 2 to the truncation. First we =& 2

give a corollary that does not assume any further knowledge u(Ky)

about the densityf(z). Then in Proposition 1 we give a

corollary that replaces the diamater in Theorem 2 by théow let K1, K, and B denote the truncations df;, K, and

second moment of (x). B, and let/; denote the truncated and renormalized measure.
Corollary 2: Fix ¢ > 0. Let K be a closed, convex, butUsmg 2l as the diameter of the truncated set, and observing

not necessarily bounded set. L&t = K; U B U K, be a thatd(Ky, K») > d(K1, K2), and then applying Theorem 2,

decomposition ofK. Let f be af-log-concave density with we find

induced measurg, such that there exist§e) > 0 for which . AKy, Ks) . o a

(1—e)u(K1) < u(KiNBye)), (1—e)u(Ks) < p(K2NBay(o), i(B) > e‘ﬁ%ﬁ min{A(K1), A(K2)} (111.4)



Noting thatu(B;(z)) > 1 — pu(K1)/2 > 3/4, we have y = hi"*¢(z) then the error of is A(h; h!™¢). For a classifier
u(B N Bi(T)) hletK+(h) 2 {z € K : h(z) = 1}, and similarlykx — (h) £

w(B) = wBNB(T)) = pu(Bi(T)) W(Bi(@) {z € K : h(z) = —1}. Given a pair of classifiers; andh,
3 . we define the distance between themlas(h,, ko), given by
> JiB)
) 3 max {d (K*(h1), K~ (ha)) ,d (K~ (1), K* (h2))} .
K = gu(Kl NBi(z)) We note thatlist(h1, ho) may equal zero even if the classifiers
> E(M(Kﬂ ~u(K1)/2) = EM(K1) are rather different. However, in some casést(hi, ho)
- 3 3 provides a useful measure of difference; see Proposition 2
/l(ffz) > gu(Kz). below. We consider later generalizations dfst(-, -)" which
3 are interesting exactly when the classifiers are differbat,
Together with inequality (111.4) we have the distance defined above is zero.
_pd(K1,K)) Suppose we have to choose a classifier from gHs€ethis
wB) > —— min{p(K), p(K2)} may occur if, for example, we are given sample data points
_pd(K1, K») 32 and there are several classifiers that classify the dateatbyr
= ¢ TﬁN(Kl) . The following theorem states that if the set of classifiers we

choose from is too large, then the error might be large as
well. Note that we have to scale the error lower bound by the
minimal weight of the positively/negatively labelled regi

Theorem 3:Suppose thaf is 8-log-concave defined on a
V. L OWER BOUNDS ONGENERALIZATION ERROR closed and bounded sé&f with nonzero diametér Then for

In this section we obtain lower bounds on the generalizati%eryh € ‘M, for everye > 03, there existsy’ € M such that
error of classification problems. The generalization eigor

the weight of the region where the chosen classifier and the Y e PP . B

true classifier differ. This in turn is related to the weiglit o Alhi ) 2 diam(K) (hsllé% dist(h, h1) =€) (IV.5)
the no-man’s land. Appealing to the isoperimetric inegyali e PP 1 .

of Theorem 2, we use the size (in the geometric sense of > Tam(K) 5( sup_dist(h1, he)—e), (IV.6)
distance between sets) of the no-man’s land, to obtain und P ha €1

on the weight it must carry. Thus we show that the size ofhere P, = inf;,_,, min{u(K*(h)), u(K~(h))}.

the no-man’s land can be a tractable measure providing gofgthout the j-log-concavity assumption, this result need
bounds on the measure of the set where two classifiers difigst hold. Indeed, without it, we may have classifiers with
We also point out that in the absence ®fog-concavity, no dist(h, h’) large, but with little or zero weight on the region
such bounds are valid. in which they differ.

Lower bounds on the generalization error in classificatigrroor  If supy,, poen dist(h1,ha) = 0, the result fol-
require a careful definition of the probabilistic setup. hist |ows, so we can assume this is not the case. For every
section we consider a generic setup where proper learning> (0 we can choosei/ € H such thatdist(h, ') >
is possible. We consider the standard classification pmabl@uphleH dist(h,h;) — e. We consider the case where
where data points € R and labelsy € {—1,1} are given, dist(h,h') = d(K*(h),K~(R')); the other case where
and not necessarily generated according to any particwﬁ{gt(h, n') = d(K~(h),Kt(h')) follows in a symmetric

distribution. We assume that we are given a set of classifiegfginner. LetB = K \ (KT (h) UK~ (K)). It follows from
‘H which are functions fronR™ to {—1,1}. For now, by a Theorem 2 that

slight abuse of notation, we ugé to refer both to the full dist(h, 1)
family of classifiers, and the subset of classifiers that have 1(B) > e # ————2 min { (K" (h)), u(K~(K))} .

zero error on the training data. Thus when speaking of linear diam(K) (IV.7)
classifiers, it is understood that By we mean the subsetprom pere the first inequality of the theorem follows.

of linear classifiers that correctly classify the trainingfal In - oW for the second inequality, similarly to the
our model, the performance of the classifier is measureqjusity, e~ for everye > 0 we cz’;m pick h1,hs SO

some probability measure induced bydog-concave density 4 dist(hi,h2) > supy . dist(hi,he) — e. By

f. We note that this model deviates from the “classicak oorem 2’ Ietting_B _ h}%}b\ (KJF(’hl) U K~ (hs))

statl_stlcal machl_ne Iearnln_g Setup. - inequality (IV.7) holds with hy,he in place of
Given a densityf, the disagreement of a classifiere H hoh. Now, Alhshi) > [y X(he)sm (o f(@)de and
. e 3N . . 9 . ’ 9 P B x 1(x

with another classifieh’ is defined as: A(hiha) > [ Xinw)ha(on f(@)dz. Sincehi(z) # ha(z)

oy A L B (o) £ () dee on B, then eithetA (h; hy) > u(B)/2 or A(h; hy) > u(B) /2.
Aty & [ 50 M@ @) since Py < p(KH()) and By < (K- (b)),

= p{z €R": h(z) £ ' (x)},
. - . 2Unless explicitly noted, we assume throughout thétis closed and
where . is the probability measure induced b If there pounded Withpnonzyero diameter. 9

exists a true classifiel’"“¢ (not necessarily irf{) such that  3if H is compact in an appropriate sense, then we car seb.

A similar inequality results whem(K>) < u(K7), whence
the result follows. O

\



and by substituting in Ineq. (IV.7), we obtain thatA More General Notion of Distance
A(h,hl) > e’ﬁdist(hl,hg)Pl/(Zdiam(K)) for ¢« = 1

] In the above discussion, we show how the
ori=2. ([

isoperimetric inequality can essentially use the measure
) SUpp, pyen dist(h1,he) to  obtain  bounds on the
The following example demonstrates the power of Theoreéganeralization error. As remarked above, Theorem 3
3 in the context of linear classification. Consider an inpukays nothing ifupy,, ., cp dist(h1, he) = 0. Generalizing the
output sequencg(z1,1),- -, (zn, yn)} arising from some notion of ‘dist’ for classifiers, and considering the distance
unknown source (not necessaril-log-concave) as in the from a single classifier’ to a family #' C H of classifiers,
classical binary classification problem. Defii&} = {zi : we can obtain a stronger measure that again allows us to
yi =1} and Xy = {z; : y; = —1}. Suppose that the truederive a bound onsup,, ,, A(h1;ho), the generalization
error is measured according togalog-concave distribution, arror. ’
and thatX ; and X are linearly separable. Recall that alinear pefinition 2: Given a classifiers, andr other classifiers
classifierh is a function given byh(x) = sign((z,u) +b), 3y — {h1,...,h}, define the sets
where sign’ is the sign function and(*,-)’ is the standard
inner product inR™. The following proposition provides a
lower bound on the true error. We state it for generic sets of
vectors, so the data are not assumed to be sampled from any
concrete source. The lower bound concerns the case where g~ — g—({n} UH/)
we are faced with a choice from a set of classifiers, all of
which agree with the data (i.e., have zero training errdr). | _ ) -~
we commit to any specific classifier, then there exists amoth? that K ({1~} UH’) is the set of points that all classifiers
classifier (whose training error is zero as well) such that tf 7', and alsoh, label as‘+’, and similarly for K. Now

true error of the classifier we committed to is relativelygiar We define the distance measudést(h, '), from a classifier
if the other classifier happens to equdi™*. h to a family of classifiersH, to be the Euclidean distance:

Kt =K*({h}UH) = K*(h)n()K*(h)

Proposition 2: Suppose that we are given two sets of dist(h, H') = dist(K ™, K ).
linearly separable vectorsXt, X~ C K and lett =
d(conv(X ™), conv(X~)). Then for every linear classifigs If the intersection is empty, we define dist to be zero.
that separatest* and X, and anyg-log-concave density For k& = 2, Figure 2 illustrates the generalized concept
f and induced measure defined on a bounded séf, there of dist, and further shows that Theorem 3 holds with
exists another linear classifiér that separate&X ™ and X~ supy,, ,,,c dist(h1, ko) replaced by the new distance concept,

as well, such that
sup diSt(h, {hl, hQ})
h,h1,ha} CH
Ah: b)) > e P Pit/ (2 diam(K)), o fa}
Indeed the phenomenon illustrated in Figure 2 holds in

where
B3

Pr=min{p{z : {x,u) > (@7, u)}, p{x : (z,u) < (z7,u)}} t Ly

TR~ SRR
for somex® € conv(X ™) such thatd(z*,2~) =t andu = JF - JF -
(a — )2 ey /t7’ "
PrROOF Let H be the set of all hyperplanes that separate ’ ‘"
Xt from X~. It follows by a standard linear programming h B h1 By
argument (see [26]) thatup;,, ;,,cx dist(h1, he) = t. This ha
is attained forh, (z) = sign({(z,u) — (z7,u)) and ha(z) = (a) (®)
sign({x,u) — (x~,u)). We now apply Theorem 3 to obtain .
the desired result. Note tha®, in the declaration of the Fi9- 2 In (a) above we have three classifierb, ho, hs}, so that

e . o for any two, dist(hi, h;) = 0. Nevertheless, for any. € {h1,ha, h3},
proposition is tighter tha; in Theorem 3. This is the resultihere existsh’ € {h1,ha,hs} (with ' # h) so that if htrve =

of calculatingu(K ™ (h1)) andu (K~ (hz)) directly (instead of »’, then A(h;h') > pu(B1)/2, where B, is the shaded area. To see

; - ; this, note for instance that ih = hi, then By = A(hi;h2) U
taklng the infimum as in Theorem 3)‘ U A(h1;h3). We can then get a bound op(B1) by using the isoperi-

Finally, we note that inequality (IV.5) is in general stiyct metric inequality, and the fact thalist(h, {h;, h;}) = t1. In (b) we

stronger than (IV.6), since the inequalitvp,, dist(h, ') > add a fourth classifierhs. Here we see that if we choose = ha,
9 ( ) 4 Wb ( ’ ) — _, then the worst case generalization error is lower boundedcdaypar-

SUDp, ks diSt(h.l7 h2)/2'is U§Ua||y St.ri_Ct- If, on the other hand'ing the two distance measuresupy,, ¢, dist(h, h1) (our previous dis-
h is the maximum margin classifier, then the two boundsnce measure) arfd/2) supy,, 1,3 dist(h, {h1, ha}). In this example,

coincide. In the linear case, the maximum margin classifigfn, e dist(h, h1) = t3, andsupy, j,1 o dist(h, {h1, ha}) = t2.

is the “safest choice.” Thus we have a reinterpretation ef th

maximum margin classifier as the “safest” classifier undgeneral. We can restate Theorem 3 using the distance to a
worst-case (minimax) assumptions. fixed classifier. The statement of Theorem 3 now becomes:



Theorem & Under the assumptions of Theorem 3, for every Consequently, we have
h € H there existsh’ € H such that _ _
p(B)<r max {p((K™ (h) N KT (hi))UE™ (h) 0 K™ (hi)))} -

-8
Y € :
Allsh) 2 diam(K) % {Pl hsllg){ dist(h, ha), Letting i* be the maximizing index of the right hand side, we
have A(h, h;+) > 1p(B). Substituting in Equation 1.9, we
1p2 sup  dist(h, {h1, ha}) then have that\(h, h;-) is at least
{h1,h2}CH 0B 1
. Jr — - .
where we have diam(K) (mln{u(K )s (K )}) lest(h, {hi,. o he}).
P = hian min{p(K*(h)), w(K~(h1))} This concludes the proof. O
1€
b :{h1.iizrlﬁcr7¥{lin{M(K+({hl’hQ}))”u'(Ki({hth}))}' V. REGRESSIONTUBES

The proof follows directly. This restatement of Theorem 3 is In this section we consider regression problems, and peovid

in fact somewhat stronger, since when the two inequalitfes results of a different flavor. Throughout the section weklée

Theorem 3 do not coincide, theax in the restatement picksa fl_Jnction fromR™ to R™. We proviq_e !ower bqunds on the
out the stronger lower bound. weight of tubes ar(_)l_mld. The probablhstlc_ setup is as follows.
We can obtain a general version of this result. We haYe a probability measum/\n_th densn_yf onR™+ that
Theorem 4:Under the assumptions of Theorem 3, for eve rescnbe_s the probability of getting a p&ir, y) & R xR .‘

h € H and for anye > 0, there existsh’ € H such that he densityf has support on the sé&f. For a specific function

A(h; ') is bounded below by : R™ — R™ we consider the set
A
TF . = {(z,y) e < |k(z) — y| < e}

e*ﬁ 1 . €0,€1
diam(K) rﬁ?ﬁ( {FPT({,“_,_?};?}CSI“(” {ha,. he}) = 6)} ’ This set represents all the pairs where the predictiok
B off by more thaney and less thart;, or alternatively, the
set of pairs whose prediction is converted to zero error when
inf min{p(K({h1,...,h})), (K~ ({h1,...,h.}))}. changing the in ane-insensitive error criterion from, to €.
{ha,she }CH Different assumptions on the joint densifylead to different
. (A!V'8) results. We start with a simple case representing an additiv
PROOF. This proof closely follows that of Theorem 3qu independent noise model, and then consider the case where
everye > 0 andr € N, choose{h,.... h,} € H that attain o5 100 concave jointly inz andy. We finally consider the
thi supreTum on the right hand_5|de of_(IV.8) withinLet more complicated case, whefds 3-log-concave in: and3'-
K™ = K7(h, hl"';r’ hT),_andK =K (h’_hl""’hr)' log-concave iry conditioned on:. We provide a lower bound
Now let B = K\ (K™ UK™). By Theorem 2, it follows that on the measure of the tube under some continuity assumptions
dist(h, {h1,...,h;, ) _ ivation, [ i i
J(B) > P ( éi{anll,(K), b min{u(K*), p(K-)}. Wr;éésrea motivation, consider the classical regression setup
(IV.9) Y = k(X) + N, (V.10)
Now, we can writeB as the union of- possibly overlapping
sets, where each set defines the area whatifers with one

where P, is given by

where X is the independent random variabl¥, is additive

of the h;: noise, andY is the dependent variable. The results of this
. section apply to non-additive noise models as well. If the
B — U{h # hi} noise N is arbitrary, we cannot hope to obtain a bound on
e the measure of the intermediate tube in terms of the inner
, , and outer tubes, since the noise may alternate betweengutti
= U(K—(h) N K+(hi))‘| U [U(K+(h) N K~ (hi)) the weight on the inner and the outer tubes. We make certain
im1 im1 specific assumptions concerning the continuity of the noise
r process.
= U [(K~(h) N K*(h)) U (KT (h)NK™(hs))] . Let us define the projection of a tube for a specifiby
=1 A
The second equality follows by the associativity of unidfs:. Te’f),el(ff) ={y:e < [lk(z) —yll < e}

the first equality, we have simply expanded out our definitiofye denote the marginal density bf and the conditional
of K* and K~ from above: Take any: € B. Supposer €  density byf,,. The associated measures are then denoted by
K~ (h). Sincex € B, thenz ¢ K, and thus there must exist, and p, .-
somei for whichz ¢ K~ (h;), which means: € K (h;), and | the noise in (V.10) is independent of we can straight-
hencex € K~ (h) N K™ (h;). The reverse inclusion follows forwardly derive a lower bound on the measure of the inter-
similarly. mediate tube.
4 . o Corollary 3: Consider the model of Eq. (V.10). Suppose
Note again that ifH is compact, we can set= 0. Furthermore, thenax . .
over N is attained for some finite € N, since dist is bounded uniformly t_hatN 1S mdependent of and has a@-log-concave d'Str_'bu'
with respect tor in N. tion. Suppose further thaV has bounded suppoKy, with
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0 € Ky (this is always true ifN has zero mean). Then forPROOF We use Theorem 2 with the decompositibih =

every probability measure oN, we have that:

< (€1 —€g)e P

Tk
MTa.e) 2 diam(Ky)

min {M(Téﬁeo), /L(Tekl,diam(KY))} ‘
(V.11)

PROOFE SinceN is independent of and using Theorem 2,

we have that for every:
k — €1 — €0
Pyl (T2 () > e ﬁm :

min {:uy‘I(T(;C,Eo(x))’ My|I(T5k1,diam(Ky)(x))} !

By definition,
W(Th,,) = / P @)ty (TE (),

and similarly forT* _ andT?

€1,00°"

7 Sinceyiy |, (T4 () is the
same for allz, we obtain (V.11).

O

T0k760’ B = T€]fJ761 and Ky = Tekl,diam(K)'

chitz continuity ofk, we getd(T¢c,. T yiamx)) = (€1 —
€0)/VL?+1, as follows. Take any(z1,y1) € T¢.,, and
(z2,1y2) € Tfhdiam(K . Letn = ||x1 — 22]|. Then||k(x1) —
k(l‘g)” < L’I], and thqul — y2|| > (61 — 60) — L’I], and thus
d((xlvyl)v (x27y2))2 > 772 + ((61 - 60) - LT])Q' Optllelng
this bound over, we find thaty = (e; —eo)L/(1+ L?) gives
the desired bound. O

A direct implication of Corollary 4 and Lemma 6 is that if
the true model is linear, and botk andY|x are 8 and 3’
log-concave, respectively, then every function (not neaely
linear) satisfies inequality (V.12).

We now consider a different model where instead of assum-
ing thatz andy are jointly -log-concave, we assume that
is 3-log-concave and thaj is 5’-log-concave conditioned on
z. We defineK|x to be the projection ofX on the firstn

By the Lips-

It is worth mentioning that Corollary 3 does not requirélimensions.

any assumptions ok, and in particular the support ¢f, is

Definition 3: A density f(z,y) is §-3’ conditional log-

not assumed bounded. For the case of unbounded noise WRACave if the marginaf (z) = [, f(z,y) is ﬁ-log-co/ncave
finite variance (e.g., Gaussian noise) one can use Proposifind if the conditionalf(y|z) = f(y,z)/f(z) is B'-log-
1 instead of Theorem 2 and obtain a similar bound (replacifg§ncave for all: € K|x.

diam(Ky) with 4v/20 and having power oB/2 inside the
minimum).
We next consider the case where the dengity, y) is -

The following theorem asserts that a similar bound to (V.12)
can be obtained even fgi-3’ conditional log-concave distri-
butions. The setup is, however, considerably more general.

log-concave jointly inz andy. This may arise in a situation It includes, for example, regression where the independent

where Eq. (V.10) holds withV independent of:, but we do

parameterg, is sampled from a uniform distribution, and the

not know what is the trué function. In that case we can still dependent parameter equgls- k(z) + N, whereN is some
consider the measure of the intermediate tube defined by sofh@g-concave fl;nC“O” that depends onWe denote byB
other functionk’. The linear case is particularly simple as théhe unit ball inR®.

next lemma shows:

Theorem 5:Suppose thaff (z,y) is 5-4’ conditional log-

Lemma 6: Suppose that the model of Eq. (V.10) holds angoncave on a bounded s&t C R™*™, with induced measure

that X is 8-log-concave. IfN is 3’'-log-concave and if(x)
is linear, we have thaf(z,y) is (3 + ’)-log-concave.
PROOF. We have thaf(:c,y) = fm(‘r)fy\z(mx) = fm(‘r)g(y_

Az), where A is some matrix §(z) = Ax) andg is a/3’-log-
concave conditional noise density. Foe [0, 1] we have that
fA@1,91) + (1= N)(22,92))
FOz1+ (1= Nz, Ayr + (1 — Ny2)
fo(Azr + (1 — AN)x2) -

gy + (1= Nyz2 — A(Az1 + (1 = N)az))
fo(QAzr + (1= Na2) -

gA(y1 — Azy) + (1 = N)(y2 — Ax2))
e o (@) i (w2)' e gly1— A1) g (ya — Awa)'
e B @y, yn)  f w2, y2)' .

Y]

O
Corollary 4: Suppose thatf(z,y) is -log-concave on a
bounded setX’ C R™*™, with induced measur@. Assume
that k£ is Lipschitz continuous with constant, and that
(x,k(x)) € K for everyxz € K|x. Then for everye; >
€ > 0,

> (61 — 60)6_5

: k k
- /L2—|—1diam(K) mln{M(TO,eo)a:Uf(Tel,diam(K))}'
(V.12)

w(Tr )

. Fix 3 > €9 > 0. Assume further that there exist constants
C >0, dp > 0, andp > 0 such that for all(z,y) € T*

~ €0,€1"
5,0 < <y, uy € B™, andu, € B™:

_ St oulo + )| gy

:

Assume that is Lipschitz continuous with constait Then:
w(TE ) is lower bounded by

1 (e —eg)e~ B8 | min{do, 1/(2C)'/7}

— min .

18  diam(K) " diam(K) max{1, L}

min {M(T(;C,EO)a /J'(Tekl,diam(K))} :
PROOF Fix positiveey < €. For a sett C K|x (thisis a
set inR™) we denote the extension to a sett x R™ by
extg (X) = {(z,y) : v € X and(z,y) € K}. We now define
two sets:

Xin

{:c oy (Tok;eo('r)) 2 fy|e (Teklﬂiam(K)(x))}
{x gl (Toef(®)) < fiyfa (Tekudiam(K)(x)) } '

Note thatY"UX°“ = K|x. We consider the following three
cases.

Case 1:X" = K|y, that is, the inner tube is always heavier
than the outer tube. In this case, for everye apply Theorem

Xout
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2 to the conditional measure, to obtain: Fix § = min{dy, 1/(2C)"/?}/ max{1, L}. Then for everyz’
X _g €1~ €0 . such that||z — 2/|| < §, we have that
Hyle (Tﬁmel(x)) ze muy\i (Tel,diam(K)(x)) :

1
Similarly to Corollary 3, integrating over alt € K|x, we vletfeoa gl e
obtain that Define X°79 to be thes expansion ofY?, that is
K (Telf),el) = fw(ff)ﬂy\z(Telz,a(f)) d.%' Xeg)é = {‘T € K|X7 ||$ - .I'/H S 5 fOf somex € Xeq}'
Ko
L Tl (T’“ _ ) Assume first thatu(T5e,) < w(TE giam(x))- We bound
= diam(FK)" \™ evdiam(K) u(TE ) in terms of (T, ). We have that:
So the result holds. out eq,8 k eq,8 k
extg (X XP)NTy, )+ plextg (XT°)NTy,
Case 2:X°“" = K|x. In this case the outer tube is heavier foru( K \ ) N o) + pilextic( )N Toeo)

mn eq,0 k _ k
all z. In a similar manner to the previous case we can prove Hplextr (XN X)) N Ty ) = w(Thle,)- (V.14)

that One of the summands in (V.14) must be at lea&ty, )/3.
We consider each case separately:
Tk = - Tk d p y
w ( eo,el) KL f (x).uy\m( eo,el(x)) X Case 3'1:M(eXtK(Xout\Xeq,é)mT&Eo) > N(T(ieo)/?)- In that
_g €1~ € % case we have that
2 ( 0-,61) '

diam(K) a

Case 3:Both X" # K|x and X°! # K|x. In that case
it follows from continuity of f and k that the set¥<? =
X N X°* is not empty. For every: in X°? we have from

Wi 2 [ s )

A€k
\/;\/o1bt\Xeq,5 fm(zc)e dlam(K)'uylf”( O,ég('r))

v

Theorem 2 that: _g €1~ € / Fo(@) iy (TE . (2))
_ = : 2\ T)ly|a(£0,e0\ T
_pn € € d K out e
o (T (@) 2 € o (T, (@) o) Jaeeas
diam(K) Tk
> 8_6/ €1 — €0 lu‘( 0,60) (V 15)
Since iy, (TE . (%)) 4 241y (T () = 1 for z € X9, by - diam(K) 3 '

solving for 1,1, (T . (x)), substituting in the inequality above

. eq,d k k
and collecting terms, we obtain that Case 3.2:u(exty (X4°) NTG,) = 1To,)/3. As before,

k _p €1 "€ 1 Tk >/ @)y (T ().
tyle(Tey o(2)) = e Tam(K) 347 o (T e,) = Xeq,af( iyl (T2 . (2))
e? e —e Since Ineq. (V.13) holds for att € X% for our choice of
= 3 diam(K)" 4, we obtain:
We first consider the continuity ofi,,(T% . (z)) as a wTE ) > / fm(:c)le—ﬁ/ €~ <
function of . ’ ’ xeas 6  diam(K)
1 4 € —c€
— e B LTt ext Xeq,é
’My|m(Tglz751(«T)) - My|I(TE]T)761 (.I'/))‘ 66 dlam(K)u( X K( ))
1 5 €e1—¢ IU‘(TOke )
= x - x ! d 2 —e B - ;€0 . V16
/Tfo () fy‘ (wle) /Tgco o (@) fy‘ (Wl dy 6 diam(K) 3 ( )

Case 3.3;u(extg (XY™ \ X°0°)NTE, ) > p(TE,,)/3. In that
dy  case we have that, (X \ A1) > w(Ts,,)/3. Since we
assumed that(Ty',,) < u(TY 4m(x)) ONE Of the three cases

ST PR I ARCEBRTEOED

& er(®) e (@)

_ / Foa(ylz)(1 - Syla(y — k() + k($/)|$/)) gy ~Mmust hold: _
oo AR Case 3.3 1p(extic (V" \XUINTE irc)) 2 H(TE,)/3.
In this case we can use the same maneuver as in Case 3.1
< / ) fyl=(ylz) - (applied toX") and (V.15) holds.
Tooeal®) , , Case 3.3 2ip(exti(X°0) N TE | 00) > w(TE,,)/3. In
(1_fy\z(y + Lz —afJuylz + |l —= ||Um))‘ dy this case we can use the same maneuver as in Case 3.2 and
fyra(yl2) 7 (V.16) holds.

Case 3.3.3: plext (X \ X)) N T k) =

where the last inequality is due to the Lipschitz continwity L ) out )
k andu, € B™ andu, € B". It follows from the continuity 1(Tg.,)/3. In this C"f‘e we have that, (X*") > u(Tg,,)/3
assumption ory,, that if max{L, 1}|jz — || < &y, and i, (X™) > w(Ty,)/3. We can use Theorem 2 for,
. . and obtain that:
T — T !
|y1a(Tey o, (@) “yklw( e (@) iz (X€90) > eh__0 Ty e,)/3
< (T, (2))C (max{L, 1}| — 2'[)" . ’ T diam(K)T e

€0,€1
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Substituting the value of, and similarly to Case 3.2: B ={zx e K (h): d(z, K*(h)) < v}. Let f be aj-log-
(Tt ) concave density o’ with induced measurg. Then
:LL €0,€1

1 _p’ €1 — € eiﬂ : + N(Kﬁ (h)) }
1 4 a—e s PrROOF Consider the decomposition @ to K; = K*(h),
6 diam(K)‘H(eXtK(X %) B, and K = K~ (h) \ B. By Theorem 2 we know that
. Y . w(B) > ve P min{u(K,), u(K2)}/ diam(K). We also know
o L @ep e min{do, 1/(20)7} iToe)  thatp(B) = (K~ (h)) — u(K>). So that

6 diam(K')? max{1, L} 3 P
W(B) > max{re ™ min{u(Ky), s}/
diam(K), u(K~(h)) — s}, (VI.17)

Y

ch,S

The case wherg(Ty.,) > (T 4i.m(s)) Tollows similarly.
The result follows by taking the worst case of the five cases.
O where s = u(Ks). Minimizing over s in the interval
Several remarks are in order. First, the boundedness assufopu(K ~(h))], it is seen that the minimizer is either at the
tion can be relaxed in a similar manner to Corollary 2 qgsoint whereu(K ~(h))—s = ve P u(K;)/ diam(K) or at the
Proposition 1, with appropriate changes. Second, a cdttinupoint whereu (K ~(h)) — s = sye™?/diam(K). Substituting
assumption of is necessary, and counterexamples where dittose s in Ineq. (VI.17) and some algebra gives the desired
continuity invalidates the theorem can be easily derivéardl result. O
as a result of the continuity requirement gnTheorem 5is A similar result holds by interchangind(™ and K~
dimension independent. If is instead Lipschitz continuous,throughout Proposition 3 and the definition 8. The fol-
one can still retain a similar result, however, a dimensidowing corollary is a two-sided version of Proposition 3. It

dependent constant would be needed for Case 3.3.3. does not havee =/ diam(K) inside the minimum.
Corollary 5: Suppose we are given a classifierdefined
VI. BOUNDING THE SIZE OF THE MARGIN on a bounded seK. Fix somey > 0 (diam(K) > ~) and

In this section we consider the problem of computing th(éon5|der the feBsymm - iw € K=(h) : d(x, K7 (h)) <
likelihood that data generated byj3alog-concave distribution 7p Uiz € K7 (h) : d(z, K~(h)) < 7}. Let f be af-log-
will have a large margin, and again show that this question cG°"¢aV€ density o with induced measurg. Then
be approached using the isoperimetric inequality. We clemsi symm e P , L _
the standard machine learning setup, and assume that the dat(B )= diam(K) min { (K" (b)), p(K~ ()} -
are sampled from @-log-concave distribution. We examineProor. Let BT = {z € K*(h) : d(z,K~(h)) < 7} and

the geometric margin as opposed to the “functional” margiB— = {x € K—(h) : d(z, K*(h)) < ~v}. We have that
which is often defined with respect to a real valued function ,(B*v™™) = ;(B*) 4+ u(B~). From Proposition 3 we have
In that case classification is performed by considefifig) = that

sign(g(x)) and the margin of at (z,y) € R" x{—1,1} is de- B

fined asg(x)y. If such a functiory is Lipschitz with a constant p(B~)> wﬁmin{u(lfﬂh))

L, then forz € K*(h) the event tha{d(x, K~ (h)) < v} is iam(K)

contained in the event thdy(x) < vL} (and forr € K—(h) and

if d(z, K—(h)) <7 ther!—g(:c) < vL)._ Consequently, results (B> e B mindu(K- (1) w(K+(h))

on the gepmetnc margin can be easily C(_)nvert_ed to result;lé =z 7diam(K) "1+ ~ve—8/diam(K) [

the “functional” margin as long as the Lipschitz assumption

holds5 If the minimum is obtained by:(K*(h)) for u(B~) or by
Suppose now that we have a classifier and we ask /(K (h)) for u(B*), then the result holds. Suppose that the

the following question: what is the probability that if weminimum is obtained by the second term for bptfB~) and

p(E(h)) }
"1+ e f/diam(K)

sample N vectors Xy = x1,...,zx from f, they are w(B*). We therefore have in that case that
1|‘\f/;|1r away f_rom the boundary betweeli* (k) and K (h). wW(B¥™™) = u(BY) + u(B~)
ore precisely, we want to bound the probability of the o—f (K~ (h)) + p(K+(R))
event {min, ;¢ s+ (n) d(i, K~ (h)) > v}, and similarly for > : H LA
negatively labelled samples. We next show that the proipabil diam(K) 1+ ~e~7/ diam(K)
that a sampled point is some distance from the boundary, is _ e’ 1
almost linear in this distance. An immediate consequence is -7 diam(K) 1 + ye—#/ diam(K)
an exponential concentration inequality. e B 1
Proposition 3: Suppose we are given a classifiedefined z mgv
on a bounded sek’. Fix some~ > 0 and consider the set ) ) )
where the last inequality follows since< diam(K). The
5This is the case if, for instance, we consider kernel mashinkere the result follows. d

resulting classifier is of the formgn(>", a;k(x;, x)), where the kernel itself Corollarv 6: Suppose that N samples X
is Lipschitz continuous, and we also have that the sum of tiedficients is fyo: bp P N

controlled, i.e.y", |a;| is finite. An L! regularization certainly achieves this. {z1,...,zN} are d_rawn independently from &-log-
L? regularization along with a separate sparseness condtiaiso sufficient. concave densityf defined on a bounded séf. Let h be a
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classifier. Then for every > 0: using the metric structure of the sample space, i.e., using
the same distance as that used to compute the~siakthe

Pr( min d(z;, K*(h)) > 7) margin. We define for this purpose the distaneeéetween
lrmicK= (W)} (K-() two classifiersh’, h”’ € H as
< exp (-NWCmin {M(K+(h))a lﬁ%—ﬁ}) ; (W, 1) 2

from f andC = e=#/ diam(K).

PrRoOE The proof follows from Proposition 3 and the i L . y

inequality (1 — a)N < exp(—aN) for a € [0,1] and N > 0.00 N_ote that this definition is symmetric it andh”. 'I_'herefore,
Corollary 6 is a dimension-free inequality. It implies tha@lven anye > 0, andh__e H, /the e-ball _abouth 'S; the set

when sampling from a3-log-concave distribution, then forBW(h) C M of classifiersh’ € H, with _‘P(h’h) = &

any specific classifier we cannot hope to have a large margllp'erefore, as usual, an-cover . of 7} is a collection

It does not claim, however, that the empirical margin is émal/1: - -» /v } © H such that for anyh & 7, there exists

Specifically, for Xy = {1,...,zx} one can consider the someh,; € H. with cg(_h, h;) < e. Then, we have the following

probabilistic behavior of the following empirical gap betsn corollary of P.roposmon 3and Qorollary 6', ,

the classesgap(X x; h) = min; jup (e (x,) d(ai, ;). The Corollary 7: Let H b_e a faml_ly of classifiers. For > 0,

probability that this quantity is larger than cannot be '€t7{= be ans-cover, with covering numbek .. Then,

bounded in a dimension-free manner. The reason is that as th .

number of dimensions grows to infinity the distance betwedr | X margin(Xy;h) = 7> <

the samples may become bounded away from zero. To see

this, consider uniformly distributed samples on the unit ba E%lf Neo max Pr (margin(XN; h) >~y — 6)

in R™. If n is much bigger thanV, it is not hard to prove that Thus for the best bound obtainable in this fashion, we  must

all the sampled vectors will be (with high probability) effya find the optimal tradeoff between the fineness of the covering

far apart from each other. Sep(X n; h) does not converge and the size of the resulting cover.

to O (for every non-triviak) in the regime where: increases  Computinge-covers with this metric, and thus the subse-

fast enough withN. For every fixedn one can bound the quent optimization problem, can be readily done in a number

probability thatgap(X n;h) is large using covering numberof common cases. For example, this is the cagé i§ the set

arguments, as in [27], but such a bound must be dimensi@i-linear classifiers through the origin, add is compact, or

dependent. if H is the set of classifiers parallel to a given hyperplane.
A quantity related to the empirical margin, is the margin to a

set of classifiers with more than one, indeed possibly imnitAcknowledgements
classifiers. In such cases, a uniform bound in the spirit of

Corollary 6 is of interest. Specifically, let the empiricahrgin
of a classifierh on sample pointsX 5 be denoted by:

where Pr is the probability measure of drawiny samples max
zeK—(h)yEK~(R") zeK+(h') yeKT(h)

sup inf d(z,y); sup inf d(z,y)}.
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