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An Inequality for Nearly Log-Concave Distributions
With Applications to Learning

Constantine Caramanis, Member, IEEE, and Shie Mannor, Member, IEEE

Abstract—We prove that given a nearly log-concave distribution,
in any partition of the space to two well separated sets, the mea-
sure of the points that do not belong to these sets is large. We apply
this isoperimetric inequality to derive lower bounds on the general-
ization error in learning. We further consider regression problems
and show that if the inputs and outputs are sampled from a nearly
log-concave distribution, the measure of points for which the pre-
diction is wrong by more than �0 and less than �1 is (roughly) linear
in �1��0, as long as �0 is not too small, and �1 not too large. We also
show that when the data are sampled from a nearly log-concave
distribution, the margin cannot be large in a strong probabilistic
sense.

Index Terms—Classification, generalization error, margin, sta-
tistical learning theory.

I. INTRODUCTION

LARGE margin classifiers (e.g., [1], [2] to name but a few
recent books) have become an almost ubiquitous approach

in supervised machine learning. The plethora of algorithms that
maximize the margin, and their impressive success (e.g., [3] and
references therein) may lead one to believe that obtaining a large
margin is synonymous with successful generalization and clas-
sification. In this paper, we directly consider the question of how
much weight the margin must carry. We show that essentially
if the margin between two classes is large, then the weight of
the “no-man’s land” between the two classes must be large as
well. Our probabilistic assumption is that the data are sampled
from a nearly log-concave distribution. Under this assumption,
we prove that for any partition of the space into two sets such
that the distance between those two sets is , the measure of
the “no-man’s land” outside the two sets is lower-bounded by

times the minimum of the measure of the two sets times a di-
mension-free constant. The direct implication of this result is
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that a large margin is unlikely when sampling data from such a
distribution.

Our modeling assumption is that the underlying distribution
has a -log-concave density. While this assumption may appear
restrictive, we note that many “reasonable” functions belong to
this family. We discuss this assumption in Section II, and point
out some interesting properties of -log-concave functions.

In Section III, we prove an inequality stating that the mea-
sure (under a -log-concave density) of the “no-man’s land” is
large if the sets are well separated. This result relies essentially
on the Prékopa–Leindler inequality which is a generalization
of the Brunn–Minkowski inequality (we refer the reader to the
excellent survey [4]). We note that the isoperimetric inequality
we prove (Theorem 2) was stated in [5] for volumes, and in
[6] for continuous -log-concave distributions, in the context
of efficient sampling from convex bodies. However, the proof
sketched in [6] relies in an essential way on having a continuous
density ([7]). We provide a complete proof of the more general
result using the Ham-Sandwich Theorem (as in [5], but using a
different method) and a different reduction argument. We fur-
ther point out a few natural extensions.

In Section IV, we specialize the isoperimetric inequality to
provide lower bounds for the generalization error in classifi-
cation under the assumption that the classifier will be tested
using a -log-concave distribution, which did not necessarily
generate the data. While this assumption is not in line with the
standard probably approximately correct (PAC) learning formu-
lation (see, e.g., [8]), it is applicable to the setup where data
are sampled from one distribution and performance is judged
by another. Suppose, for instance, that the generating distribu-
tion evolves over time, while the true classifier remains fixed.
We may have access to a training set generated by a distribu-
tion quite different from the one we use to test our classifier.
Another important motivation is the case where the data were
indeed generated by the true distribution, but a portion of the
data were erased, or lost.

In the absence of further information about the generating dis-
tribution or its evolution, or the data erasure, it becomes natural
to ask “how bad” the training data may be. We show that if there
is a large (in a geometric sense) family of classifiers that agree
with the training points, then for any choice of classifier there
exists another classifier compared to which the generalization
error is relatively large.

In Section V, we investigate regression problems. We con-
sider several regression models and lower-bound the measure
of a tube around the prediction with inner radius and outer
radius . The measure of this tube represents the probability
of a prediction error between and (equivalently, this is the
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weight of samples that become erroneous when we change the
sensitivity parameter from to when using -sensitive error).
Our results imply that the margins of the tube carry a significant
portion of the measure. We start from a simple additive model
where the noise is independent of the value of the independent
variable. We show that the weight of the tube around the true
regressor is bounded from below by times a constant (as
long as is not too small, and not too large). We then con-
sider a setup where the noise and the independent variable are
drawn from a distribution which is jointly -log-concave and
show that the result extends to this setup. This setup is partic-
ularly interesting because it applies to linear prediction when
the measure is generated by some other (unknown) linear func-
tion. We then extend the result to a conditional -log-concave
distribution and show that similar results still hold even if the
independent variable is drawn first from a -log-concave distri-
bution, and then the dependent variable is drawn from another

-log-concave distribution (with, perhaps, a different ).
In Section VI, we consider the standard statistical machine

learning setup, and show that for any classifier, the probability of
a large margin (with respect to that specific classifier) decreases
exponentially fast to with the number of samples, if the data
are sampled from a -log-concave distribution. It is important
to note that the -log-concave assumption applies to the input
space. If we use classification methods such as kernel methods
that use Mercer kernels ([9], [10]), the margin is typically mea-
sured in the feature space. Since the induced distribution in the
feature space is not necessarily -log-concave, our results do
not directly hold. If, however, the kernel map is Lipschitz contin-
uous with constant , then we can relate the “functional” margin
in the feature space to the “geometric” margin in the input space,
and our results carry over directly.

Some recent results such as [11], [12] argue that the success of
large margin classifiers is remarkable since most classes cannot
have a useful embedding in some Hilbert space. Our results pro-
vide a different angle, as we show that having a large margin is
unlikely to start with. Moreover, if there happens to be a large
margin, it may well result in a large error (which is proportional
to the margin). A notable feature of our bounds is that they are
dimension-free and are therefore immune to the curse of dimen-
sionality (this is essentially due to the -log-concave assump-
tion). We note the different flavor of our results from the “clas-
sical” lower bounds (e.g., [13], [14]) that are mostly concerned
with the PAC setup and where the sample complexity is the main
object of interest. We do not address the sample complexity di-
rectly in this work.

II. NEARLY LOG-CONCAVE FUNCTIONS

We assume throughout the paper that generalization error is
measured using a nearly log-concave distribution. In this sec-
tion, we define such distributions and highlight some of their
properties.

Definition 1: A function is -log-concave for
some if for any , , , we have
that:

(II.1)

A function is log-concave if it is -log-concave.

A distribution is called -log-concave if it is defined by a
-log-concave density function. Henceforth, we refer to both
-log-concave distributions and their associated -log-concave

densities.
The class of log-concave distributions itself is rather rich. For

example, it includes the Gaussian, Uniform, Logistic, and Expo-
nential distributions. We refer the reader to [15] for an extensive
list of such distributions, sufficient conditions for a distribution
to be log-concave, and ways to “produce” log-concave distribu-
tions from other log-concave distributions. The class of -log-
concave distributions is considerably richer since we allow a
factor of in inequality (II.1). For example, while log-con-
cavity implies a distribution must have a continuous density, this
is not the case for -log-concave distributions. They can even
have densities with arbitrarily many discontinuities, and without
a well-defined derivative. Nevertheless, we see that while they
are not regular in this respect, they have enough structure that
much can be said about them. We now provide some results that
are useful in the sequel. We start from the following observation
(see, e.g., [6]).

Lemma 1: The support of a -log-concave density is a convex
set. Also, -log-concave densities are bounded on bounded sets.

Densities that are -log-concave are not necessarily uni-
modal, but possess a unimodal quality, in the sense of Lemma 2
below. This simple lemma captures the properties of -log-con-
cavity that are central to our main results and subsequent appli-
cations. It implies that if we have a -log-concave distribution
on an interval, there cannot be any big “holes” or “valleys” in
the mass distribution. Thus, if we divide the interval into three
intervals, if the middle interval is large, it must also carry a lot
of the weight. In higher dimensions, essentially this says that if
we consider two subsets, then if the distance between the two
sets is large, the mass of the “no-man’s land” will also be large.
This is essentially the content of Theorem 2 below.

Lemma 2: Suppose that is -log-con-
cave on an interval . Let . Then for
any , at least one of the following holds:

for all

or

for all

Proof: Consider any , and suppose, in order
to obtain a contradiction, that there exists and

, such that , for . Then,
there exists such that , and thus
by -log-concavity of , we have

a contradiction.

The following inequality has many uses in geometry, statis-
tics, and analysis (see [16] for a proof, and [4] for more context,
uses, and references). Note that it is stated with respect to a spe-
cific and not to all .
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Theorem 1 (Prékopa–Leindler Inequality): Let ,
and be nonnegative integrable functions on , such
that , for every .
Then

The following lemma plays a key part in the reduction tech-
nique we use below. It essentially says that the projection of a

-log-concave distribution is still -log-concave. Recall that the
orthogonal projection of a set onto is defined as

.

Lemma 3: Let be a -log-concave density on a
convex set . For every in , consider the
section . Then the
density is -log-concave on .

Proof: This is a consequence of the Prékopa–Leindler in-
equality (as in [4] for log-concave functions). Fix

. Define the functions for .
Therefore, is defined on , . For ,
let , and define the function
defined on . By the convexity of

In particular, for any is in , , the point

is in . By the -log-concavity of

and, therefore, this implies

Denoting the indicator function by , we have

But then the functions ,
, and satisfy the

hypotheses of the Prékopa–Leindler theorem, and thus we can
write as

Since this holds for all , is -log-concave.

There are quite a few interesting properties of -log-con-
cave distributions. For example, the convolution of a -log-

concave and a -log-concave density is -log-con-
cave; Gaussian mixtures are -log-concave; and mixtures of
distributions with bounded Radon–Nikodym derivative are also

-log-concave. Additional discussion of these and other prop-
erties of -log-concave distributions is beyond the scope of this
paper.

III. ISOPERIMETRIC INEQUALITIES

In this section, we prove our main result concerning -log-
concave distributions. We show that if two sets are well sepa-
rated, then the “no-man’s land” between them has large mea-
sure relative to the measure of the two sets. Results of this na-
ture exist in the literature for log-concave distributions. Recent
results along these lines (e.g., [17]; for a survey see [18]) use a
powerful localization lemma proved in [19] that requires a con-
tinuity assumption (for related results using generalized local-
ization theorems, we refer the reader to [20] and [21]). Here, we
provide a different proof that requires no such regularity.

We first prove the result for bounded sets and then provide
two immediate corollaries. Let denote the Euclidean dis-
tance in . We define the distance between two sets and

as and the diameter
of a set as . Given a density

we say that is the induced measure.
A decomposition of a closed set to a collection of
closed sets satisfies that: and

for all where is the Lebesgue measure
on .

Theorem 2: Let be a closed and bounded convex set with
nonzero diameter in with a decomposition

. For any -log-concave density , the induced measure
satisfies

We remark that this bound is dimension-free. The ratio
is necessary, as essentially it adjusts for

any scaling of the problem. We further note that the minimum
might be quite small; however, this ap-

pears to be unavoidable (e.g., consider the tail of a Gaussian,
which is log-concave).

The proof proceeds by induction on the dimension . The
steps are as follows.

(1) We prove the base case, , in Lemma 4. Here, the set
is an interval. The key tool we use is Lemma 2.

(2) The inductive step uses a projection argument to reduce
to dimensions. Lemma 5 reduces to the case of an
“ -flat” set, i.e., a set contained in an ellipse whose smallest
axis is smaller than some .

(3) Once we have reduced to the -flat case, we complete the
induction by projecting to dimensions where the re-
sult holds by inductive hypothesis. By properly performing
the projection, we show that if the result holds for the pro-
jection, it holds for the original set.

We abbreviate . The theorem trivially holds if
, so we can assume that . From Lemma 1, we know
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that the support of is convex. Thus, we can assume without
loss of generality that since is compact, is strictly posi-
tive on the interior of .

Step 1

Lemma 4: Theorem 2 holds for .
Proof: If , then is some interval, ,

with . Since ,
no point of is within a distance (strictly less than) from
any point of . Furthermore, there must be at least one in-
terval such that , and such that

. Fix some , with . De-
fine the -expansion sets , and

. Define to be the closure of
the complement in of . Each set is a union of a finite
number of closed intervals, and thus we have the decomposi-
tion , where each interval is
either a -interval, a -interval, or a -interval. We modify
the sets so that if the -interval is sandwiched between
two -intervals ( ) then we add that interval to . If
the -interval is either the first interval , or the last in-
terval, , then we add it to whichever set is to its
right or left, respectively.

The three resulting sets and are closed, intersect at
most at a finite number of points, and thus are a decomposition
of . Each set is a union of a finite number of closed intervals.
Furthermore, , and ,

and . By our modifications above, each -interval
must have length at least .

Consider any -interval . Let be a maximizer1 of
on , and a minimizer of on .

Suppose that . Then by Lemma 2, for any ,
we must have . Therefore

If instead we have , then in a similar manner we
obtain the inequality

Therefore, in general, for any -interval

1As in Lemma 2, f may not be continuous, so we may only be able to find a
point x (x ) that is infinitesimally close to the supremum (infimum) of f .
For convenience of exposition, we assume f is continuous. This assumption can
be removed with an argument parallel to that given in Lemma 2.

Suppose, without loss of generality, that is a -interval.
Consider the first -interval . If

then

and we are done. So let us assume that

Similarly, for the last -interval , we can assume
that

otherwise the result immediately follows. This implies that
there must be two consecutive -intervals, say and

such that

and

Since contains either all of or
, combining these two inequalities, and using the fact that

, and , we obtain

Since this holds for every , the result follows.

Step 2

We now prove the -dimensional case. The first part of our
inductive step is to show that it is enough to consider an “ -flat”
set . To make this precise, we use the Löwner–John ellipsoid
of a set . This is the minimum volume ellipsoid containing

(see, e.g., [22]). This ellipsoid is unique. The key property we
use is that if we shrink from its center by a factor of , then
it is contained in . We define an -flat set to be such that the
smallest axis of its Löwner–John ellipsoid has length no more
than .

Lemma 5: Suppose the theorem fails by on , for some
, i.e.,

(III.2)

Then for any , there exists some -flat set with
decomposition , such that , ,

, and , and such that the theorem
fails by , i.e., inequality (III.2) holds for .
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Fig. 1. The inductive step works by projectingK onto one less dimension. In (a), a projection on the horizontal axis would yield a distance of zero between the
projectedK andK . Once we bisect to obtain (b), we see that a projection onto the horizontal axis would not affect the minimum distance betweenK andK .

Proof: Let and be as in the statement
above. Pick some much smaller than . Suppose that
all axes of the Löwner–John ellipsoid of are greater than
. A powerful consequence of the Borsuk–Ulam theorem, the

so-called Ham-Sandwich theorem, (see, e.g., [23]) says that in
, given Borel measures , such that the

weight of any hyperplane under each measure is zero, there ex-
ists a hyperplane that bisects each measure, i.e.,

for each , where denote the
two half-spaces defined by . Now, since we have , the
Ham-Sandwich Theorem guarantees that there exists some hy-
perplane that bisects (in terms of the measure ) both
and . Let and be the two parts of defined by
( and are not necessarily bisected), and similarly define

, and . The minimum distance cannot
decrease, i.e., , and , and the di-
ameter of cannot be smaller than either the diameter of or

. Consequently, if the theorem holds, or fails by less than ,
for both and , then

Therefore, the theorem must fail by for either or . We
note that this is the same as above. Call the set for which the
theorem does not hold , and similarly define
and . We continue bisecting in this way, always fo-
cusing on the side for which the theorem fails by , thus ob-
taining a sequence of nested sets

We claim that eventually the smallest axis of the
Löwner–John ellipsoid will be smaller than . If this is
not the case, then the set always contains a ball of radius

. This follows from the properties of the Löwner–John
ellipsoid. Therefore, letting denote the ball of radius

centered at , we have

for some , independent of . We know that by our
initial assumption that is nonzero on .

However, by our choice of hyperplanes, the sets
are bisected with respect to the measure . Thus,

, and , and the measure of each
set becomes arbitrarily small as increases. Since
the measure of does not also become arbitrarily small,
the measure of must also be bounded away from zero.
In particular

and thus for

we have

This contradicts our assumption that the theorem fails on all el-
ements of our nested chain of sets. The contradiction completes
the proof of the lemma.

Step 3

We now perform the projection, proving the inductive step.
We put the steps together to complete the proof.

Proof of Theorem 2: The proof is by induction on the
number of dimensions. By Lemma 4, the statement holds for

. Assume that the result holds for dimensions. Suppose
we have , with the decomposition
satisfying the assumptions of the theorem. We show that for
every

Taking to zero yields our result. Let be the Löwner–John
ellipsoid of . By Lemma 5, we can assume that the
Löwner–John ellipsoid of has at least one axis of length no
more than . Fig. 1 illustrates the bisecting process of Lemma 5,
and also the essential reason why the bisection allows us to
project to one fewer dimensions. We take smaller than ,
and also such that . Assume that the

st coordinate direction is parallel to the shortest axis of
the ellipsoid, and the first coordinate directions span the same
plane as the other axes of the ellipse (changing coordinates if
necessary). Call the last coordinate , so that we refer to points
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in as , for , and . Let denote the
plane spanned by the other axes, and let denote
the projection of onto . Since , no point in
is the image of points in both and , otherwise, the two
pre-images would be at most apart. This allows us to
define the sets

Note that , , and .
Again, we have a decomposition . On

, we also have a decomposition:
. Since we project with respect to the norm, by the

Pythagorean Theorem, . In ad-
dition, .

For , define the section
. We define a function on :

, where is our -log-concave density
on . We have

and similarly for . By Lemma 3, is -log-concave.
Therefore, by the inductive hypothesis, we have that

and thus

Since this holds for every , the result follows.

Corollaries 1, 2, and Proposition 1 below offer some flexi-
bility for obtaining a tighter lower bound on .

Corollary 1: Let be a closed and bounded convex set with
a decomposition as in Theorem 2 above.
Let be any density (not necessarily -log-concave) that is
bounded away from zero on , say for . Then
the induced measure satisfies

where denotes Lebesgue measure.
Proof: Consider the uniform distribution on . Since

it is log-concave, Theorem 2 applies with . Since the
Lebesgue measure is just a scaled uniform distribution,

. The
corollary follows since .

The lower bound on which we obtain from Theorem 2,
depends inversely on the diameter of the set , which we take
to be bounded. This poses two potential problems. First, if the
set is unbounded, then the theorem cannot be applied, and
the isoperimetric inequality, as stated, is meaningless. Second,
even if is bounded, the inequality may be rendered quite weak
if the diameter is very large. Specifically, the problem arises
if has a very large diameter, while most of the mass of the
distribution is contained in a small-diameter subset of , with
light tails putting very little mass on the rest of . A Gaussian
is a prime example of a -log-concave (in fact -log-concave)
distribution with this behavior.

The following two results address both issues by truncating
, and then applying Theorem 2 to the truncation. First, we give

a corollary that does not assume any further knowledge about
the density . Then, in Proposition 1, we give a corollary
that replaces the diameter in Theorem 2 by the second moment
of .

Corollary 2: Fix . Let be a closed, convex, but not
necessarily bounded set. Let be a de-
composition of . Let be a -log-concave density with in-
duced measure , such that there exists for which

, ,
and , where is a ball with
radius around the origin. Then

Proof: We have that . Let
, and note that . Consider the

measure defined on by the density .
It follows that is -log-concave. We now apply Theorem 2 on

to obtain that

where . It follows that

and similarly for , and also

The result now follows by some algebra.

If most of the mass of the distribution is contained in a small-
diameter set, so that the trace of the covariance matrix is not
too big, then it is possible to obtain a similar result, replacing
the term in the denominator by a term involving the
covariance.

Proposition 1: Let and and be as above,
and let be the mean of the density , and
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the trace of the covariance of (which we assume to be
finite):

Then the induced measure satisfies

Proof: Let us assume first that . We re-
quire the following generalization of the Chebyshev inequality
to multiple dimensions. For such generalized inequalities, see,
e.g., [24] or [25], and references therein. Here we use the
inequality

(III.3)

where denotes the -ball about the mean, . Setting the
right hand-hand side of inequality (III.3) equal to , we
find

Now let and denote the truncations of and
, and let denote the truncated and renormalized measure.

Using as the diameter of the truncated set, and observing that
, and then applying Theorem 2, we

find

(III.4)

Noting that , we have

Together with inequality (III.4) we have

A similar inequality results when , whence the
result follows.

IV. LOWER BOUNDS ON GENERALIZATION ERROR

In this section, we obtain lower bounds on the generaliza-
tion error of classification problems. The generalization error
is the weight of the region where the chosen classifier and the
true classifier differ. This in turn is related to the weight of
the no-man’s land. Appealing to the isoperimetric inequality of
Theorem 2, we use the size (in the geometric sense of distance
between sets) of the no-man’s land, to obtain bounds on the
weight it must carry. Thus, we show that the size of the no-man’s
land can be a tractable measure providing good bounds on the
measure of the set where two classifiers differ. We also point
out that in the absence of -log-concavity, no such bounds are
valid.

Lower bounds on the generalization error in classification re-
quire a careful definition of the probabilistic setup. In this sec-
tion, we consider a generic setup where proper learning is pos-
sible. We consider the standard classification problem where
data points and labels are given, and not
necessarily generated according to any particular distribution.
We assume that we are given a set of classifiers which are
functions from to . For now, by a slight abuse of no-
tation, we use to refer both to the full family of classifiers,
and the subset of classifiers that have zero error on the training
data. Thus, when speaking of linear classifiers, it is understood
that by we mean the subset of linear classifiers that correctly
classify the training data. In our model, the performance of the
classifier is measured using some probability measure induced
by a -log-concave density . We note that this model deviates
from the “classical” statistical machine learning setup.

Given a density , the disagreement of a classifier
with another classifier is defined as

where is the probability measure induced by . If there
exists a true classifier (not necessarily in ) such that

then the error of is . For a clas-
sifier , let , and similarly

. Given a pair of classifiers
and we define the distance between them as ,

given by

We note that may equal zero even if the classifiers
are rather different. However, in some cases, pro-
vides a useful measure of difference; see Proposition 2 below.
We consider later generalizations of “ ” which are inter-
esting exactly when the classifiers are different, but the distance
defined above is zero.

Suppose we have to choose a classifier from a set . This
may occur if, for example, we are given sample data points and
there are several classifiers that classify the data correctly. The
following theorem states that if the set of classifiers we choose
from is too large, then the error might be large as well. Note that
we have to scale the error lower bound by the minimal weight
of the positively/negatively labeled region.
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Theorem 3: Suppose that is -log-concave defined on a
closed and bounded set with nonzero diameter.2 Then for
every , for every ,3 there exists such that

(IV.5)

(IV.6)

where .
Without the -log-concavity assumption, this result need not

hold. Indeed, without it, we may have classifiers with
large, but with little or zero weight on the region in which they
differ.

Proof: If , the result follows,
so we can assume this is not the case. For every we can
choose such that .
We consider the case where ;
the other case where follows
in a symmetric manner. Let . It
follows from Theorem 2 that

(IV.7)
From here the first inequality of the theorem follows. Now for
the second inequality, similarly to the above, for every we
can pick so that .
By Theorem 2, letting inequality
(IV.7) holds with in place of . Now

and

Since on , then either
or . Since and

, and by substituting in (IV.7), we obtain that

for or .

The following example demonstrates the power of Theorem 3
in the context of linear classification. Consider an input–output
sequence arising from some unknown
source (not necessarily -log-concave) as in the classical bi-
nary classification problem. Define and

. Suppose that the true error is mea-
sured according to a -log-concave distribution, and that
and are linearly separable. Recall that a linear classifier
is a function given by , where “ ”
is the sign function and “ ” is the standard inner product in

. The following proposition provides a lower bound on the
true error. We state it for generic sets of vectors, so the data are
not assumed to be sampled from any concrete source. The lower

2Unless explicitly noted, we assume throughout thatK is closed and bounded
with nonzero diameter.

3IfH is compact in an appropriate sense, then we can set � = 0.

bound concerns the case where we are faced with a choice from
a set of classifiers, all of which agree with the data (i.e., have
zero training error). If we commit to any specific classifier, then
there exists another classifier (whose training error is zero as
well) such that the true error of the classifier we committed to
is relatively large if the other classifier happens to equal .

Proposition 2: Suppose that we are given two sets of
linearly separable vectors and let

. Then for every linear classifier
that separates and , and any -log-concave density
and induced measure defined on a bounded set , there

exists another linear classifier that separates and as
well, such that

where

for some such that and
.

Proof: Let be the set of all hyperplanes that separate
from . It follows by a standard linear programming argument
(see [26]) that . This is attained for

and
. We now apply Theorem 3 to obtain the desired result.

Note that in the declaration of the proposition is tighter than
in Theorem 3. This is the result of calculating

and directly (instead of taking the infimum as in
Theorem 3).

Finally, we note that inequality (IV.5) is in general strictly
stronger than (IV.6), since the inequality

is usually strict. If, on the other hand,
is the maximum margin classifier, then the two bounds coin-

cide. In the linear case, the maximum margin classifier is the
“safest choice.” Thus, we have a reinterpretation of the max-
imum margin classifier as the “safest” classifier under worst case
(minimax) assumptions.

A More General Notion of Distance

In the preceding discussion, we show how the
isoperimetric inequality can essentially use the measure

to obtain bounds on the generalization
error. As remarked earlier, Theorem 3 says nothing if

. Generalizing the notion of
“ ” for classifiers, and considering the distance from a single
classifier to a family of classifiers, we can obtain
a stronger measure that again allows us to derive a bound on

, the generalization error.

Definition 2: Given a classifier , and other classifiers
, define the sets
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Fig. 2. In (a), we have three classifiers: fh ; h ; h g, so that for any
two, dist(h ; h ) = 0. Nevertheless, for any h 2 fh ; h ; h g, there
exists h 2 fh ; h ; h g (with h 6= h) so that if h = h , then
�(h;h ) � �(B )=2, where B is the shaded area. To see this, note for
instance that if h = h , then B = �(h ;h ) [ �(h ;h ). We can then
get a bound on �(B ) by using the isoperimetric inequality, and the fact that
dist(h; fh ; h g) = t . In (b), we add a fourth classifier h . Here we see that if
we chooseh = h , then the worst case generalization error is lower-bounded by
comparing the two distance measures sup dist(h; h ) (our previous dis-
tance measure) and (1=2) sup dist(h; fh ; h g). In this example,
sup dist(h; h ) = t , and sup dist(h; fh ; h g) = t .

so that is the set of points that all classifiers in
, and also , label as “ ,” and similarly for . Now we

define the distance measure from a classifier to a
family of classifiers , to be the Euclidean distance

If the intersection is empty, we define to be zero.

For , Fig. 2 illustrates the generalized concept
of , and further shows that Theorem 3 holds with

replaced by the new distance concept

Indeed, the phenomenon illustrated in Fig. 2 holds in general.
We can restate Theorem 3 using the distance to a fixed classifier.
The statement of Theorem 3 now becomes:

Theorem 3 : Under the assumptions of Theorem 3, for every
there exists such that

where we have

The proof follows directly. This restatement of Theorem 3 is
in fact somewhat stronger, since when the two inequalities of
Theorem 3 do not coincide, the in the restatement picks
out the stronger lower bound.

We can obtain a general version of this result.

Theorem 4: Under the assumptions of Theorem 3, for every
and for any , there exists such that

is bounded below by

where is given in (IV.8), shown at the bottom of the page.
Proof: This proof closely follows that of Theorem 3.4 For

every and , choose that attain the
supremum on the right-hand side of (IV.8) within . Let

, and . Now let
. By Theorem 2, it follows that

(IV.9)
Now, we can write as the union of possibly overlapping
sets, where each set defines the area where differs with one of
the

The second equality follows by the associativity of unions. For
the first equality, we have simply expanded out our definition
of and from above: Take any . Suppose

. Since , then , and thus there must exist
some for which , which means , and
hence, . The reverse inclusion follows
similarly.

Consequently, we have

4Note again that if H is compact, we can set � = 0. Furthermore, the max
over is attained for some finite r 2 , since distis bounded uniformly with
respect to r in .

(IV.8)
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Letting be the maximizing index of the right-hand side, we
have . Substituting in (IV.9), we then have
that is at least

This concludes the proof.

V. REGRESSION TUBES

In this section, we consider regression problems, and provide
results of a different flavor. Throughout the section, we let
be a function from to . We provide lower bounds on the
weight of tubes around . The probabilistic setup is as follows.
We have a probability measure with density on that
prescribes the probability of getting a pair .
The density has support on the set . For a specific function

we consider the set

This set represents all the pairs where the prediction of is off
by more than and less than , or alternatively, the set of pairs
whose prediction is converted to zero error when changing the

in an -insensitive error criterion from to . Different as-
sumptions on the joint density lead to different results. We
start with a simple case representing an additive independent
noise model, and then consider the case where is -log-con-
cave jointly in and . We finally consider the more compli-
cated case, where is -log-concave in and -log-concave
in conditioned on . We provide a lower bound on the mea-
sure of the tube under some continuity assumptions.

As a motivation, consider the classical regression setup where

(V.10)

where is the independent random variable, is additive
noise, and is the dependent variable. The results of this sec-
tion apply to nonadditive noise models as well. If the noise
is arbitrary, we cannot hope to obtain a bound on the measure
of the intermediate tube in terms of the inner and outer tubes,
since the noise may alternate between putting the weight on the
inner and the outer tubes. We make certain specific assumptions
concerning the continuity of the noise process.

Let us define the projection of a tube for a specific by

We denote the marginal density by and the conditional den-
sity by . The associated measures are then denoted by
and .

If the noise in (V.10) is independent of , we can straightfor-
wardly derive a lower bound on the measure of the intermediate
tube.

Corollary 3: Consider the model of (V.10). Suppose that is
independent of and has a -log-concave distribution. Suppose

further that has bounded support , with (this
is always true if has zero mean). Then for every probability
measure on , we have that

(V.11)
Proof: Since is independent of and using Theorem 2,

we have that for every

By definition

and similarly for and . Since is the
same for all , we obtain (V.11).

It is worth mentioning that Corollary 3 does not require any
assumptions on , and in particular the support of is not
assumed bounded. For the case of unbounded noise with finite
variance (e.g., Gaussian noise) one can use Proposition 1 instead
of Theorem 2 and obtain a similar bound (replacing
with and having power of inside the minimum).

We next consider the case where the density is -log-
concave jointly in and . This may arise in a situation where
(V.10) holds with independent of , but we do not know
what is the true function. In that case, we can still consider the
measure of the intermediate tube defined by some other function

. The linear case is particularly simple as shown by the next
lemma.

Lemma 6: Suppose that the model of (V.10) holds and that
is -log-concave. If is -log-concave and if is linear,
we have that is -log-concave.

Proof: We have that

where is some matrix ( ) and is a -log-concave
conditional noise density. For we have that

Corollary 4: Suppose that is -log-concave on
a bounded set , with induced measure . As-
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sume that is Lipschitz continuous with constant , and that
for every . Then for every

(V.12)
Proof: We use Theorem 2 with the decomposition
, , and . By the Lipschitz

continuity of , we get

as follows. Take any

and

Let . Then , and thus,
, and thus,

. Optimizing this bound over we find
that gives the desired bound.

A direct implication of Corollary 4 and Lemma 6 is that if the
true model is linear, and both and are - and -log-con-
cave, respectively, then every function (not necessarily linear)
satisfies (V.12).

We now consider a different model where instead of as-
suming that and are jointly -log-concave, we assume that

is -log-concave and that is -log-concave conditioned
on . We define to be the projection of on the first
dimensions.

Definition 3: A density is - conditional log-con-
cave if the marginal is -log-concave and
if the conditional is -log-concave for
all .

The following theorem asserts that a similar bound to (V.12)
can be obtained even for - conditional log-concave distribu-
tions. The setup is, however, considerably more general. It in-
cludes, for example, regression where the independent param-
eter is sampled from a uniform distribution, and the dependent
parameter equals , where is some -log-con-
cave function that depends on . We denote by the unit ball
in .

Theorem 5: Suppose that is - conditional log-con-
cave on a bounded set , with induced measure .
Fix . Assume further that there exist constants

, , and such that for all ,
, , and ,

Assume that is Lipschitz continuous with constant . Then
is lower-bounded by

Proof: Fix positive . For a set (this is
a set in ) we denote the extension to a set in by

. We now define
two sets

Note that . We consider the following three
cases.

Case 1: , that is, the inner tube is always heavier
than the outer tube. In this case, for every we apply Theorem
2 to the conditional measure, to obtain

Similarly to Corollary 3, integrating over all , we ob-
tain that

So the result holds.

Case 2: . In this case, the outer tube is heavier
for all . In a similar manner to the previous case we can prove
that

Case 3: Both and . In that case, it
follows from continuity of and that the set

is not empty. For every in we have from Theorem 2
that

Since

for

by solving for , substituting in the inequality
above, and collecting terms we obtain that

We first consider the continuity of as a func-
tion of
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where the last inequality is due to the Lipschitz continuity of
and and . It follows from the continuity

assumption on that if

Fix . Then for every
such that , we have that

(V.13)

Define to be the expansion of , that is,

for some

Assume first that . We bound
in terms of . We have that

(V.14)

One of the summands in (V.14) must be at least . We
consider each case separately.

Case 3.1: . In
that case, we have that

(V.15)

Case 3.2: . As before

Since (V.13) holds for all for our choice of , we
obtain

(V.16)

Case 3.3: . In
that case, we have that . Since we
assumed that one of the three cases
must hold:

Case 3.3.1: .
In this case, we can use the same maneuver as in Case 3.1 (ap-
plied to ) and (V.15) holds.

Case 3.3.2: .
In this case, we can use the same maneuver as in Case 3.2 and
(V.16) holds.

Case 3.3.3:
. In this case, we have that

and . We can use The-
orem 2 for and obtain that

Substituting the value of , and similarly to Case 3.2

The case where follows similarly.
The result follows by taking the worst case of the five cases.

Several remarks are in order. First, the boundedness assump-
tion can be relaxed in a similar manner to Corollary 2 or Propo-
sition 1, with appropriate changes. Second, a continuity assump-
tion of is necessary, and counterexamples, where discontinuity
invalidates the theorem, can be easily derived. Third, as a result
of the continuity requirement on , Theorem 5 is dimension in-
dependent. If is instead Lipschitz continuous, one can still re-
tain a similar result, however, a dimension-dependent constant
would be needed for Case 3.3.3.

VI. BOUNDING THE SIZE OF THE MARGIN

In this section, we consider the problem of computing the
likelihood that data generated by a -log-concave distribution
will have a large margin, and again show that this question can
be approached using the isoperimetric inequality. We consider
the standard machine learning setup, and assume that the data
are sampled from a -log-concave distribution. We examine
the geometric margin as opposed to the “functional” margin
which is often defined with respect to a real-valued function .
In that case, classification is performed by considering

and the margin of at is de-
fined as . If such a function is Lipschitz with a constant

, then for the event that is
contained in the event that (and for if

then ). Consequently, results on
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the geometric margin can be easily converted to results on the
“functional” margin as long as the Lipschitz assumption holds.5

Suppose now that we have a classifier , and we ask
the following question: what is the probability that if we
sample vectors from , they are far
away from the boundary between and . More
precisely, we want to bound the probability of the event

, and similarly for neg-
atively labeled samples. We next show that the probability
that a sampled point is some distance from the boundary, is
almost linear in this distance. An immediate consequence is an
exponential concentration inequality.

Proposition 3: Suppose we are given a classifier defined
on a bounded set . Fix some and consider the set

. Let be a -log-concave
density on with induced measure . Then

Proof: Consider the decomposition of to ,
, and . By Theorem 2, we know that

. We also know
that . Therefore

(VI.17)

where . Minimizing over in the interval
, it is seen that the minimizer is either at

the point where ,
or at the point where .
Substituting those in (VI.17) and some algebra gives the
desired result.

A similar result holds by interchanging and
throughout Proposition 3 and the definition of . The following
corollary is a two-sided version of Proposition 3. It does not
have inside the minimum.

Corollary 5: Suppose we are given a classifier defined on a
bounded set . Fix some ( ) and consider
the set

Let be a -log-concave density on with induced measure
. Then

Proof: Let
and . We have that

5This is the case if, for instance, we consider kernel machines where the re-
sulting classifier is of the form sgn( � k(xxx ;xxx)), where the kernel itself is
Lipschitz continuous, and we also have that the sum of the coefficients is con-
trolled, i.e., j� j is finite. An L regularization certainly achieves this. L
regularization along with a separate sparseness condition is also sufficient.

. From Proposition 3 we have
that

and

If the minimum is obtained by for or by
for , then the result holds. Suppose that the

minimum is obtained by the second term for both and
. We therefore have in that case that

where the last inequality follows since . The re-
sult follows.

Corollary 6: Suppose that samples
are drawn independently from a -log-concave density de-
fined on a bounded set . Let be a classifier. Then for every

where is the probability measure of drawing samples from
and .

Proof: The proof follows from Proposition 3 and the in-
equality for and .

Corollary 6 is a dimension-free inequality. It implies that
when sampling from a -log-concave distribution, then for any
specific classifier we cannot hope to have a large margin. It does
not claim, however, that the empirical margin is small. Specif-
ically, for one can consider the prob-
abilistic behavior of the following empirical gap between the
classes: . The prob-
ability that this quantity is larger than cannot be bounded in
a dimension-free manner. The reason is that as the number of
dimensions grows to infinity, the distance between the samples
may become bounded away from zero. To see this, consider uni-
formly distributed samples on the unit ball in . If is much
bigger than , it is not hard to prove that all the sampled vectors
will be (with high probability) equally far apart from each other.
So does not converge to (for every nontrivial )
in the regime where increases fast enough with . For every
fixed , one can bound the probability that is large
using covering number arguments, as in [27], but such a bound
must be dimension dependent.
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A quantity related to the empirical margin is the margin to a
set of classifiers with more than one, indeed possibly infinite,
classifiers. In such cases, a uniform bound in the spirit of Corol-
lary 6 is of interest. Specifically, let the empirical margin of a
classifier on sample points be denoted by

It is of interest to bound .
This bound, necessarily, must depend on the size of the space of
classifiers, much like a bound on the empirical gap must depend
on the dimension. This is an appropriate bound to consider
when consists of a set of, in some sense, equally reasonable
classifiers. That is, if, for example, is a one-dimensional
Gaussian distribution, then if contains a (linear) classifier
far out in the tail of the distribution, the uniform bound on
the margin will be useless, as that classifier will essentially
dominate the probability that there is a large margin.

If , then by an appeal to the union bound,
we have

Using covering numbers we can extend the use of the union
bound to infinite classifier families. We construct the -net using
the metric structure of the sample space, i.e., using the same
distance as that used to compute the size of the margin. We
define for this purpose the distance between two classifiers

as

Note that this definition is symmetric in and . Therefore,
given any and , the -ball about is the set

of classifiers , with .
Therefore, as usual, an -cover of is a collection

such that for any , there exists
some with . Then, we have the following
corollary of Proposition 3 and Corollary 6.

Corollary 7: Let be a family of classifiers. For , let
be an -cover, with covering number . Then

Thus, for the best bound obtainable in this fashion, we must find
the optimal tradeoff between the fineness of the covering, and
the size of the resulting cover.

Computing -covers with this metric, and thus the subse-
quent optimization problem, can be readily done in a number

of common cases. For example, this is the case if is the set of
linear classifiers through the origin, and is compact, or if
is the set of classifiers parallel to a given hyperplane.
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