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Abstract— The history of infections and epidemics holds fa-
mous examples where understanding, containing and ultimately
treating an outbreak began with understanding its mode of
spread. The key question then, is: which network of interactions
is the main cause of the spread? And can we determine the
causative network without any knowledge of the epidemic, other
than the identify of a minuscule subsample of infected nodes?
This comes down to understanding the diagnostic power of
network information. Specifically, in this paper we consider an
epidemic that spreads on one of two networks. At some point in
time, we see a small random subsample (perhaps a vanishingly
small fraction) of those infected. We derive sufficient conditions
two networks must have for this problem to be identifiable. We
provide an efficient algorithm that solves the hypothesis testing
problem on such graphs, and we characterize a regime in which
our algorithm succeeds. Finally, we show that the condition
we need for this identifiability property is fairly mild, and in
particular, is satisfied by two common graph topologies: the
grid, and the Erdös-Renyi graphs.

I. INTRODUCTION

We are fast moving toward a setting where people and
devices interact through multiple networks. With such multi-
network interactions comes both costs and benefits. On one
hand, viruses and sickness can spread on any of these
networks, thus rendering the task of pinpointing the causative
agent harder. On the other hand, opinions can now propagate
over any of these networks, thus providing more effective
mechanisms for influencing society. Concrete examples in-
clude smartphone viruses spreading over cellular networks
through SMS/MMS messaging or by short-range Bluetooth
communications, influence and product marketing occurring
through online social networks or through mass media
communications, and human disease spreading via multiple
possible relationship networks (professional vs. personal).

This paper focuses on determining the causative net-
work for the spread of an epidemic (e.g. virus, sickness,
or opinion) from limited samples of the network state.
In other words, given that only a small fraction of the
nodes can be tested or measured, can we determine the
network over which the epidemic is spreading? Inferring
the network can be beneficial: For instance, at the very
early stages of the AIDS pandemic in the 1980s, there was
much misinformation on the types of human relations that
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could lead to infection transfer. In fact, at one point it was
called the “4H disease” where 4H referred to “Haitians,
Homosexuals, Hemophiliacs, and Heroin users” [1], [2], by
simply typecasting the individuals who were known to be
infected. In retrospect, we speculate that if finer-grained
network knowledge (professional, personal, etc.) as is known
today was then available, such crude typecasting (which was
very detrimental to certain communities [2]) might have been
avoided.

Another example lies in the domain of cellphone viruses.
It is known that cellphone viruses can spread either by Blue-
tooth connections based on proximity [3], or by (randomly)
sampling the address book (contact network) and sending
infected MMS messages [4]. Here again, it would clearly be
beneficial to determine the causative network, as the counter-
measure strategies would be very different depending on
the network of spread. These examples motivate our model
and results, where we build on our prior work in [5] that
distinguishes between random sickness and epidemics.

A. Setting and Results
We consider a collection of n nodes, and the nodes are

interconnected by two graphs G1 or G2. In other words, the
two graphs share the same nodes but have different edges.
We assume that the two graphs are independent, i.e., the
node indices on the pair of graphs are randomly permuted
with respect to each other (see Section II for details). An
epidemic propagates along the edges of one of these graphs
using the standard SI model [6]. Given a sub-sample of the
infected nodes on the graph, our objective is to determine
the network over which the epidemic is spreading. In this
paper, we address the “single-snapshot” problem, where we
are not given the time at which the node was infected, but
only the identity of the (sub-sampled) infected nodes. In
addition to the number of samples, we are also interested in
the interval of time over which we can distinguish between
the two networks1. Our main contributions are as follows:
(i) Algorithm: We develop the Comparative Ball Algo-

rithm for inferring the causative network. This algo-
rithm builds on the intuition that infected nodes are
clustered more strongly on the true causative network.
The algorithm outputs the causative network as the one
with a smaller diameter-normalized ball that best fits
the collection of infected node samples.

1As we discussed in [5], once sufficient time has elapsed such that most
or all the nodes are infected, it is impossible to determine the causative
network. Thus, we are interested in determining the largest possible time
at which the snapshot is taken, when we can still distinguish the networks.
On the other end for small values of time, our interest in determining how
few samples are needed to reliably find the causative network.



(ii) General Graphs: For any pair of graphs G1, G2 that
both satisfy: (a) Speed condition – the epidemic ball
radius increases linearly in time, and (b) Spread con-
dition – a randomly selected collection of nodes are
sufficiently spread apart, we derive conditions on the
number of samples and the time interval over which we
can determine the causative network (as n → ∞ and
with high probability).

(iii) Grids and the Erdös-Renyi Random Graphs: For
d-dimensional grids, and the giant component of the
Erdös-Renyi random graph (with constant asymptotic
average degree), we derive bounds on the parameters
associated with the speed and spread conditions, thus,
providing sufficient conditions on the regime where we
can determine the causative network.

B. Related Work

This paper builds on the approach and results in our
prior work [5], where we derived sufficient conditions on
time interval and number of samples to distinguish between
a random sickness (which does not depend on network
structure) and an epidemic (e.g., allergy vs. flu). As in [5],
our methods strongly rely on first-passage percolation on
discrete structures, specifically, shape and speed theorems
for grids and random graphs [7], [8].

Epidemic spread and inference has been well studied in
various contexts [6], [9], [10], [11], [12]; however, we are
unaware of prior analytical work that attempts to determine
the causative network as in this paper.

C. Outline of the Paper

The paper is organized as follows. In the following sec-
tion, Section II, we precisely define the problem and the
infection model. In addition, we specify the Comparative
Ball Algorithm that we analyze in the rest of the paper.
Section III provides success criteria for generic graphs. That
is, we show that if these criteria are satisfied, then our
algorithm determines the true spreading mechanism with
high probability. In Section IV, we analyze two standard
graph topologies, grids and Erdös-Renyi graphs, and show
that they satisfy the aforementioned criteria. Finally, Section
V contains simulation information and illustrates empirically
the performance of our algorithm on these graphs.

II. MODEL AND ALGORITHM

We consider a collection of n nodes (vertices V ) which are
members of two different networks (graphs). These graphs
are denoted by G1 = (V,E1) and G2 = (V,E2); they
share the same vertex set but have different edge sets. For
example, G1 could represent the n vertices arranged on a
d−dimensional grid, and G2 could be an Erdös-Renyi graph.
Note that G2 does not need to have qualitatively different
structure from G1: Indeed G2 could also be a d−dimensional
grid, but with a different node-to-edge mapping.
Spread Model: We study the situation where an epidemic
is propagating on one of these two graphs, and the objective
is to determine on which network it is spreading. From

our previous discussion, this ‘epidemic’ could model many
situations, including the spread of a cellphone virus, physical
sickness of humans, and opinions or influence about products
or ideas.

Given that the epidemic is on graph Gi, the spread
occurs as follows (the standard SI dynamics [6]). A node
is randomly selected to be the epidemic seed, and a random
variable associated with it is set to ‘1’ (all other nodes are
set to ‘0’). Nodes with value ‘1’ are referred to as infected
nodes. Associated with each edge on the graph Gi are
independent exponential random variables, each with mean
‘1’. These represent the transit time of the infection across
that edge – a random variable. An infected node proceeds to
infect its neighbors, with each non-infected neighbor getting
infected after the random transit time associated with the
edge between the infected node and this neighbor. This
process proceeds until the entire graph Gi is infected.
Reporting Model: At some fixed time t, a sub-sample of
the infected nodes report their infection state independently,
with some probability q < 1. We denote Sr(n) to be the
set of reporting infected nodes. We henceforth suppress the
dependence on n, i.e., we use the notation Sr unless other-
wise specifically needed for clarity.
Graph Structure: Clearly, we require that the graphs G1

and G2 be “different enough” if we would want to reliably
determine the causative network. As an extreme example,
if the graphs were identical, clearly there is no hope of
distinguishing between the two.

In this paper, we require that corresponding nodes on
the two graphs have independent neighborhoods.2 This is
a condition that approximately holds in typical settings.
Consider for instance the several hundred “nodes” (people,
or devices) that come within blue-tooth range during a walk
through the mall. This list likely has extremely small overlap
(possibly only the few friends accompanying us on the mall
excursion) with the set of nodes that send us e-mail or SMS
on a regular basis.

One construction that has this property, and the one we
assume for our results in the sequel, is as follows. We start
with two graph topologies G1 and G2 of the same size n,
and whose nodes are unlabeled. Then we randomly label
the nodes of graph G1 from ‘1’ to ‘n’ uniformly. Likewise,
and independently, we label the nodes of graph G2. Now
nodes of the same label are considered the same entity
(person, device), i.e., if a node on one graph is infected,
the corresponding node on the other graph is also infected.
With this labeling, the graphs can be considered independent.
A key property that results from this model is that clustered
nodes in one graph are likely to be separated apart on the
other.
Objective: Given the two graph topologies, G1 and G2, and
a sample of infected nodes Sr, our objective is to design an
algorithm that (asymptotically) correctly determines which

2We note that we can envision other conditions based on clustering
of epidemics on the two graphs, which also serves as alternate sufficient
conditions. For simplicity, we restrict ourselves to the ‘random node index’
condition in this paper.



graph the epidemic is spreading on.
By ‘asymptotically correct’ we mean the following. Ob-

serve that in this setting, there are two types of error
events: the epidemic is spreading on G1 but the algorithm
outputs G2, and vice versa. The algorithm is said to be
asymptotically correct if the probabilities of each of these
error events go to zero as n→∞.

A. The Comparative Ball Algorithm

Given a graph Gi, a node v, and a radius r, we denote
by Ballv,r(Gi) the collection of all nodes on the Graph Gi

that are at most a distance r from node v (graph distance
measured by hop-count). Further, the diameter of the graph
is denoted by diam(Gi). Given any collection of nodes S,
we now denote by Ball(Gi, S) the smallest-radius ball that
contains all the nodes in S, and we let RadiusBall(Gi, S)
denote its corresponding radius.

We term our algorithm the ‘Comparative Ball Algorithm’.
For each graph, we find the smallest ball on that graph
that contains all the reporting infected nodes. We take the
ratio of the radius of this ball to that of its diameter.
These ratios (called the score of each graph) serve as a
topology independent measure of clustering on each graph.
The Comparative Ball Algorithm returns the graph with
the smallest normalized clustering ratio. This is formally
described below.

Algorithm 1 Comparative Ball Algorithm
Input: Two graphs, G1 and G2; Set of reporting infected
nodes S;
Output: G1 or G2

a1 ← RadiusBall(G1, S)
b1 ← diam(G1)
x1 ← a1/b1
a2 ← RadiusBall(G2, S)
b2 ← diam(G2)
x2 ← a2/b2
if x1 ≤ x2 then

return G1

else
return G2

end if

III. MAIN RESULT: GENERAL GRAPHS

Now we classify the types of graphs for which this
algorithm can determine which graph an infection has spread
on. The key criteria for these graphs are as follows. First,
an infection spreading over a graph must be localized and
clustered for sufficiently small times t. Second, when a
sufficient number of random nodes are infected, then they
must be spread out over a relatively large area of the graph
with high probability. That is, the smallest ball containing a
set of infected nodes should be small, and the smallest ball
containing a set of random nodes should be large.

We call a graph G with diameter diam(G) detectable if it
satisfies the following conditions with probability approach-
ing 1 as n increases, for some positive constants sG, bG, and
βG:

Speed Condition: There is a speed sG such that for an
infection Sr at time t, RadiusBall(G,Sr) < sGt.
Spread Condition: A random set S of nodes on G, with
card(S) > βG log n, satisfies RadiusBall(G,S) >
bGdiam(G).

Now we prove that these conditions are sufficient to dis-
tinguish infections on any two such graphs. These conditions
are fairly mild. In Section IV we show that two commonly
encountered, standard types of graphs satisfy these proper-
ties: d−dimensional grids and Erdös-Renyi graphs.

Theorem 1: Consider detectable graphs G1 and G2 and
infection times t such that the number of reporting in-
fected nodes scales at least as max(βG1

, βG2
) log n. Then

if t < bG2
diam(G1)/sG1

, the Comparative Ball Algorithm
correctly identifies an infection on G1 with probability ap-
proaching 1. In addition, if t < bG1diam(G2)/sG2 , then the
Comparative Ball Algorithm correctly identifies an infection
on G2 with probability approaching 1.

Proof: Suppose we have graphs G1, G2, and infection
time t as given in the theorem statement. By symmetry, it is
sufficient to prove that an infection is detected on G1. Then
suppose we have such an infection on G1 with reporting
nodes Sr, where card(Sr) > βG2

log n. Note that by the
independence assumption, this set of nodes is randomly
distributed over G2. Using the properties for a graph to
be detectable, we see that with probability approaching 1,
RadiusBall(G1, Sr) < sG1t and RadiusBall(G2, S) >
bG2diam(G2). Then the score for the first graph satisfies
x1 < sG1

t/diam(G1) < bG2
by hypothesis. Similarly, x2 >

bG2
diam(G2)/diam(G2) = bG2

. Therefore, the algorithm
correctly identifies an infection.

IV. SPEED AND SPREAD CONDITIONS: GRIDS AND THE
ERDÖS-RENYI GRAPH

In this paper, we consider two types of graphs: the
d-dimensional grid, and the Erdös-Renyi graph. The d-
dimensional grid graph represents a contact graph where
the infection spreads between nodes in spatial proximity
(e.g., the Bluetooth virus, human sickness). The second
topology is an Erdös-Renyi graph, a random graph forming
a network with low diameter. This topology models an
infection spreading over long distance networks, such as the
Internet or over social networks. We show that both of these
networks are detectable, and hence that the Comparative Ball
Algorithm works on these graphs. The calculations in this
section directly follow from the results in [5]. We however
elaborate on the proofs in this section for clarity and provide
simpler alternate proofs.

A. d−Dimensional Grids

First we consider a grid graph, modeling infections that
spread geographically through proximal connections. Let the
graph G = Grid(n, d) be such a grid network with n



nodes and dimension d, so the side length is n1/d. We avoid
edge effects by wrapping around the grid (a torus). This
avoids dealing with distracting complexities resulting from
the choice of the initial source of the infection.

Now we establish two results on the behavior of infections
on this topology, which thus shows that this type of graph
is detectable. First, we establish limits on the speed of the
infection after time t has passed. Next, we show lower
bounds on the spread, i.e., the ball size needed to cover a
random selection of nodes of sufficient size.

Proposition 1: Let G = Grid(n, d) and time t scaling
without bound as n increases. Then there exists a constant
µ such that

RadiusBall(G,Sr) < 1.1dµt,

with probability converging to 1.
Proof: The proof follows from results in first passage

percolation [8], and is available in Theorem 1, [5].
The following theorem provides a lower bound on the

radius of the ball needed to cover a collection of random
nodes uniformly selected from the grid. We require that the
number of random nodes grows at least as log n.

Proposition 2: Let G = Grid(n, d). Let Sr be a collec-
tion of random nodes in G, such that card(Sr) > log n for
sufficiently high n. Then

RadiusBall(G,Sr) > n1/d/4,

with probability converging to 1.
Proof: We present a similar result in previous work [5],

but the more relaxed conditions allow us to demonstrate this
proposition with a simpler and clearer proof. By assumption,
we have a set Sr of c = card(Sr) random nodes, and seek to
show the probability they are all within some ball of radius
n1/d/4 decays to 0 with n. Then consider one of the n such
balls. There are less than L = (n1/d/2)d nodes in that region
(the number of nodes in a ‘box’ of side n1/d/2). Then we see
within this ball, there are at most

(
c
L

)
arrangements of the

sick nodes out of
(
c
n

)
total possible arrangements. Therefore,

the probability all the sick nodes are within the region is no
more than (

L

c

)/(n
c

)
=
L!(n− c)!
(L− c)!n!

≤ (L/n)c. (1)

Using a union bound, we find that the probability there
is a ball of that size containing all nodes in Sr is at most
n(L/n)c. Then

n(L/n)c < n

(
1

2d

)logn

= n1−d log 2

→ 0. (2)

Therefore, RadiusBall(G,Sr) > n1/d/4 with probability
converging to 1.

Since the diameter of a grid is (nearly) d/2n1/d, we see
that a grid satisfies both the speed condition (Theorem 1) and

the spread condition (Theorem 2), and hence is detectable.
Therefore, the Comparative Ball Algorithm performs well on
grid graphs.

B. Erdös-Renyi Graphs

Now we consider Erdös-Renyi graphs, representing infec-
tions that spread over low diameter networks (the diameter
grows logarithmically with network size). An Erdös-Renyi
graph is a random graph with n nodes, where there is
an edge between any pair of nodes, independently with
probability p. We study the Erdös-Renyi graph in the regime
where p = c/n, for some positive constant c > 1. It is
known that in this regime, the graph is disconnected, but
there exists a giant component with Θ(n) nodes with high
probability in the large n regime. In this paper, we restrict
our attention to epidemics on the giant component (otherwise
the problem is trivial). Thus as in [5], we limit both the
infection and the random set of reporting nodes (due to the
labeling when the infection occurs on the alternative graph)
to occur exclusively on the giant connected component. If
the infection on the other graph contains too many nodes for
the giant component, we simply ignore the excess, but this
point is already outside the regime of interest.

Like before, we establish two results in this section. The
first theorem proves an upper bound on the ball size for an
infection up to a limited time. Next, we demonstrate a lower
bound on the ball size for a random collection of nodes.

Proposition 3: Let G = G(n, p) and time t scaling with
n. Then there exists a constant C2 such that

RadiusBall(G,Sr) < C2t,

with probability converging to 1.
Proof: Roughly speaking, this theorem states that there

is a maximum speed at which the infection can travel on an
Erdös-Renyi graph. The statement follows from a similar
maximum speed result for trees [13], and the proof is
provided in our previous work, [5], Theorem 4. However,
we now provide additional detail on exactly how one can
transition from the result for trees to one for Erdös-Renyi
graphs.

To do this, we upper bound an infection on an Erdös-
Renyi graph by a tree that represents the routes on which an
infection can travel. Since an Erdös-Renyi graph is locally
tree-like [14], we expect this approximation to be fairly
accurate for low times, though this is not necessary for the
proof. Then consider the tree formed as follows. The root of
the tree is the initial infected node. The next level contains
copies of all nodes adjacent to the original node in the Erdös-
Renyi graph. Each of these is connected to copies of their
neighbors, and so on. Note all nodes can (and likely do) have
multiple copies.

Now consider the induced set of infected nodes, S̃r, as the
set of nodes which have copies that are infected. Since the
distance of a copy from the root is no less than the distance
from the original node to the original root, we see that the
distance the infection has traveled on the tree is no less than
the distance the infection traveled on S̃r. Now we show that



the S̃r stochastically dominates the true infected set S. That
is, for all sets T , P (T ⊂ S̃r) ≥ P (T ⊂ Sr). This follows
from the fact that the transition rate from a set of infected
nodes T to the set T ∪ {x} is higher for the induced set for
all sets T and nodes x /∈ T . On the real graph, the transition
rate is simply the number of nodes in T adjacent to x. For
the induced set, the rate depends on the exact set of infected
copies, and is equal to the number of copies of nodes in T
adjacent to x. Since each node in T has at least one infected
copy, we see the number of copies is always no less than the
number of nodes.

Thus, we find that as stated, the transition rates are
universally equal or higher for the induced set, from
which the stochastic dominance result follows. Hence,
RadiusBall(G,Sr) is also stochastically dominated by
RadiusBall(G, S̃r), and the latter is upper bounded by the
depth of the tree, which using the speed result, is bounded
by C2t for some speed C2. That is,

RadiusBall(G,Sr) < C2t.

Next, we use the neighborhood sizes on this graph to
provide a lower bound to the ball size needed to cover a
random infection.

Proposition 4: Let G = G(n, p). Let Sr be a collection
of random nodes in G, such that card(Sr) scales at least
with log n. Then

RadiusBall(G,Sr) >
log n

3 log c
,

with probability converging to 1.
Proof: This statement is also proved in our prior work

[5], but we now provide much greater detail. We proceed by
bounding the probability that all the random nodes are within
a ball of radius m. This is possible only if all nodes in Sr

are within distance 2m from any given node in Sr. Now, the
number of nodes within a distance 2m from a given node
is no more than 16m3c2m log n with probability 1− o(n−1)
[15]. Then the probability of all nodes fitting inside one such
ball is at most(

16m3c2m log n

n

)card(Sr)−1

<

(
16m3c2m log n

n

)logn−1

.

Then this decays to 0 at least as fast as n−1 if

16m3c2m log n

n
< n−1/ logn.

Finally we set m = logn
3 log c as desired. Hence c2m = n2/3.

Using this substitution, the above term reduces to

16m3c2m log n

n
=

16m3n2/3 log n

n

=
16(log n)4

27(log c)3n1/3

< (log n)4n−1/3 < n−1/ logn (3)

for sufficiently large n. Therefore, RadiusBall(G,Sr) >
logn
3 log c with probability converging to 1.

Fig. 1. This figure shows the error probability for the algorithm on pairs
of standard graphs. Various (conditional) error probabilities are illustrated –
‘T:’ corresponds to the true network, and ‘A:’ corresponds to the algorithm
output.

The diameter of the giant component of an Erdös-Renyi
graph is Θ(log n/ log c) [14]. Thus, Theorem 3 and Theorem
4 establish that an Erdös-Renyi graph satisfies both the speed
and spread conditions, and hence is detectable.

V. SIMULATIONS

We have demonstrated that as the graph size increases,
eventually the probability of mistaking which graph an
infection spreads on, decays toward zero. We simulated the
performance of the Comparative Ball Algorithm to evaluate
the performance empirically. We determined the error rate
over a range of t for several pairs of graphs. We evaluated the
two different standard graph topologies considered earlier,
grids and Erdös-Renyi graphs.

We simulated the infections on various pairs of the graphs
over a range of times. In order to portray the results in a
comparable way, we plotted the error rate versus the average
infection size instead of time. This is necessary because
different times result in very different infection sizes for the
different graphs. That is, the infection is large even at low
t on an Erdös-Renyi graph, and vice versa for a grid graph.
This would introduce a misleading effect in the results.

Each node in the graphs received a random label to ensure
independence. We use n = 4000 for each graph with q =
0.25. For the Erdös-Renyi graphs, we use p = 2/4000. The
probability of error was computed over 1000 trials. There
are two possible types of errors in each simulation, when
the infection spreads on the first graph, and when it spreads
on the second. We label the error event ‘T:G1; A:G2’ for the
error where the infection in fact travels on graph G1 (True
event), but the algorithm incorrectly labels it as occurring on
graph G2 (Algorithm output).

The results of these simulations are shown in Figure 1.
Note that up to about 5% of the network reporting an
infection, the error rates are low in all cases. The error rates
are consistently low for the ‘T:Grid1;A:Grid2’ comparison



Fig. 2. This figure shows the error probability for the G(n,p) vs. Grid
graphs for the scaled diameter setting (diameter of G(n,p) graph is scaled
by 1.7).

up to the point where the whole network is infected. When
comparing a grid and an Erdös-Renyi graph, there is a bias
to label it an Erdös-Renyi graph at higher times, causing
the ‘T:Grid;A:G(n,p)’ error to be very high and conversely,
the ‘T:G(n,p);A:Grid’ error to be very low. This suggests
that by simply modifying the Comparative Ball Algorithm
to normalize with respect to a scaled graph diameter (where
the scaling parameter would be graph dependent), we could
balance these two error probabilities, and thus result in
improved performance. To illustrate, by choosing a diameter
scaling value of 1.7 for the Grid graph, the plot in Figure 2
indicates that one could distinguish between G(n,p) and Grid
graphs for a significantly larger range. We plan to study a
systematic approach for such scalings as future work.

VI. CONCLUSIONS

When an infection/virus is seen spreading over a group of
people/machines, one may have multiple possibile spreading
regimes for the infection in mind, and want to know which
the infection is most likely travelling on. We have shown
that this is possible to do with high accuracy if the regimes
are independent and satisfy two properties: 1) An infection
spreading according the regime should be localized in the
contact graph, and 2) A random set of nodes should be
spaced far apart on the graph. When these conditions are
satisfied (in the sense given in this paper), the correct spread-
ing regime can be detected accurately with high probability
by determining on which graph the infection appears to be
more clustered. In addition, we have shown two standard
types of graphs, grids and Erdös-Renyi graphs, satisfy these
properties. Our simulations here demonstrate the efficacy of
our algorithm.

We are currently extending this work in several directions.
First, in this paper, we have assumed that the infection
spreads at rate 1 between all connected nodes. However, in
real circumstances, the infection may travel faster between

some pairs of nodes than others. Then, we would need to con-
sider a weighted contact graph. This requires understanding
how the weights affect the shape of the ‘ball’ containing the
infected nodes. Another necessary extension is improving the
robustness of the algorithm. If a single node falsely reports
being infected, the ball size used in the algorithm can be
wildly distorted. This would require appropriately filtering
the reporting nodes to remove outliers.
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[6] A. J. Ganesh, L. Massoulié, and D. F. Towsley, “The effect of network
topology on the spread of epidemics,” in INFOCOM, 2005, pp. 1455–
1466.

[7] R. Lyons and R. Pemantle, “Random walk in a random environment
and first-passage percolation on trees,” The Annals of Probability,
vol. 20, no. 1, pp. 125–136, 1992.

[8] H. Kesten, “On the speed of convergence in first-passage percolation,”
The Annals of Applied Probability, vol. 3, no. 2, pp. 296–338, Nov
1993.

[9] G. Streftaris and G. J. Gibson, “Statistical inference for stochatic
epidemic models,” in Proc. 17th International Workshop on Statistical
Modeling, 2002, pp. 609–616.

[10] N. Demiris and P. D. O’Neill, “Bayesian inference for stochastic
multitype epidemics in structured populations via random graphs,”
Journal of the Royal Statistical Society Series B, vol. 67, no. 5, pp.
731–745, 2005.

[11] D. Shah and T. Zaman, “Detecting sources of computer viruses in
networks: Theory and experiment,” SIGMETRICS Perform. Eval. Rev.,
vol. 86, pp. 203–214, 2010.

[12] ——, “Rumors in a network: Who’s the culprit?” IEEE Transactions
on Information Theory, vol. 57, August 2011.

[13] I. Benjamini and Y. Peres, “Tree-indexed random walks on groups
and first passage percolation,” Probability Theory and Related Fields,
vol. 98, pp. 91–112, 1994.

[14] R. Durrett, Random Graph Dynamics. Cambridge University Press,
2007.

[15] F. Chung and L. Lu, “The diameter of sparse random graphs,” Adv. in
Appl. Math, vol. 26, pp. 257–279, 2001.


