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Abstract

We consider high dimensional sparse regres-
sion with arbitrary – possibly, severe or coor-
dinated – errors in the covariates matrix. We
are interested in understanding how many
corruptions we can tolerate, while identifying
the correct support. To the best of our knowl-
edge, neither standard outlier rejection tech-
niques, nor recently developed robust regres-
sion algorithms (that focus only on corrupted
response variables), nor recent algorithms for
dealing with stochastic noise or erasures, can
provide guarantees on support recovery. As
we show, neither can the natural brute force
algorithm that takes exponential time to find
the subset of data and support columns, that
yields the smallest regression error.

We explore the power of a simple idea: re-
place the essential linear algebraic calcula-
tion – the inner product – with a robust
counterpart that cannot be greatly affected
by a controlled number of arbitrarily cor-
rupted points: the trimmed inner product.
We consider three popular algorithms in the
uncorrupted setting: Thresholding Regres-
sion, Lasso, and the Dantzig selector, and
show that the counterparts obtained using
the trimmed inner product are provably ro-
bust.

1. Introduction

Linear regression in general, and sparse linear regres-
sion in particular, seek to express a response vari-
able as the linear combination of (a small number
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of) covariates. They form one of the most basic pro-
cedures in statistics, engineering, and science. More
recently, regression has found increasing applications
in the high-dimensional regime, where the number of
variables, p, is much larger than the number of mea-
surements or observations, n. The key structural prop-
erty exploited in high-dimensional regression, is that
the regressor is often sparse, or near sparse, and as re-
cent research has demonstrated, in many cases it can
be efficiently recovered, despite the underdetermined
nature of the problem (e.g., (Chen et al., 1999; Can-
des & Tao, 2005)). Another common theme in large-
scale learning problems – particularly problems in the
high-dimensional regime – is that we not only have big
data, but we have dirty data. Recently, attention has
focused on the setting where the output (or response)
variable and the matrix of covariates are plagued by
erasures, and/or by stochastic additive noise (Rosen-
baum & Tsybakov, 2011; Loh & Wainwright, 2012;
Chen & Caramanis, 2013). Yet many applications may
suffer from persistent errors, that are ill-modeled by
stochastic distribution. Indeed, many problems, par-
ticularly those modeling human behavior, may exhibit
maliciously corrupted data.

This paper is about extending sparse high-dimensional
regression to be robust to this type of noise. We call
this deterministic or cardinality constrained robust-
ness, because rather than restricting the magnitude
of the noise, or any other such property of the noise,
we merely assume there is a bound on how many data
points, or how many coordinates of every single co-
variate, are corrupted. Other than this number, we
make absolutely no assumptions on what the adver-
sary can do – the adversary is virtually unlimited in
computational power and knowledge about our algo-
rithm and about the authentic points. There are two
basic models we consider. In both, we assume there is
an underlying generative model: y = Xβ∗+e, whereX
is the matrix of covariates and e is sub-Gaussian noise.
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In the row-corruption model, we assume that each pair
of covariates and response we see is either due to the
generative model, i.e., (yi, Xi), or is corrupted in some
arbitrary way, with the only restriction that at most
n1 such pairs are corrupted. In the distributed cor-
ruption model, we assume that y and each column of
X, has n1 elements that are arbitrarily corrupted (ev-
idently, the second model is a strictly harsher corrup-
tion model). Building efficient regression algorithms
that recover at least the support of β∗ accurately sub-
ject to even such deterministic data corruption, greatly
expands the scope of problems where regression can
be productively applied. The basic question is when
is this possible: how big can n1 be, while still allowing
correct recovery of the support of β∗?

Many sparse-regression algorithms have been pro-
posed, and their properties under non adversarial ob-
servations are well understood; we survey some of
these results in Section 3. Also well-known, is that
the performance of standard algorithms (e.g., Lasso,
Orthogonal Matching Pursuit) breaks down even in
the face of just a few corrupted points or covariate co-
efficients. As more work has focused on robustness in
the high-dimensional regime, it has also become clear
that the techniques of classical robust statistics such as
outlier removal preprocessing steps cannot be applied
to the high-dimensional regime (Donoho, 1982; Huber,
1981). The reason lies in the high dimensionality. In
this setting, identifying outliers a priori is typically im-
possible: outliers might not exhibit any strangeness in
the ambient space due to the high-dimensional noise
(see (Xu et al., 2013) for a further detailed discus-
sion), and thus can be identified only when the true
low-dimensional structure is (at least approximately)
known; on the other hand, the true structure cannot
be computed by ignoring outliers. Other classical ap-
proaches have involved replacing the standard mean
squared loss with a trimmed variant or even median
squared loss (Hampel et al., 1986). First, these are
non convex optimization problems, and second, it is
not clear that they provide any performance guaran-
tees, especially in high dimensions.

Recently, the works in (Laska et al., 2009; Nguyen
et al., 2011; Li, 2011) have proposed an approach to
handle arbitrary corruption in the response variable.
As we show, this approach faces serious difficulties
when the covariates are also corrupted, and is bound
to fail in this setting. One might modify this approach
in the spirit of Total Least Squares (TLS) (Zhu et al.,
2011) to account for noise in the covariates (discussed
in Section 3), but it leads to non convex problems.
Moreover, the approaches proposed in these papers are
the natural convexification of the (exponential time)

brute force algorithm that searches over all subsets
of covariate/response pairs (i.e., rows of the measure-
ment matrix and corresponding entries of the response
vector) and subsets of the support (i.e., columns of the
measurement matrix) and then returns the vector that
minimizes the regression error over the best selection
of such subsets. Perhaps surprisingly, we show that
the brute force algorithm itself has remarkably weak
performance. Another line of work has developed ap-
proaches to handle stochastic noise or small bounded
noise in the covariates (Herman & Strohmer, 2010;
Rosenbaum & Tsybakov, 2010; 2011; Loh & Wain-
wright, 2012; Chen & Caramanis, 2013). The corrup-
tion models studied by these authors, however, are dif-
ferent from ours which allows arbitrary and malicious
noise; those results seem to depend crucially on the
assumed structure of the noise and cannot handle the
setting in this paper.

More generally, even beyond regression, in, e.g., robust
PCA and robust matrix completion (Chandrasekaran
et al., 2011; Candes et al., 2009; Xu et al., 2012; Chen
et al., 2011; Lerman et al., 2012), recent robust re-
covery in high dimensions results have for the most
part depended on convex optimization formulations.
We show in Section 4 that for our setting, convex-
optimization based approaches that try to relax the
brute-force formulation fail to recover support, with
even a constant number of outliers. Accordingly, we
develop a different line of robust algorithms which uti-
lize non-convex operations.

In summary, to the best of our knowledge, no robust
sparse regression algorithm has been proposed that
can provide performance guarantees, and in particu-
lar, support recovery, under arbitrarily and maliciously
corrupted covariates and response variables.

We believe that robustness is of great interest both
in practice and in theory. Modern applications of-
ten involve “big but dirty data”, where outliers are
ubiquitous either due to adversarial manipulation or
to the fact some samples are generated from a model
different from the assumed one. It is thus desirable to
develop robust sparse regression procedures. From a
theoretical perspective, it is somewhat surprising that
the addition of a few outliers can transform a simple
problem to a hard one; we discuss the difficulties in
more detail in the subsequent sections.

Paper Contributions: We first present two negative
results that are somewhat surprising. We show that
a broad class of convex optimization-based methods
fail in our setting. This is in sharp contrast with the
strong performance of these methods when only y is
corrupted. Moreover, even a natural brute force algo-
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rithm has limited performance. On the positive side,
we propose a general framework for high-dimensional
robust regression, based on a simple idea: since global
outlier rejection in high dimensions is (generally) im-
possible, we do it locally in low dimensions, by replac-
ing the key vector operations used by all algorithms,
the inner product, with its robust counterpart: the
trimmed inner product (we define this precisely be-
low). The idea is simple, and while the trimming op-
eration is non-convex, it is computationally tractable.
We consider three popular algorithms for sparse recov-
ery: Thresholding Regression, Lasso, and the Dantzig
selector. We show how our idea applies to each, and
then analyze the resulting robust counterparts of these
three algorithms. Our main theorems provide bounds
on the number of corrupted points each can tolerate,
while still guaranteeing support recovery and/or small
`2 errors. In particular, all three algorithms are guar-
anteed to have small `2 errors in the setting where
both response variables and covariate variables are ar-
bitrarily corrupted; we are unaware of any other al-
gorithm with such guarantees in this high-dimensional
and arbitrary-error-in-variable regime.

2. Problem Setup

We consider the problem of sparse linear regression.
The unknown parameter β∗ ∈ Rp is assumed to be
k-sparse (k < p), i.e., has only k nonzeros. The ob-
servations take the form of covariate-response pairs
(xi, yi) ∈ Rp × R, i = 1, . . . , n + n1. These pairs, if
not corrupted, would obey the following linear model

yi = 〈xi, β∗〉+ ei;

here ei is additive noise and p ≥ n. The actual ob-
served pairs are corrupted by one of the models below.

Definition (Row Corruption). Out of these n + n1

pairs, up to n1 of them are arbitrarily corrupted, with
both xi and yi being potentially corrupted.

Definition (Distributed Corruption). We allow arbi-
trary corruption of any n1 elements of each column of
the covariate matrix X and of the response y.

In particular, the corrupted entries need not lie in the
same n1 rows in the second model. Clearly this in-
cludes the first model as a special case.

Note that in both models, we impose no assumption
whatsoever on the corrupted pairs. They might be un-
bounded, non-stochastic, and even dependent on the
authentic samples. They are unconstrained other than
in their cardinality – the number of rows or coefficients
corrupted. We illustrate both of these corruption mod-
els pictorially in Figure 1.

Goal: Given these observations {(xi, yi)}, the goal is

to obtain a reliable estimate β̂ of β∗ with bounded

error
∥∥∥β̂ − β∗∥∥∥

2
and correct support. A fundamen-

tal question, therefore, is to understand in each given
model, given p, n, and k, how many outliers (n1) can
an estimator handle?

As we show in Sections 4 and 5, models that consider
corruption only in y are fundamentally easier, and in
particular, algorithms successful in that regime fail in
the more difficult one we consider. Note that in the dis-
tributed corruption model, an equivalent model with
corruptions only in y might require all entries in y to
be corrupted – an absurd setting to hope for a solution.
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Figure 1. Illustrations of the row corruption model (left)
and the distributed corruption model (right).

3. Related Work

Under the high-dimensional setting p ≥ n, there is a
large body of literature on sparse recovery when there
is no corruption. It is now well-known that recov-
ery of β∗ is possible only when the covariate matrix
X satisfies certain conditions, such as the Eigenvalue
Property (Bickel et al., 2009). Various ensembles of
random matrices are shown to satisfy these conditions
with high probability. Many estimators have been pro-
posed, most notably Basis Pursuit (a.k.a. Lasso) (Tib-
shirani, 1996; Donoho et al., 2006), which solves an
`1-regularized least squares problem

min
β

‖y −Xβ‖22 + λ ‖β‖1 ,

as well as Orthogonal Matching Pursuit (OMP) e.g.,
(Tropp, 2004), which is a greedy algorithm that esti-
mates the support of β∗ sequentially. Both Lasso and
OMP, as well as many other estimators, are guaran-
teed to recover β∗ with good accuracy when X is well-
conditioned, and the number of observations satisfies
n & k log p. (Here we mean there exists a constant c,
independent of k, n, p, such that the statement holds.
We use this notation throughout the paper.)

Most existing methods are not robust to outliers; for
example, standard Lasso and OMP fail even if only
one entry of X or y is corrupted. One might consider
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a natural modification of Lasso in the spirit of Total
Least Squares, and solve

min
β,E
‖(X − E)β − y‖22 + λ‖β‖1 + η‖E‖∗, (1)

where E accounts for corruption in the covariate ma-
trix, and ‖ · ‖∗ is a norm. When E is known to be row
sparse (as is the case in our row-corruption model), one
might choose ‖·‖∗ to be ‖·‖1,2 or ‖·‖1,∞1; the work in
(Zhu et al., 2011) considers using ‖ · ‖∗ = ‖ · ‖F (sim-
ilar to TLS), which is more suitable when E is dense
yet bounded. The optimization problem (1) is, how-
ever, non convex due to the bilinear term Eβ, and we
are not aware of any tractable algorithm with provable
performance guarantees.

Another modification of Lasso accounts for the corrup-
tion in the response via an additional variable z (Laska
et al., 2009; Li, 2011; She & Owen, 2010):

min
β,z
‖Xβ − y − z‖22 + λ ‖β‖1 + γ ‖z‖1 . (2)

We refer to this approach as Justice Pursuit (JP) after
(Laska et al., 2009). Unlike the previous approach,
the problem in (2) is convex. In fact, it is the natural
convexification of the brute force algorithm:

min
β,z

‖Xβ − y − z‖2 (3)

s.t. ‖β‖0 ≤ k, ‖z‖0 ≤ n1,

where ‖u‖0 denotes the number of nonzero entries in
u. It is easy to see (and well known) that the so-called
Justice Pursuit relaxation (2) is equivalent to mini-
mizing the Huber loss function plus the `1 regularizer,
with an explicit relation between γ and the parameter
of the Huber loss function (Fuchs, 1999). Formulation
(2) has excellent recovery guarantees when only the
response variable is corrupted, delivering exact recov-
ery under a constant fraction of outliers. However, we
show in the next section that a broad class of convex
optimization-based approaches, with (2) as a special
case, fail when the covariate matrix X is also cor-
rupted. In the subsequent section, we show that even
the original brute force formulation is problematic:
while it can recover from some number n1 of corrupted
rows, that number is order-wise worse than what our
algorithms guarantee. Neither the brute force algo-
rithm above, nor its relaxation, JP, are appropriate
for our second model for distributed corruption.

For standard linear regression problems in the classi-
cal scaling n� p, various robust estimators have been

1‖E‖1,2 (‖E‖1,∞) is the sum of the `2 (`∞, respectively)
norms of the rows of E.

proposed, including M -, R-, and S-estimators (Huber,
1981; Maronna et al., 2006), as well as those based on
`1-minimization (Kekatos & Giannakis, 2011). Many
of these estimators lead to non-convex optimization
problems, and even for those that are convex, it is un-
clear how they can be used in the high-dimensional
scaling with sparse β∗. Another difficulty in apply-
ing classical robust methods to our problems arises
from the fact that the covariates, xi, also lie in a high-
dimensional space, and thus defeat many outlier de-
tection techniques that might otherwise work well in
low-dimensions. Again, for our second model of cor-
ruption, outlier detection seems even more hopeless.

4. Failure of the Convex Optimization
Approach

We consider a broad class of convex optimization-
based approaches of the following form:

min
β

f(y −Xβ), s.t. h(β) ≤ R.

Here R is a radius parameter that can be tuned. Both
f(·) and h(·) are convex functions, which can be in-
terpreted as a loss function (of the residual) and a
regularizer (of β), respectively. For example, one may
take f(v) = minz ‖v − z‖22 + γ‖z‖1 and h(β) = ‖β‖1,
which recovers the Justice Pursuit (2) by Lagrangian
duality; note that this f(v) is convex by (Fuchs, 1999).
The function f(·) can also be any other robust convex
loss function including the Huber loss function.

We assume that f(·) and h(·) obey a very mild condi-
tion, which is satisfied by any non-trivial loss function
and regularizer that we know of. In the sequel we use
[z1; z2] to denote the concatenation of two column vec-
tors z1 and z2.

Definition (Standard Convex Optimization (SCO)
Condition). We say f(·) and h(·) satisfy the SCO
Condition if limα→∞ f(αv) = ∞ for all v 6= 0,
f([v1; v2]) ≥ f([0; v2]) for all v1, v2, and h(·) is in-
variant under permutation of coordinates.

We also assume R ≥ h(β∗) because otherwise the for-
mulation is not consistent even when there are no out-
liers. The following theorem shows that under this
assumption, the convex optimization approach fails
when both X and y are corrupted. We only show
this for our first corruption model, since it is a spe-
cial case of the second distributed model. As illus-
trated in Figure 1, let A and O be the (unknown) sets
of indices corresponding to authentic and corrupted
observations, respectively, and XA and XO be the
authentic and corrupted rows of the covariate matrix
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X = [x1, . . . , xn+n1
]
>

. The vectors yA and yO are de-
fined similarly. Also let Λ∗ be the support of β∗. With
this notation, we have the following.

Theorem 1. Suppose f and h satisfy the SCO Condi-
tion. When n1 ≥ 1, the adversary can corrupt X and
y in such a way that for all R with R ≥ h(β∗), any
optimal solution does not have the correct support.

The proof is given in the supplement. Our proof pro-
ceeds by using a simple corruption strategy. Certainly,
there are natural approaches to deal with this spe-
cific example, e.g., removing entries of X with large
values. But discarding such large-value entries is not
enough, as there may exist more sophisticated corrup-
tion schemes where simple magnitude-based clipping
is ineffective. We illustrate this with a concrete ex-
ample in the simulation section, where Justice Pursuit
along with large-value-trimming fails to recover the
correct support. Indeed, this example serves merely
to illustrate more generally the inadequacy of a purely
convex-optimization-based approach.

More importantly, while the idea of considering an un-
bounded outlier is not new and has been used in clas-
sical robust statistics and more recently in (Yu et al.,
2012), the above theorem highlights the sharp con-
trast between the success of convex optimization (e.g.,
JP) under corruption in only y, and its complete fail-
ure when both X and y are corrupted. Corruptions
in X not only break the linear relationship between y
and X, but also destroy properties of X necessary for
existing sparse regression approaches. In the high di-
mensional setting where support recovery is concerned,
there is a fundamental difference between the hardness
of the two corruption models.

5. The Natural Brute Force Algorithm

The brute force algorithm (3) can be restated as: it
considers all n × k submatrices of X and picks the
one that gives the smallest regression error w.r.t. the
corresponding subvector of y. Formally, let XSΛ denote
the submatrix of X corresponding to row indices S and
column indices Λ, and let yS denote the subvector of
y corresponding to indices S. The algorithm solves

min
θ∈Rk,S,Λ

∥∥yS −XSΛθ∥∥2
(4)

s.t. |S| = n, |Λ| = k.

Suppose the optimal solution is Ŝ, Λ̂, θ̂. Then, the al-
gorithm outputs β̂ with β̂Λ = θ and β̂Λc = 0. Note that
this algorithm has exponential complexity in n and k,
and Sc can be considered as an operational definition
of outliers. We show that even this algorithm has poor
performance and cannot handle large n1.

To this end, we consider the simple Gaussian design
model, where the entries of XA and e are independent
zero-mean Gaussian random variables with variance 1

n
and σe

n , respectively. The 1
n factor is simply for nor-

malization and no generality is lost. We consider the
setting where σ2

e = k and β∗Λ∗ = [1, . . . , 1]>. If n1 = 0,
existing methods (e.g., Lasso and standard OMP), and
the brute force algorithm as well, can recover the sup-
port of β∗ with high probability provided n & k log p.
Here and henceforth, by with high probability we mean
with probability at least 1−p−2. However, when there
are outliers, we have the following negative result.

Theorem 2. Under the above setting, if n & k3 log p
and n1 & 3n

k+1 , then with probability at least 1 − p−2

the adversary can corrupt X and y to make the brute
force algorithm fail to output the correct support Λ∗.

The proof is given in the supplement. We believe the
condition n & k3 log p is an artifact of our proof and
is not necessary. This theorem shows that the brute
force algorithm can only handle O

(
n
k

)
outliers. In the

next section, we propose a simple, tractable algorithm
that outperforms this brute force algorithm and can

handle O
(
n√
k

)
outliers.

6. Robust Algorithms for Sparse
Regression

As described above, standard tools such as convexity
alone, or outlier rejection, do not fare well. Our ap-
proach does not try to accurately identify outliers; in-
stead, we replace standard computations with robust
counterparts less susceptible to manipulation. In par-
ticular, we replace the inner product with a more ro-
bust version: the trimmed inner product. While sim-
ple, this is the corner stone to our results, and we
describe it in Algorithm 1.

Algorithm 1 Trimmed Inner Product 〈a, b〉n1

Input: a ∈ RN , b ∈ RN , n1

Compute qi = aibi, i = 1, . . . , N .
Sort {|qi|} and select the smallest (N − n1) ones.
Let Ω be the set of selected indices.
Output: h =

∑
i∈Ω qi.

The next sections show how this simple idea can take
non-robust algorithms, and yield tractable algorithms
with provable robustness properties.

6.1. Robust Thresholding Regression

The first algorithm we consider is Thresholding Re-
gression (a.k.a. Sure Screening, and Marginal Regres-
sion). Standard TR estimates the support of β∗ by
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selecting the columns of X which have large (in abso-
lute value) inner products with the response vector y.
If the sparsity level k of β∗ is known, then one may
select the top k columns. To successfully recover the
support of β∗, standard TR relies on the fact that for
well-conditioned X, the inner product h(j) = 〈y,Xj〉
is close to βj . When outliers are present, TR fails be-
cause the h(j)’s may be distorted significantly by mali-
ciously corrupted xi’s and yi’s. To protect against out-
liers, we compute h(j) using the more robust trimmed
inner product. This leads to our Robust Thresholding
Regression algorithm (RoTR) (Algorithms 2).

Algorithm 2 Robust Thresholding Regression

Input: X, y, k, n1.
For j = 1, . . . , p, compute h(j) = 〈y,Xj〉n1

.
Sort {|h(j)|} and select the k largest ones.
Let Λ̂ be the set of selected indices.
Set β̂j = h(j) for j ∈ Λ̂ and 0 otherwise.

Output: β̂

We note again that (a) this algorithm is no more
computationally taxing than ordinary TR; (b) we are
not performing outlier detection (i.e., identifying cor-
rupted rows in X and y)– rather, mitigating the
strength of the adversary to skew each step.

Our algorithm requires two parameters, n1 and k. We
discuss how to choose them after we present the per-
formance guarantees below.

6.1.1. Performance Guarantees for RoTR

We are interested in finding conditions for (p, k, n, n1)
under which RoTR is guaranteed to recover β∗ with
correct support and small error. We consider the fol-
lowing sub-Gaussian design model. Recall that a ran-
dom variable Z is sub-Gaussian with parameter σ if
E[exp(tZ)] ≤ exp(t2σ2/2) for all real t.

Definition. We say that a random matrix X ∈ Rn×p
is sub-Gaussian with parameter ( 1

nΣ, 1
nσ

2) if:

1) each row x>i ∈ Rp is sampled independently from a
zero-mean distribution with covariance 1

nΣ, and

2) for any unit vector u ∈ Rp, the random variable
u>xi is sub-Gaussian with parameter 1√

n
σ.

Definition (Sub-Gaussian design). We assume the
true design matrix X, before corruption, is sub-
Gaussian with parameter ( 1

nΣx,
1
nσ

2
x), and the additive

noise e is sub-Gaussian with parameter 1
nσ

2
e .

Note that the sub-Gaussian model covers the case of
Gaussian, Bernoulli, and any other distributions with
bounded support. For RoTR, we consider the special
case with independent columns, i.e., Σx = I.

The following theorem (proof in supplement) charac-
terizes the performance of RoTR, and shows that it
can recover the correct support even when the num-
ber of outliers scales with n. In particular, this shows
RoTR can tolerate an O(1/

√
k) fraction of distributed

or row-wise outliers.

Theorem 3. Under sub-Gaussian design with Σx = I
and the row or distributed corruption model, the fol-
lowing hold with probability at least 1− p−2.

(1) The output of RoTR satisfies the `2 bound:

∥∥∥β̂−β∗∥∥∥
2
.‖β∗‖2

√
1+

σ2
e

‖β∗‖22

(√
k log p

n
+
n1

√
k log p

n

)
.

(2) If the nonzero entries of β∗ satisfy |β∗j |2 ≥(
‖β∗‖22/n

)
log p

(
1 + σ2

e/ ‖β∗‖
2
2

)
, then RoTR correctly

identifies the support of β∗ provided

n & k log p ·
(

1 + σ2
e/ ‖β∗‖

2
2

)
, and

n1

n
. 1/

(√
k
(

1 + σ2
e/ ‖β∗‖

2
2

)
log p

)
.

In particular, our algorithm is order wise stronger than
the brute force algorithm, in terms of the number of
outliers it can tolerate while still correctly identifying
the support (compared with Theorem 2). A few re-
marks are in order.

1. We emphasize that knowledge of the exact
number of outliers is not needed – n1 can be any
upper bound of the number of outliers. The theo-
rem holds even if there are less than n1 outliers. Of
course, this would result in sub-optimal bounds in the
estimation due to over-conservativeness. In practice,
cross-validation could be useful here.

2. We note that essentially all robust statistical proce-
dures we are aware of have the same character noted
above. This is true even for the simplest algorithms
for robustly estimating the mean. If an upper bound
is known on the fraction of corrupted points, one com-
putes the analogous trimmed mean. Otherwise, one
can simply compute the median, and the result will
have controlled error (but will be suboptimal) as long
as the number of corrupted points is less than 50%
– something which, as in our case, and every case, is
always impossible to know simply from the data.

3. In a similar spirit, the requirement to know k can
also be relaxed. For example, if we use some k′ > k
instead of k, then the theorem continues to hold in the
sense that RoTR identifies a superset (with size k′) of
the support of β∗, and the `2 error bound holds with
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k replaced by k′. In addition, standard procedures
of estimating the sparsity level (e.g., cross-validation)
may potentially be applied in our setting.

6.2. Robust Dantzig Selector and Lasso

We now consider the robustified versions of the
Dantzig selector and Lasso, given in Algorithm 3
and 4, respectively. In both, the key difference is the
use of the trimmed inner product.

Algorithm 3 Robust Dantzig Selector

Input: X, y, µ, τ, n1.
Compute for all i, j = 1, . . . , p,

Γ̂ij = 〈Xi, Xj〉n1
, γ̂j = 〈Xj , y〉n1

. (5)

Use linear programming to solve and output:

β̂ = arg min
β
‖β‖1

s.t.
∥∥∥Γ̂β − γ̂

∥∥∥
∞
≤ µ ‖β‖1 + τ.

Algorithm 4 Robust Lasso

Input: X, y,R, n1.
Compute Γ̂ and γ̂ using (5).
Use Projected Gradient Descent to solve and output:

β̂ = arg min
β

1

2
β>Γ̂β − γ̂>β

s.t. ‖β‖1 ≤ R.

Note the ‖β‖1 term on the R.H.S. of the constraint.
It accounts for the effect of the corruption in X be-
ing multiplied by β; a similar formulation appears
in (Rosenbaum & Tsybakov, 2010; 2011) under a dif-
ferent context. The optimization in Robust Lasso is
non-convex because Γ̂ might have negative eigenvalues.
Nevertheless, we can still use the following projected
gradient descent method (Loh & Wainwright, 2012):

βt+1 = PR
(
βt − (1/η)(Γ̂βt − γ̂)

)
;

here PR is the `2-projection onto the `1-ball of radius
R, and η is the step size. The theoretical guarantees
below hold for the output of projected gradient descent
as well (see the supplementary material for details).

6.2.1. Performance Guarantees

We have the following guarantees for Robust Dantzig
selector and Lasso. Here we allow for a general Σx.

Theorem 4. Under the sub-Gaussian Design Model,
suppose the following is satisfied:

n &
σ4
x

λ2
min(Σx)

k log p,

n1

n
.

λmin(Σx)

σ2
xk log p

.

If we choose the following parameters:

1. for robust Dantzig selector: µ = 16n1 log p
n σ2

x and

τ = 16
√

σ2
e log p
n + 16n1 log p

n σ2
x

√
σ2
e + σ2

x ‖β∗‖
2
2;

2. for robust Lasso: R = ‖β∗‖1;

then with probability at least 1 − p−2, the outputs of
Robust Dantzig selector and robust Lasso both satisfy
the following `2 and `1 error bounds

1

2
√
k

∥∥∥β̂ − β∗∥∥∥
1
≤
∥∥∥β̂ − β∗∥∥∥

2

.
1

λmin(Σx)

(
σe

√
k log p

n
+
kn1 log p

n
σ2
x ‖β‖2 +

n1 log p
√
k

n
σx

√
σ2
e + σ2

x ‖β∗‖
2
2

)
.

Some remarks are in order:

(1) Both algorithms require some tuning parameters
(µ, τ , and R), for which the theorem gives the “opti-
mal” values, in the sense that we get the best possible
bounds. But this requires knowing the statistics of the
noises (σe and n1), the true design matrix (σx), and
the true solution (‖β∗‖2 or ‖β∗‖1). If we set these pa-
rameters larger than their optimal values, then we can
still get errors bounds, but they will be sub-optimal;
we omit the details here due to space constraint. Note
that the same is true for standard Dantzig selector and
Lasso, and their modified versions in (Rosenbaum &
Tsybakov, 2011; Loh & Wainwright, 2012).

(2) If Σx = I, then, in order for the `2 error to be
bounded, the requirement for n1 is worse than RoTR
by a factor of

√
k (and is the same as requirement for

support recovery for the brute force algorithm). This
is because Robust Dantzig and Lasso do not use the
knowledge of Σx being diagonal when constructing Σ̂.

(3) If we use Γ̂ = I in the above case, or more generally
Γ̂ = E[XX>], it is easy to prove that Robust Lasso
essentially becomes (an `1 relaxation of) RoTR.

7. Experiments

We report some results for RoTR, robust Dantzig se-
lector, and Lasso on synthetic data. The performance
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Figure 2. Support recovery and relative `2 recovery errors
for different methods with independent columns of X. The
error bars correspond to one standard deviation. RoMP,
R-Lasso and R-Dantzig significantly outperform all other
methods. Note that the `2 error of the other methods flat-
ten out because they returns a near-zero solution.

is measured by `2-error (‖β̂−β∗‖2/‖β∗‖2) and support
recovery (the number of non-zero locations of β∗ that
are correctly identified). For the robust Dantzig selec-
tor and Lasso, we estimate the support using the loca-
tions of the largest k entries of β̂. We also consider an
refinement of robust Dantzig selector/Lasso (dubbed
R-Dantzig-rnd/Lasso-rnd) where we re-calculate the
entries in the estimated support by least squares using
Γ̂ and γ̂, and set all the other entries to zero.

For comparison, we apply standard Lasso and JP
(Laska et al., 2009; Li, 2011) to the same data. We
search for the values of the tradeoff parameters λ, γ
that yield the smallest `2-errors. Furthermore, we test
JP with two different pre-processing procedures, both
of which aim to detect and correct the corrupted en-
tries in X directly. The first one, dubbed JP-fill, finds
the set E of the largest n1

n portion of the entries of
X, and then scales them to have unit magnitude. The
second one, dubbed JP-row, discards the n1 rows of X
that contain the most entries in E.

We first consider the case where X has indepen-
dent columns. The authentic rows (XA, yA) are gen-
erated under the sub-Gaussian Design model using
Gaussian distribution with Σx = I, p = 4000, n =
1600, k = 10 and σe = 2, with the non-zero ele-
ments of β∗ being random ±1. The corrupted rows
(XO, yO) are generated by following procedure: Let
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Figure 3. Support recovery and relative `2 recovery errors
for different methods with correlated columns of X. The
legends are the same as Figure 2. The error bars of RoMP
are too large and thus not shown. R-Lasso and R-Dantzig
outperform RoMP and the other methods.

θ∗ = arg minθ∈Rp−k:‖θ‖1≤‖β∗‖1 ‖yA − XA(Λ∗)cθ‖2. Set

XOΛ∗ = 3√
n
A, where A is a random±1 matrix of dimen-

sion n1 × k, and yO = XOΛ∗(−β∗). For i = 1, . . . , n1,
further set XOi,(Λ∗)c =

(
yOi /(B

>
i θ
∗)
)
· B>i , where Bi is

a (n− k)-vector with i.i.d. standard Gaussian entries.

The results are shown in Figure 2. One observes that
RoTR, robust Dantzig selector and Lasso all perform
better than Lasso and JP for both metrics, especially
when the number of outliers is large. The `2-errors
of Lasso and JP flatten out because they return near-
zero solutions. Pre-processing procedures do not sig-
nificantly improve performance of JP, which highlights
the difficulty of outlier detection in high dimensions.

We next consider X with correlated columns. The
data is generated using σe = 1, (Σx)ii = 1 for all i,
and (Σx)ij = 0.4 for all i 6= j; other parameters are
the same as before. The results are shown in Figure 3.
The output of RoTR becomes unreliable (as expected),
but robust Dantzig selector and robust Lasso remain
stable and compare favorably with the other methods.
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