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Chance constraints are an important modeling tool in stochastic optimization, providing probabilistic guar-

antees that a solution “succeeds” in satisfying a given constraint. While they control the probability of

“success,” they provide no control whatsoever in the event of a “failure.” That is, they do not distinguish

between a slight over- or under-shoot of the bounds, and more catastrophic violation. In short, they do

not capture the magnitude of violation of the bounds. This paper addresses precisely this topic, focusing

on linear constraints and ellipsoidal (Gaussian-like) uncertainties. We show that the problem of requiring

different probabilistic guarantees at each level of constraint violation can be reformulated as a semi-infinite

optimization problem. We provide conditions that guarantee polynomial-time solvability of the resulting

semi-infinite formulation. We show further that this resulting problem is what has been called a comprehen-

sive robust optimization problem in the literature. As a byproduct, we provide tight probabilistic bounds

for comprehensive robust optimization. Thus, analogously to the connection between chance constraints

and robust optimization, we provide a broader connection between probabilistic envelope constraints and

comprehensive robust optimization.

Subject classifications : Programming: Stochastic; Statistics: Nonparametric

1. Introduction

An important paradigm for handling stochastic parameter uncertainty in optimization, is the so-

called chance constraint paradigm. Here, a deterministic constraint is relaxed, and required to hold

with at least some specified probability. Thus, given a constraint f(x, δr) where x denotes the

decision variable, and δr the stochastic uncertainty (we add the superscript r to emphasize δr is a

random variable), one solves:

P(f(x, δr)≥ α)≥ p, (1)

for some value p∈ (0,1) and target α. Chance constraints date at least as far back as (e.g., Charnes

and Cooper 1959), and since then there has been considerable work, e.g., Miller and Wagner (1965),

1



Xu, Caramanis, and Mannor: Probabilistic Envelope Constraints

2 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Prékopa (1970), Delage and Mannor (2010) and many others; we refer the reader to the textbook

Prékopa (1995) and reference therein for a thorough review.

The chance constraint formulation in (1) guarantees that the given constraint will be satisfied

with probability p. With the remaining (1−p) probability, the constraint is violated, and no control

whatsoever is provided on the degree of violation. In many important practical applications, the

decision-maker may not be indifferent to the degree of constraint violation (cf Payne et al. 1980,

1981, Chen and Sim 2009). The example par excellence is portfolio optimization. Here, the decision

maker may enforce a chance constraint that with a certain confidence the portfolio achieves a

target value. Yet the behavior when that target is not met is arguably equally important, as the

investor is also interested in knowing and perhaps bounding how bad the return can be, in case

the portfolio fails to achieve the targeted return. Neglecting the magnitude of constraint violation

is particularly problematic when the uncertain parameter follows a heavy-tail distribution, as is

often the case in financial applications.

One natural remedy to this shortcoming of chance constrains is to enforce different levels of

probabilistic guarantees. Thus our investor might require the portfolio return to achieve target α1

with probability at least 50%, target α2 with probability at least 90%, and α3 with probability at

least 99%, hence providing a variety of hedging guarantees for when the primary target, α1, is not

achieved. This multiple-chance-constraint idea can be easily generalized to any finite number (say

N) of levels of protection, resulting to a set of N chance constraints. However, the computational

effort of solving such a problem increases (and in fact does so super-linearly) as N increases. The

failure of this näıve implementation is not an indictment of the idea. What is missing is capturing

structure between multiple chance constraints at different levels of protection. We tackle precisely

this problem.

In this paper we propose what we call the probabilistic envelope constraint framework that

generalizes chance constraints. Instead of requiring probabilistic guarantees for a single or even a

finite number of target values (i.e., constraint violation), as in the multiple-chance-constraint setup,

we enforce chance constraints at all levels of potential violation. Thus, the single chance constraint

in (1) above, becomes the following infinite set of chance constraints:

P(f(x, δr)≥α− s)≥P(s), ∀s≥ 0,

where P(s) is a given non-decreasing function of s. Thus, we guarantee that the entire tail behavior

is bounded by an envelope function.
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While the probabilistic envelope constraint framework can be general, all technical results derived

in this paper focus on the following specialized setup. Detailed and precise definitions can be found

in subsequent sections.

Condition 1 (General Setup).

• f(·) is linear and δr is additive, i.e., the constraint has a form

P
[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0.

• δ
r is a random variable with an ellipsoidal distribution (e.g., Gaussian); alternatively, the

distribution of δr is unknown, and only its mean and variance are known.

Unlike the näıve multi-chance-constraint formulation, we show that optimization under proba-

bilistic envelope constraints is often computational friendly. This is because the (infinite) collection

of chance constraints expressed, can be dealt with directly. Indeed, we show that under Condi-

tion 1, the envelope constraint can be converted into an easier to analyze deterministic semi-infinite

program. We then give further conditions under which the resulting semi-infinite program can be

solved in polynomial time. One sufficient condition (in addition to Condition 1) for tractability is

as follows:

Condition 2 (Tractability).

• δ
r has a log-concave distribution.

• P(s) = 1− γ exp(−g(s)) for an increasing, concave g(·)

Thus, under these conditions, even though the computational cost of the multiple-chance-

constraint formulation increases super-linearly with the number of levels of protection, the contin-

uum limit results in a tractable problem.

Converting the probabilistic envelope program into a semi-infinite deterministic program pro-

vides an interesting link between problems with stochastic models of uncertainty, and deterministic

problems with set-based uncertainty. The latter class of problems have attracted much attention

in the last decade, under the banner of Robust Optimization (e.g., Ben-Tal and Nemirovski 1998,

1999, 2000, El Ghaoui et al. 1998, Bertsimas and Sim 2004, Ben-Tal et al. 2009, Bertsimas et al.

2011). In particular, we show that probabilistic envelope constraints can be transformed into semi-

infinite constraints that in turn can be re-written as a comprehensive robust optimization problem

(Ben-Tal et al. 2006, 2010). As we describe in further detail below, comprehensive robustness

is an extension of robust optimization that provides different levels of deterministic protection
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against different magnitudes of uncertainty. Thus, as a by-product of this connection, we present

a probabilistic interpretation of comprehensive robust optimization.

Readers familiar with stochastic programming literature may recognize that the probabilistic

chance constraint formulation is closely related to the stochastic dominance constraints (Dentcheva

and Ruszczyński 2003, 2004a,b); see Chapter 4 of Shapiro et al. (2009) and reference therein for

more details. Stochastic dominance constraint refers to a constraint of the form X �(k) Y where

X and Y are random variables and �(k) stands for k-th order stochastic dominance. Indeed, a

probabilistic chance constraint can be formulated as a first-order stochastic dominance constraint.

However, most of the literature in optimization with stochastic dominance constraints focuses on

the second (or higher) order constraints case, a case that preserves convexity and is more amenable

to analysis.

It is worth pointing out that the probabilistic envelope program enforces the desired probabilistic

requirements in the design stage. This is in contrast to the post-analysis approach (e.g., Paschalidis

and Kang 2005), where one obtains a solution using alternative methods such as robust optimization

or standard chance constraints, and then analyzes the tail probability of the constraint violation

for the obtained solution. Recently, there has been some work on robust optimization that takes

into account the probabilistic requirements on the solution, e.g., (Chen et al. 2007, 2008, Bertsimas

and Brown 2009). These papers construct uncertainty sets such that the obtained solution is

guaranteed to satisfy certain probabilistic requirements. In general, this approach seems to lead to

sufficient but not necessary conditions for the desired probabilistic requirements. In contrast, we

begin with the desired probabilistic envelope constraint, and subsequently show its equivalence to

the semi-infinite deterministic formulation.

Finally, we comment on an alternative approach to capture constraints about the magnitude of

the losses or gains: building stochastic optimization problems using risk measures. Considerable

work has been done in pursuing this avenue, particularly for portfolio optimization (see, e.g.,

Artzner et al. 1999, Delbaen 2002, Novosyolov 2002, Ruszczynski and Shapiro 2006, Rockafellar and

Uryasev 2000, Lüthi and Doege 2005, Föllmer and Schied 2002, El Ghaoui et al. 2003, Brown and

Sim 2009, Ben-Tal et al. 2010). Most of work along this line of research is based on optimizing over

an utility function or a mean risk functional. This allows for the modeling of refined risk preferences,

beyond what simple chance constraints offer. However, they do not directly offer protection in

the form of probability guarantees against losses exceeding some pre-specified level. Moreover,

the decision maker has to articulate his/her utility function or determine the parameter of the

risk functional. This can be subjective and unintuitive. In contrast, the probability of constraint
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violation, or more generally of not meeting a target, is more intuitive, and often easy for the

decision maker to set. Indeed, extensive empirical study shows that in daily decision making, risk

is primarily considered by decision makers as failure to meet a pre-specified target (e.g., Lanzillotti

1958, Simon 1959, Mao 1970, Payne et al. 1980, 1981).

We remark that the term envelope constraint appeared as early as the 70’s in the field of signal

processing, see for example Evans et al. (1977a,b) and more recently Vu et al. (1997). Here, one

seeks to design a filter such that its response to a specified input lies within a pre-defined envelope,

consistent with the commonly used term envelope function, and thus, at a high level, the idea of

performing within an envelope constraint is a common theme. Beyond that, the motivation, setup

and technical details are, of course, quite different.

Organization

This paper is organized as follows. In Section 2 we propose the probabilistic envelope constraint

framework, and present examples that motivate the formulation. In particular we point out the

inadequacy of the traditional chance constraint setup in these settings. We then show in Section 3

that the probabilistic envelope program is equivalent to a deterministic semi-infinite program. This

equivalence relationship has a nice interpretation as providing tight probabilistic bounds for com-

prehensive robust optimization formulations. The computational issue of solving the probabilistic

envelope program and equivalently the comprehensive robust optimization is discussed in detail in

Section 4. We then present two extensions of the proposed framework: in Section 5 we consider

the case where we must satisfy probabilistic envelope constraints jointly for a group of constraints.

Then, in Section 6, we discuss the distributionally robust approach to the probabilistic envelope

framework: instead of assuming the precise distribution of the uncertainty is known, we take it to

be known only approximately. This setting is particularly relevant for problems where our only

knowledge of the distribution comes from estimates formed from a finite sample set. We report

simulation results in Section 7, where we see the protection at all levels offered by envelope con-

straints in a portfolio optimization problem. All proofs, except a few succinct ones, are deferred to

the appendix.

Notation

We use boldface letters to denote column vectors, and row vectors are represented using the trans-

pose (superscript ⊤) of the column vectors. To distinguish between stochastic noise as used in the

probabilistic formulation, and deterministic set-based uncertainty, as used in comprehensive robust
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optimization, we use a superscript r for each random variable, as we have done in the introduction.

As is standard, we use N (0,Σ) to denote the Gaussian distribution with mean zero and covariance

matrix Σ. To lighten notation, given a positive definite matrix Σ, we write ‖x‖Σ to denote
√
x⊤Σx.

Finally, we call an optimization problem tractable if it can be solved in polynomial time.

2. Formulation and motivating examples

We first propose the probabilistic envelope constraint as a generalization of the chance constraint.

For clarity, we repeat some of the definitions given in the introduction. Given a random variable

δr representing the uncertain parameter, and a constraint function f(x, δr), a chance constraint

places a lower-bound on the probability that f reaches a certain target. That is, for a fixed α ∈R

and p∈ [0,1], we require

Chance Constraint: P(f(x, δr)≥α)≥ p.

As discussed above, the chance constraint provides protection against noise by bounding the prob-

ability of failing to achieve target α. It says nothing about what happens when, with probability

at most (1− p), the target is not met. In particular, there is no control over the magnitude of vio-

lation of the constraint. To rectify this shortcoming, we propose a constraint called a probabilistic

envelope constraint, which bounds the probability of failing to meet the target, α, at all levels.

Given a non-decreasing function P(s), the envelope constraint on f becomes:

Probabilistic Envelope Constraint: P(f(x, δr)≥ α− s)≥P(s); ∀s≥ 0.

One example of particular interest is when we require the probability of violation of the constraint

by s to decay exponentially in s. Thus, this would give: P(s) = 1 − γ exp(−αs). We call this

an exponentially decaying probabilistic envelope constraint. We pay particular attention to such

functions P(s) in the sequel.

A chance constraint is a special case of a probabilistic envelope constraint, which we recover by

setting P(s)≡ p. In general, a probabilistic envelope constraint can be regarded as an infinite set

of chance constraints, since for any fixed s > 0, P(f(x, δr)≥α− s)≥P(s) is a chance constraint.

We now introduce optimization with probabilistic envelope constraints, which we call probabilis-

tic envelope programs. While the original definition is general, in this paper we focus on using

probabilistic envelope constraints in linear programs. Consider a linear program on x∈R
n

Minimize: c⊤x

Subject to: a⊤
i x≥ bi; i= 1, . . . ,m.
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We can assume without loss of generality (introducing an additional variable, if necessary) that

there is uncertainty only in the matrix, i.e., the {ai}. We consider an additive model for uncertainty,

where the true (unknown) parameter is equal to the nominal value plus a random variable: âi =

ai+δ
r
i for some random noise δr

i . As with chance constraints, the probabilistic envelope constraint

we obtain depends on how much we know about the distribution of δr
i . We focus primarily on

two cases: the setting where the distribution µi, of the {δr
i} is known only through its first two

moments, and the setting where it is known exactly (and completely). In the setting where only the

mean and covariance are known (say 0 and Σ), then the probabilistic envelope constraint becomes

a minimization over all distributions with that mean and variance:

inf
δr
i
∼(0,Σ)

P
[

(ai+ δ
r
i )

⊤x≥ bi − s
]

≥Pi(s); ∀s≥ 0; i=1, . . . ,m.

If the distribution of δr
i is known exactly, the envelope constraint becomes:

Pδr
i
∼µi

[

(ai+ δ
r
i )

⊤x≥ bi − s
]

≥Pi(s); ∀s≥ 0; i=1, . . . ,m.

We conclude this section by presenting two motivating examples where the probabilistic envelope

constraint appears particularly useful.

2.1. Example 1: Portfolio Optimization

Consider a stylized portfolio optimization problem over n stocks. We model the unit return of each

stock as Zi + ciZ0. Random variable Zi captures randomness due to the ith stock, and random

variable Z0 models the impact of the market. Thus we assume that the random variables {Zi}
are independent across stocks, while random variable Z0 is common across all stocks. Suppose we

assume we know the distribution of these random variables, and moreover they are normal, so that

Zi ∼N (ai, σ
2
i ), and Z0 ∼N (a0, σ

2
0).

We would like our portfolio to meet a target return of T , with probability at least 1−γ. Further-

more, we would like the probability of missing the target T by more than s, to decay exponentially

in s. Thus we have:

Maximize: E[
n
∑

i=1

(Zi + ciZ0)xi]

Subject to: P(
n
∑

i=1

(Zi + ciZ0)xi ≥ T − s)≥ 1− γ exp(−αs); ∀s≥ 0;

n
∑

i=1

xi =1;

xi ≥ 0; i= 1, . . . , n.
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By definition of Z0 and Zi, this formulation is equivalent to the following probabilistic envelope

program:

Maximize:
n
∑

i=1

(ai + cia0)xi

Subject to: P
(

n
∑

i=1

(ai + cia0 + δri )xi ≥ T − s
)

≥ 1− γ exp(−αs); ∀s≥ 0;

n
∑

i=1

xi = 1;

xi ≥ 0; i= 1, . . . , n;

where δ
r
, (δr1, . . . , δ

r
n) ∼ N (0,Σ) is a random variable, and Σ is such that Σii = σ2

i + c2iσ
2
0 , and

Σij = cicjσ
2
0 .

2.2. Example 2: Robust Regression

The second example we consider is linear regression. Given a matrix A and observed vector b, the

nominal problem is to minimize ‖Ax−b‖2. This can be rewritten as:

Minimize:
n
∑

i=1

ξ2i

Subject to: |bi − aix| ≤ ξi, i= 1, . . . ,m;

ξi ≥ 0, i=1, . . . ,m.

In many typical examples, the linear assumption is merely an approximation, either because of

nonlinearity, or because of noise in our measurements of the matrix A. Let us assume that the

regression matrix A is uncertain. In particular, suppose each row in fact equals ai+δr
i , for Gaussian

noise δ
r
i ∼N (0,Σi). In the standard formulation of regression, large fluctuations of the uncertain

parameter could produce very skewed fits, because of the squared loss. Thus large fluctuations could

jeopardize the entire fit. One approach to combat this is to require a relaxed fitting condition, with

probabilistic fitting, but controlling the probability of “large” constraint violation. This is precisely

the setting for probabilistic envelope constraints. Using this framework, we have the following

problem for any given fixed s∗.

Minimize:
n
∑

i=1

ξ2i

Subject to: |bi − a⊤
i x| ≤ ξi, i= 1, . . . ,m;

P
(

|bi − (ai+ δ
r
i )

⊤x| ≤ ξi+ s
)

≥ 1− γ exp(−αs), ∀s≥ s∗. i= 1, . . . ,m;

ξi ≥ 0, i= 1, . . . ,m.

(2)

Note that while the constraint P
(

|bi − (ai + δ
r
i )

⊤x| ≤ ξi + s
)

≥ 1− γ exp(−αs) is a probabilistic

envelope constraint, due to the non-linearity of |bi− (ai+δ
r
i )

⊤x|, Problem (2) is not a probabilistic
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envelope program. After establishing the basic computational complexity results for probabilistic

envelope programs, we revisit this problem in Section 5, and show that it can be approximated by

a tractable probabilistic envelope program.

3. Deterministic re-formulation of probabilistic envelope constraints

In this section we present the main result of the paper: the probabilistic envelope problem can be

re-formulated as an equivalent deterministic semi-infinite program. Moreover, we show that this re-

formulated problem is what is known as a comprehensive robust optimization proposed in Ben-Tal

et al. (2006) (also called a global robust counterpart in Ben-Tal et al. 2009). This formulation has

been well-studied and we refer to the original papers on the topic (Ben-Tal et al. 2006, Ben-Tal et al.

2009, Ben-Tal et al. 2010). Thus the probabilistic uncertainty model is linked to the deterministic

set-based uncertainty model of (comprehensive) robust optimization. This result is in the spirit of

past work that has linked (standard) chance constraints to (standard) robust optimization (e.g.,

Shivaswamy et al. 2006, Delage and Mannor 2010).

We begin with a brief introduction of the comprehensive robust optimization formulation. We

then derive tight probabilistic bounds for comprehensive robust constraints. These results lead

to our main theorems, which provide a deterministic re-formulation of the probabilistic envelope

problem.

3.1. Comprehensive robust constraints

Comprehensive Robust Optimization (e.g., Ben-Tal et al. 2006, 2010) aims to relax the robust

optimization formulation, and provide different levels of protection against different levels of noise.

For a linear program, the corresponding comprehensive robust optimization formulation takes the

form:

Minimize: c⊤x

Subject to: (ai + δi)
⊤x≥ bi − fi(δi), ∀δi ∈R

n; i= 1, . . . ,m,

where each fi(·) is a non-negative penalty function. Note that this is deterministic: the constraints

must be satisfied for every δ, as these are no longer stochastic. Comprehensive robust optimization

generalizes robust linear optimization (e.g., Ben-Tal and Nemirovski 1998, 1999, Bertsimas and

Sim 2004) — indeed, if fi(·) is taken to be the indicator function of a set Ωi, i.e., fi(δi) = 0 for

δi ∈Ωi and +∞ otherwise, then the formulation above recovers the standard robust optimization

formulation:

Minimize: c⊤x

Subject to: (ai + δi)
⊤x≥ bi, ∀δi ∈Ωi.
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The robust optimization formulation guarantees that the constraint will not be violated for any

realization of the uncertain parameters in the set Ωi, but makes no guarantees for realizations

outside that set. The comprehensive robust optimization formulation allows us to choose different

functions fi(·), in order to provide different levels of protection for different parameter realizations,

as opposed to the “all-or-nothing” view of standard robust optimization. Thus, given the compre-

hensive robust formulation above, for a large parameter deviation, the constraint (ai + δi)
⊤x≥ b

only needs to be approximately satisfied, i.e., a gap of fi(δi) is allowed.

3.2. Probabilistic bounds of comprehensive robust constraints

While robust optimization has seen remarkable success as a tractable optimization tool for pro-

viding probabilistic protection to optimization solutions (e.g., Shivaswamy et al. 2006, Delage and

Mannor 2010), there has been no successful effort to date, to develop the probabilistic side of the

story of comprehensive robust optimization. This subsection seeks to develop such a link. More

specifically we derive tight bounds on the probability that the solution to a comprehensive robust

optimization violates a given constraint with a magnitude of at least s.

As we discuss in Section 2, throughout the paper we consider two different noise models. In the

first, we assume we only know the mean and variance of the noise, and want to bound the worst-case

probability among all distributions with that given mean and variance. In the second model, we

assume we have complete (and perfect) information about the noise distribution. More specifically,

we consider ellipsoidal noise, i.e., noise of the formHζ
r, where ζr is a spherically symmetric random

variable with mean 0 and variance I. Gaussian noise is a special case of such a noise model. In

both cases, the bounds obtained are tight in the sense that if the comprehensive robust constraint

is not satisfied, then there exists a value of s, such that the corresponding probabilistic bound at

level s will be violated.

Theorem 1 (Mean-Variance Model). Let t :R+ 7→ [0,+∞] be a non-decreasing function such

that t(0) = 0 and limr↑+∞ t(r) =+∞. Then the constraint

(a+ δ)⊤x≥ b− t(‖δ‖Σ−1), ∀δ ∈R
n, (3)

is equivalent to

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥ 1− 1
(

t−1(s)
)2

+1
, ∀s≥ 0. (4)

The infimum here is taken over all random variables δ
r with mean zero and covariance matrix Σ,

and t−1(s), sup{r|t(r)≤ s}.
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Next we consider the case where the distribution of the deviation is known. As a representative

(and important) example, we consider the Gaussian case.

Theorem 2 (Gaussian Model). Let t : R+ 7→ [0,+∞] be a non-decreasing function such that

t(0) = 0 and limr↑+∞ t(r) =+∞. If δr ∼N (0,Σ), then the constraint

(a+δ)⊤x≥ b− t(‖δ‖Σ−1), ∀δ ∈R
n, (5)

is equivalent to

P
[

(a+ δ
r)⊤x≥ b− s

]

≥Φ
(

t−1(s)
)

, ∀s≥ 0. (6)

Here t−1(s), sup{r|t(r)≤ s}.

It is straightforward to extend Theorem 2 to noise that follows an ellipsoidal distribution. Recall

that such a random variable can be represented as a spherical random variable under a linear

transformation, i.e., Hζ
r where H is a matrix and ζ

r is spherical.

Theorem 3 (Ellipsoidal Model). Let t : R+ 7→ [0,+∞] be a non-decreasing function such that

t(0) = 0 and limr↑+∞ t(r) = +∞. Let ζ
r ∈ R

n be a spherical random variable with mean 0 and

variance In, and H ∈ R
n×n be a full rank matrix. Let Σ =H⊤H, and let Ψ(·) be the cumulative

distribution function of the one-dimensional marginal of ζ. Then the constraint

(a+ δ)⊤x≥ b− t(‖δ‖Σ−1), ∀δ ∈R
n,

is equivalent to

P
[

(a+Hζ
r)⊤x≥ b− s

]

≥Ψ
(

t−1(s)
)

, ∀s≥ 0.

3.3. Re-formulation of probabilistic envelope constraints

One may notice that the probabilistic bounds in Theorem 1 are indeed probabilistic envelope

constraints. This indeed implies our main result that probabilistic envelope constraints can be

re-formulated as an deterministic semi-infinite program – a comprehensive robust optimization

problem, thus linking two widely-used models in treating uncertainty: the deterministic uncertainty

model used in (comprehensive) robust optimization, and the probabilistic uncertainty model.

As before, the first model considers a random deviation with mean zero and variance Σ while

the specific distribution is unknown, and the second one considers a random variable with known

distribution (e.g., Gaussian).
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Theorem 4 (Mean-Variance Model). If P : R+ 7→ [0,1) is a non-decreasing function that is

continuous from the right, then the probabilistic envelope constraint

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

is equivalent to the comprehensive robust constraint

(a+ δ)⊤x≥ b−P−1

( ‖δ‖2
Σ−1

1+ ‖δ‖2
Σ−1

)

, ∀δ ∈R
n, (7)

where P−1(x), inf{y ≥ 0|P(y)≥ x}.

We also obtain an equivalence of the probabilistic envelope constraint to comprehensive robust

optimization when the distribution of the uncertainty is known exactly. Note that the range of P(·)
is [0.5, 1) because the nominal constraint a⊤x≥ b implies that for any s > 0, P

[

(a+δ
r)⊤x≥ b− s

]

is at least 0.5 since the random variable is symmetric.

Theorem 5 (Gaussian Model). If P :R+ 7→ [0.5,1) is a non-decreasing function that is contin-

uous from right, and δ
r ∼N (0,Σ), then the probabilistic constraint

P
[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

is equivalent to

(a+ δ)⊤x≥ b−P−1 (Φ(‖δ‖Σ−1)) , ∀δ ∈R
n,

where P−1(x), inf{y ≥ 0|P(y)≥ x} and Φ(·) is the cumulative distribution function of N (0,1).

Theorem 6 (Ellipsoidal Model). Let ζr ∈R
n be a spherical random variable, with mean 0 and

variance In, and H ∈ R
n×n be a full rank matrix. Let Σ =H⊤H, and denote the cumulative dis-

tribution function of the one-dimensional marginal of ζr by Ψ(·), which is strictly increasing. If

P :R+ 7→ [0.5,1) is a non-decreasing function that is continuous from the right, then the constraint

P
[

(a+Hζ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

is equivalent to

(a+ δ)⊤x≥ b−P−1 (Ψ(‖δ‖Σ−1)) , ∀δ ∈R
n,

where P−1(x), inf{y ≥ 0|P(y)≥ x}.

As an example to illustrate the re-formulation, consider the exponential decay in the motivating

example: for δr ∼N (0,Σ) and γ < 1/2,

P
[

(a+ δ
r)⊤x≥ bi − s

]

≥ 1− γ exp(−αs); ∀s≥ 0. (8)
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Thus, P(s) = 1 − γ exp(−αs), and hence P−1(x) = max[− 1
α
log(1 − x) + logγ

α
, 0]. Therefore,

P−1(Φ(t))=max
[

− 1
α
log(1−Φ(t))+ logγ

α
, 0
]

. Theorem 5 asserts that Constraint (8) is equivalent

to the infinite collection of deterministic constraints

(a+ δ)⊤x≥ b+min
[ 1

α
log(1−Φ(‖δ‖Σ−1))− log γ

α
, 0
]

, ∀δ ∈R
n,

which is further equivalent to

(a+ δ)⊤x≥ b+
1

α
log(1−Φ(‖δ‖Σ−1))− log γ

α
, ∀δ such that Φ(‖δ‖Σ−1)≥ 1− γ. (9)

In Section 4 we further show that the feasible set to Constraint (9) has a polynomial time “sepa-

ration Oracle”, and hence tractable.

4. Computational Tractability

A question of immediate interest is the computational tractability of the probabilistic envelope

constraints. Given the equivalence in the previous section of probabilistic envelope constraints and

comprehensive robust optimization, we investigate the tractability of the latter. A comprehensive

robust optimization problem is tractable exactly when finding the most adversarial disturbance

can be done efficiently. We show that this amounts to minimizing a function of a scalar variable,

and it can be minimized efficiently whenever the penalty function of the comprehensive robust

optimization is convex. Based on these results, we conclude this section by showing that the

exponential decay probabilistic envelope constraint leads to a tractable optimization problem.

Theorem 7. The following comprehensive robust optimization problem

Minimize: c⊤x

Subject to: (ai + δi)
⊤x≥ bi − ti(‖δi‖Σ−1

i

), ∀δi ∈R
n; i=1, . . . ,m.

(10)

can be solved in polynomial time if for each i, and any β ≥ 0, the following optimization on y can

be solved in polynomial time:

Minimize: ti(y)−βy, subject to: y ∈R
+. (11)

Remark 1. Notice that when ti(·) is convex, then the function ti(y)− βy is a convex function

of a scalar variable y. Therefore, this function is unimodal, and in particular, can be solved in

polynomial time using line-search and bisection. Similarly, if ti(·) is concave, then the function

ti(y)−βy is a concave function of scalar variable y. Therefore, the minimum is attained at one of

the two extremes, i.e., y= 0 or y ↑∞.
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Remark 2. Note that en route to proving Theorem 7, we establish that for fixed x0, the most

adversarial noise, i.e., δi such that constraint (ai+δi)
⊤x0 ≥ bi− fi(δi) has a largest violation gap,

is achieved at

δ∗
i =−y∗Σix0/

√

x⊤
0 Σix0,

where y∗ is the optimal solution of

Minimize: ti(y)− y
√

x⊤
0 Σix0, Subject to: y ∈R

+.

4.1. Exponentially decaying probabilistic envelope constraints

As an example, we next investigate explicitly the tractability of exponentially decaying probabilistic

envelope constraints. The next lemma shows that for an ellipsoidal random variable with log-

concave density, the resulting penalty function of the exponential decaying probabilistic envelope

constraints is convex.

Lemma 1. Let ζr ∈R
n be a spherical random variable with mean 0 and variance In, and having a

log-concave density function. Denote the cumulative distribution function of the one-dimensional

marginal of ζ by Ψ(·), which is strictly increasing. If P(s) = 1 − γ exp(−αs) for α > 0, then

P−1(Ψ(s)) is convex.

Proof: Note that since ζ
r has a log-concave density, the density function of its one-dimensional

margin is also log-concave. This further implies that the cumulative distribution function of its

marginal, Ψ(·), is log-concave (e.g., Boyd and Vandenberghe 2004). Furthermore, algebraic manip-

ulation yields that P−1(t) =max[− 1
α
log(1− t)+ logγ

α
,0]. Thus, we have

P−1(Ψ(s)) =max[− 1

α
log(1−Ψ(s))+

logγ

α
,0] =max[− 1

α
log(Ψ(−s))+

log γ

α
,0].

The last equality holds since ζ
r being spherical implies that Ψ(·) is symmetric. Thus, log con-

cavity of Ψ(·) implies that − 1
α
log(Ψ(−s)) is convex for any α > 0. The lemma thus holds since

maximization preserves convexity. Q.E.D.

Theorem 8. For i=1, . . . ,m, let ζr
i ∈R

n be a spherical random variable with mean 0 and variance

In, and having a log-concave density function. Let Hi ∈R
n×n be a full rank matrix. Let Σi =H⊤

i Hi,

and denote the cumulative distribution function of the one-dimensional marginal of ζr
i by Ψi(·),

which is strictly increasing. Further let αi > 0 and 0< γi ≤ 0.5. The following optimization problem

Minimize: c⊤x

Subject to: P
[

(ai+Hiζ
r
i )

⊤x≥ bi − s
]

≥ 1− γi exp(−αis), ∀s≥ 0, i=1, . . . ,m;
(12)

can be solved in polynomial time.
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Proof: Let P(s) = 1− γ exp(−αs). By Theorem 6, we have that Problem (12) is equivalent to

Minimize: c⊤x

Subject to: (ai+ δi)
⊤x≥ bi −P−1(Ψ(‖δi‖Σ−1)), ∀δi ∈R

n, i=1, . . . ,m.
(13)

Note that P−1(Ψ(·)) is convex due to Lemma 1. By Theorem 7 together with Remark 1 this implies

that Problem (13), and equivalently Problem (12) can be solved in polynomial time. Q.E.D.

Remark 3. Indeed, if P(s) = 1 − γ exp(−f(s)) for an increasing, concave f(·), then we have

P−1(s) =max[f−1(logγ− log(Ψ(s))),0], which is again convex. The resulting optimization problem

is therefore tractable.

As a special case of Theorem 8, we see that the exponentially decaying probabilistic envelope

constraints with Gaussian noise are tractable.

Corollary 1. For i= 1, . . . ,m, let δr
i ∈ R

n ∼N (0,Σi). Further let αi > 0 and 0< γi ≤ 0.5. The

following optimization problem

Minimize: c⊤x

Subject to: P
[

(ai + δ
r
i )

⊤x≥ bi − s
]

≥ 1− γi exp(−αis), ∀s≥ 0, i=1, . . . ,m;

can be solved in polynomial time.

Next we investigate exponentially decaying probabilistic envelope constraints for noise described

by the mean-variance model. The next theorem shows that it is impossible for the mean-variance

model to satisfy an exponentially-decaying probabilistic envelope for the entire tail. Intuitively, this

is due to the fact that without further assumption on the distribution, fixing the mean and variance

of a random variable only guarantees a power-law tail decay (by, e.g., the Markov inequality).

On the other hand, it is possible to require an exponential decay on a bounded interval for the

mean-variance model. Indeed, such a formulation leads to tractable problems. As before, the proof

is deferred to the appendix.

Theorem 9. There is no non-zero x that satisfies

inf
δr∼(0,Σ)

P
[

(a+ δr)⊤x≥ b− s
]

≥ 1− γ exp(−αs), ∀s≥ 0. (14)

On the other hand, for fixed s−, s+ ≥ 0, the following constraint

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥ 1− γ exp(−αs), ∀s∈ [s−, s+], (15)

leads to a tractable optimization problem.



Xu, Caramanis, and Mannor: Probabilistic Envelope Constraints

16 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Original Function Conjugate function

ti(x) =

{

0 x≤ c,
α(x− c) x> c.

t∗i (y) =

{

cy y ≤α,
+∞ y >α.

=max(Iα, cy)

ti(x) =

{

αx x≤ c,
+∞ x> c.

t∗i (y) =

{

0 y ≤ α,
c(y−α) y > α.

=max(0, c(y−α))

ti(x) =







0 x≤ c1,
α(x− c1) c1 <x≤ c2,
+∞ x> c2.

t∗i (y) =

{

c1y y≤ α,
c2(y−α)+αc1 y > α.

=max(c1y, c2y+α(c1 − c2))

ti(x) =

{

0 x≤ c,
α(x− c)2 x> c.

t∗i (y) = y2/4α+ cy.

ti(x) =

{

αx2 x≤ c,
+∞ x> c.

t∗i (y) =

{

y2/4α y ≤ 2αc,
cy−αc2 y > 2αc.

= infλ≥0

(

(y−λ)2/4α+ cλ
)

ti(x) =







0 x≤ c1,
α(x− c1)

2 c1 <x≤ c2,
+∞ x> c2.

t∗i (y) =

{

y2/4α+ yc1 y ≤ 2α(c2 − c1),
c2y−α(c2 − c1)

2 y > 2α(c2 − c1).

=max
(

c1y, infλ1,λ2≥0[
(y+λ1−λ2)

2

4α
+ c1y+(c2− c1)λ2]

)

Table 1 Piecewise-defined functions and their conjugates.

4.2. Some examples of “easy” penalty functions

Thus far we have discussed polynomial time solvability. However, for large scale problems much

stronger complexity requirements may be needed. In this section, we list some penalty functions

ti(·), such that the respective comprehensive robust optimization problem can be solved easily. For

ease of notation and presentation, we consider the computational issues only for comprehensive

robust optimization. Given the equivalence we prove above, tractability results for the correspond-

ing probabilistic envelope programs is immediately implied.

The comprehensive robust optimization

Minimize: c⊤x

Subject to: (ai+ δi)
⊤x≥ bi − ti(‖δ‖Σ−1), ∀δi ∈R

n; i= 1, . . . ,m;
(16)

can be reduced to the following optimization formulation problem with finite number of constraints

Minimize: c⊤x

Subject to: a⊤
i x− t∗i (‖x‖Σ)≥ b; i= 1, . . . ,m,

where t∗i (y) = supx≥0

[

xy − t(x)
]

is the conjugate function of t(·). Thus, a comprehensive robust

optimization (16) can be easily solved if constraints of the form t∗i (x)≤ α lead to “simple” opti-

mization problems.

We remark that all conjugate functions t∗(·) in Table 1 can be written as t∗(x) =

max1,2(s1(x), s2(x)), where si = infλ∈Si
qi(λ,x) for some “simple” functions qi and polytope Si.
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Here by “simple” we mean the function is a quadratic function, or a linear function, or an indicator

function. Hence the constraint t∗i (x)≤ α is equivalent to

q1(x,λ1)≤ α;

λ1 ∈ S1;

q2(x,λ2)≤ α;

λ2 ∈ S2.

Since a “simple” function leads to a second order cone constraint, the resulting formulation is a

Second Order Cone Program, where medium to large scale problems can be solved using a standard

solver in reasonable time.

5. Group probabilistic envelope constraints of correlated noise

In this section we extend the probabilistic envelope constraint to the case where some random

variables δ
r
i are correlated across different constraints. In contrast to independent noise where

we bound individually the probability of each constraint being satisfied, in the correlated noise

case, we bound the probability that a group of constraints are satisfied simultaneously. To be

more specific, let δr
1, . . . ,δ

r
m be random variables that follow a joint distribution. Let I1, . . . ,Ip be

(not necessarily disjoint) subsets of [1 :m]. The group probabilistic envelope constraint program

considers the following problem:

Minimize: c⊤x

Subject to: P
[

∀i∈ It : (ai+ δ
r
i )

⊤x≥ bi − s
]

≥Pt(s), ∀s≥ 0; t= 1, . . . , p.

While addressing general correlation seems hard, we investigate two special cases, where we can

either exactly or approximately solve the group probabilistic envelope constraint program.

5.1. Identical noise

The first case we investigate is where identical noise δ
r
t affects each constraint within a group It.

Then, the group probabilistic envelope constrained program reduces to the following:

Minimize: c⊤x

Subject to: P
[

∀i∈ It : (ai+ δ
r
t )

⊤x≥ bi − s
]

≥Pt(s), ∀s≥ 0; t= 1, . . . , p.
(17)

Theorem 10. Problem (17) is equivalent to

Minimize: c⊤x

Subject to: P
[

(ai+ δ
r
t )

⊤x≥ bi − s
]

≥Pt(s), ∀s≥ 0; ∀i∈ It; t=1, . . . , p.

Theorem 10 follows from the following lemma.
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Lemma 2. Fix x, ai, ci and let δr be a random variable, then

P
(

∀i∈ I : (ai + δ
r)⊤x≥ ci

)

= inf
i∈I

P
(

(ai + δ
r)⊤x≥ ci

)

.

Proof: Note that

P
(

∀i∈ I : (ai + δ
r)⊤x≥ ci

)

= P
(

inf
i∈I

[(ai + δ
r)⊤x− ci]≥ 0

)

= P
(

δ
r⊤x≥ sup

i∈I
[ci− a⊤

i x]
)

= inf
i∈I

P
(

(ai + δ
r)⊤x≥ ci

)

,

where in the last equality we use the fact that ai, ci and x are fixed. Q.E.D.

Theorem 10 states that in the identical noise case, we can decompose a group probabilistic

envelope constraint into individual probabilistic envelope constraints. Thus, Theorems 4 to 6 imme-

diately imply the following corollaries.

Corollary 2 (Mean-Variance Model). For t = 1, . . . , p, if Pt : R
+ 7→ [0,1) is non-decreasing

and continuous from the right, then the following problem

Minimize: c⊤x

Subject to: inf
δr
t
∼(0,Σt)

P
[

∀i∈ It : (ai + δ
r
t )

⊤x≥ bi − s
]

≥Pt(s), ∀s≥ 0; t= 1, . . . , p;

is equivalent to

Minimize: c⊤x

Subject to: (ai+ δ)⊤x≥ bi −P−1
t

( ‖δ‖2
Σ−1
t

1+ ‖δ‖2
Σ−1
t

)

, ∀δ ∈R
n; ∀i∈ It; t=1, . . . , p

where P−1
t (x), inf{y ≥ 0|Pt(y)≥ x}.

Corollary 3 (Gaussian Model). For t= 1, . . . , p, if Pt :R
+ 7→ [0,1) is non-decreasing and con-

tinuous from right, and δ
r
t ∼N (0,Σ)t, then the following problem

Minimize: c⊤x

Subject to: P
[

∀i∈ It : (ai + δ
r
t )

⊤x≥ bi − s
]

≥Pt(s), ∀s≥ 0; t= 1, . . . , p;

is equivalent to

Minimize: c⊤x

Subject to: (ai+ δ)⊤x≥ bi −P−1
t

(

Φ(‖δ‖Σ−1
t

)
)

, ∀δ ∈R
n; ∀i∈ It; t= 1, . . . , p

where P−1
t (x), inf{y ≥ 0|Pt(y)≥ x}.
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5.2. Two-sided condition

The second case we investigate is the “two-sided condition”, i.e., the nominal constraint has the

form

b− c≤ a⊤x≤ b+ c.

This constraint is motivated by the linear regression setup, where we observe a set of input-output

pairs (bi,ai) for i= 1, . . . ,m and seek a solution x such that bi ≈ a⊤
i x for all i.

The probabilistic envelope constraints for the two-sided condition thus have the form

P(b− s≤ (a+ δ
r)⊤x≤ b+ s)≥P(s); ∀s≥ 0. (18)

While Constraint (18) seems to be hard to solve exactly, we can approximate it with the following

comprehensive robust constraint:

δ⊤x≥−P−1 [2(Φ(‖δ‖Σ−1)− 1/2)] , ∀δ ∈R
n,

under the condition that δ
r ∼N (0,Σ), and that P(s)> 0 only when s≫ c. The latter condition

essentially means that the decision maker is only concerned with bounding the probability of

“large” deviations when noise exists.

This approximation is justified by the following theorem. Note that by definition, it is easy to see

that P−1 is continuous from the left. Hence, Theorem 11 implies that when ǫ ↓ 0, then the inner-set

and the outer-set converge to the feasible set of (19). That is, the approximation is asymptotically

exact.

Theorem 11. Let δr ∼N (0,Σ). Suppose P :R+ 7→ [0,1) is a non-decreasing function that is con-

tinuous from the right. Let s∗ =min{s|P(s)> 0}, and let ǫ= c/s∗. Then the feasible set of

P(b− s≤ (a+ δ)⊤x≤ b+ s)≥P(s); ∀s≥ 0,

b− c≤ a⊤x≤ b+ c
(19)

is bounded from the inside by that of

δ
⊤x≥−P−1 [(2− ǫ)(Φ(‖δ‖Σ−1)− 1/2)] , ∀δ ∈R

n,

b− c≤ a⊤x≤ b+ c;
(20)

and bounded from the outside by that of

δ
⊤x≥−P−1 [2(Φ(‖δ‖Σ−1)− 1/2)] , ∀δ ∈R

n,

b− c≤ a⊤x≤ b+ c.
(21)

As before, P−1(x), inf{y ≥ 0|P(y)≥ x}.
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Remark 4. A close inspection of the proof of Theorem 11 shows that it only depends on the fact

that the density function of the marginal of the distribution is decreasing in [0,+∞). Thus, it is

straightforward to generalize Theorem 11 to the ellipsoidal random variable case.

As an example of the approximation, recall the linear regression with probabilistic envelope

constraint (2):

Minimize:
n
∑

i=1

ξ2i

Subject to: |bi − a⊤
i x| ≤ ξi, i= 1, . . . ,m;

P
(

|bi − (ai+ δ
r
i )

⊤x| ≤ ξi+ s
)

≥ 1− γ exp(−αs), ∀s≥ s∗. i= 1, . . . ,m;

ξi ≥ 0, i= 1, . . . ,m.

This can thus be approximated by the following program (the algebraic details are deferred to the

appendix), which can be solved in polynomial time due to our results in Section 4.

Minimize:
n
∑

i=1

ξ2i

Subject to: |bi − a⊤
i x| ≤ ξi, i= 1, . . . ,m;

δ
⊤
i x≥ 1

α
log(2Φ(−‖δi‖Σ−1))− logγ

α
;

∀‖δi‖Σ−1 ≥Φ−1

(

1− γ exp(−αs∗)

2

)

; i= 1, . . . ,m;

ξi ≥ 0, i= 1, . . . ,m.

6. Approximate Partial Distributional Information

In the previous sections we assume that either perfect information of the distribution, or at least

the mean and variance of the noise, is available (i.e., explicitly given). In this section, we consider a

more practical setup, where any probabilistic information of the noise is approximate. This setting

is most relevant in the sample-driven regime, i.e., the setting where our only knowledge of the noise

distribution comes through a finite set of observed noise samples. Given these, we must estimate

the distribution (or alternatively the mean and the variance) of the noise. In such a case, it is not

realistic to hope for a precise estimate of the distribution parameters (or mean/variance). Instead,

we adapt the approach proposed in Delage and Ye (2010) where an interval estimate of mean and

variance (or respective parameters of the Gaussian distribution) are given, and provide worst-case

(w.r.t. mean–variance or distribution parameters) probabilistic bounds.

Theorem 12. Suppose the random variable δr has unknown mean c̃ and variance Σ̃, such that

c̃i ∈ [−ǫi,+ǫi] and Σ̃�Σ∗. Define T :Rn 7→R
n as

T (δ)i =







0 if − ǫi ≤ δi ≤ ǫi;
δi − ǫi if δi > ǫi;
δi+ ǫi if δi <−ǫi.
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Then the constraint

(a+ δ)⊤x≥ b− t(‖T (δ)‖(Σ∗)−1), ∀δ ∈R
n, (22)

is equivalent to

inf
c:ci∈[−ǫi,ǫi],Σ�Σ∗

inf
δr∼(c,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥ 1− 1
(

t−1(s)
)2

+1
, ∀s≥ 0.

Using a similar argument, we can derive a probabilistic bound when the parameters of the

Gaussian random variable are not precisely known.

Theorem 13. The constraint

(a+ δ)⊤x≥ b− t(‖T (δ)‖(Σ∗)−1), ∀δ ∈R
n,

is equivalent to

inf
c:ci∈[−ǫi,ǫi],Σ�Σ∗

Prδr∼N (c,Σ)

[

(a+ δ
r)⊤x≥ b− s

]

≥Φ
(

t−1(s)
)

, ∀s≥ 0.

Theorems 12 and 13 imply the following corollaries that show that one can use the comprehensive

robust optimization paradigm to enforce probabilistic requirements.

Corollary 4. If P : R+ 7→ [0,1) is a non-decreasing function that is continuous from the right,

then the probabilistic constraint

inf
c:ci∈[−ǫi,ǫi];Σ�Σ∗

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

is equivalent to

(a+ δ)⊤x≥ b−P−1

(

‖T (δ)‖2
(Σ∗)−1

1+ ‖T (δ)‖2
(Σ∗)−1

)

, ∀δ ∈R
n,

where P−1(x), inf{y ≥ 0|P(y)≥ x}.

Corollary 5. If P :R+ 7→ [0.5,1) is a non-decreasing function that is continuous from the right,

then the probabilistic constraint

inf
c:ci∈[−ǫi,ǫi];Σ�Σ∗

Prδr∼N (0,Σ)

[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

is equivalent to

(a+ δ)⊤x≥ b−P−1
(

Φ(‖T (δ)‖(Σ∗)−1)
)

, ∀δ ∈R
n,

where P−1(x), inf{y ≥ 0|P(y)≥ x}.

Before concluding this section, we remark that the confidence interval of the mean [−ǫi, ǫi] can be

easily estimated from i.i.d. samples using, for example, Hoeffding’s bound. To derive the confidence

interval of the variance from empirical observations, (i.e., Σ∗), we refer the readers to Lemma 3 of

Delage and Ye (2010).
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Figure 1 The portfolio allocations for different decay rates α= 25,50,100,200 of the envelope constraints.

7. Simulations

In this section we illustrate the proposed approach using a synthetic portfolio optimization exam-

ple in the spirit of the motivating example discussed in Section 2.1. We consider allocating an

investment among 11 assets: 10 stocks and a fixed deposit. The return of the fixed deposit is fixed

as 1, while the return of stock i follows the equation

ri =Zi +Z0,

where we set Zi ∼ N (1 + 0.01i, (0.03i)2). Therefore, the larger the mean return of a stock, the

larger the return’s variance. Thus, stock 10 is the most risky stock, and stock 1 is the most

conservative except for the fixed deposit. In addition, the market effect is set as Z0 ∼N (0, (0.01)2).

Our goal is to maximize the expected return subject to the exponentially decaying probabilistic

envelope 1− γ exp(−αs). Setting T = 1 and γ = 0.2 requires a guarantee of no losses with at least

80% probability. We choose four values of α = 25, 50, 100, 200, giving different rates of decay

for the probability the constraint is violated at level s for each s. Figure 1 shows the resulting

portfolio allocations. Not surprisingly, larger α corresponds to a more risk averse attitude towards

large constraint violation (i.e., significant loss), and consequently, the resulting portfolio is more

conservative and tends to invest more heavily in the fixed deposit. We also observe that all portfolio

allocations are well diversified, each investing a non-negligible fraction in at least 8 out of the 11

assets. Table 2 reports the mean return of these portfolios. We also compute the probability that
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Figure 2 Probability that a portfolio suffers a given loss. Here, the dashed lines are probabilistic envelope con-

straints imposed, and the solid lines are the true probabilities of resulting portfolios suffer a given

amount of loss.

each portfolio suffers given level of loss, as shown in Figure 2. As expected, each portfolio satisfies its

respective envelope constraint. Moreover, as an indication that the construction is not conservative,

we observe that portfolio allocations designed with less conservative constraints violate the more

conservative envelope constraints.

α= 25 α= 50 α=100 α=200
Mean return 1.0640 1.0428 1.0220 1.0110

Table 2 Mean return of the allocations for different decay rates α=25,50,100,200 of the envelope constraints.

8. Conclusion

Standard chance constraints ignore the magnitude of constraint violation altogether, controlling

only the probability of violation. In many applications, including many finance applications, con-

trolling this magnitude of violation can be paramount. We proposed a new class of probabilistic

constraints we call probabilistic envelope constraints, which bound the probability that a con-

straint is violated by a certain gap s for all values of s ≥ 0. We investigated linear programs

with probabilistic envelope constraints under Gaussian uncertainties and their generalization, log-

concave uncertainties, and show that this problem is equivalent to a semi-infinite program, known

as comprehensive robust optimization in the literature. As a byproduct, we provided tight prob-

abilistic bounds on comprehensive robust optimization. We further considered the tractability of
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probabilistic envelope constraints, and showed that under mild technical conditions the resulting

optimization problem can be solved in polynomial time. Extensions to the correlated uncertainty

case and the approximate distribution based case were also provided.
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Appendix A: Proofs of results in Section 3

This appendix is devoted to establishing results in Section 3. Our main goal is to prove Theorems 4

to 6. This is done in two steps: we first prove Theorems 1 to 3, thus establishing tight probabilistic

bounds for comprehensive robust optimization. We then show that these bounds imply Theorems 4

to 6.

A.1. Proof of Theorem 1 to Theorem 3

Proof of Theorem 1: We first show that for any fixed c∈R, d> 0, the following two inequalities

are equivalent.

sup
δr∼(0,Σ)

P
[

(a+ δr)⊤x≤ c
]

≤ 1

d2 +1
(23)

a⊤x≥ c+ d‖x‖Σ, (24)

i.e., if x satisfies one inequality, then it also satisfies the other one. To see that, by Marshall and

Olkin (1960), we have

sup
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≤ c

]

= (1+α2)−1,

where

α= inf
n|n⊤x≤c−a⊤x

√
n⊤Σ−1n=

{

a⊤x−c
‖x‖Σ if a⊤x− c≥ 0;

0 otherwise.

Thus, if x satisfies Inequality (24), then a⊤x− c ≥ d‖x‖Σ, which implies that α ≥ d, and hence

(1 + α2)−1 ≤ (1 + d2)−1, which implies Inequality (23) holds. Conversely, if x does not satisfy

Inequality (24), then a⊤x− c < d‖x‖Σ which implies a < d, and hence Inequality (23) does not

hold. Therefore, Inequalities (23) and (24) are equivalent.

Note that (24) is equivalent to

(a+ δ)⊤x≥ c; ∀‖δ‖Σ−1 ≤ d. (25)

Hence for any c∈R, d> 0, Inequalities (23) and (25) are equivalent.

We next show that Inequality (4) is equivalent to

inf
δr∼(0,Σ)

P
[

(a+ δr)⊤x≥ b− t(r)
]

≥ 1− 1

r2 +1
, ∀r≥ 0. (26)

If Inequality (4) does not hold, then there exists s∗ and ǫ > 0 small enough, such that

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s∗

]

< 1− 1
(

t−1(s∗)− ǫ
)2

+1
.
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Let r∗ = t−1(s∗)− ǫ, by definition t(r∗)≤ s∗, hence

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− t(r∗)

]

≤ inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s∗

]

< 1− 1
(

r∗)2 +1
,

hence Inequality (26) does not hold.

On the other-hand, if Inequality (26) does not hold, then there exists r∗ such that

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− t(r∗)

]

< 1− 1

(r∗)2 +1
.

Let s∗ = t(r∗), then t−1(s∗)≥ r∗. We have

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s∗

]

< 1− 1

(r∗)2 +1
≤ 1− 1

(t−1(s∗))2 +1
,

hence Inequality (4) does not hold. Thus, we conclude that (4) and (26) is equivalent.

Finally, by the equivalence of (23) and (24), Constraint (26) is equivalent to:

(a+ δ)⊤x≥ b− t(r); ∀‖δ‖Σ−1 ≤ r, ∀r≥ 0.

Since ti(·) is nondecreasing, this is further equivalent to (3). Q.E.D.

Notice that the first building block of the proof is the equivalence relationship of a worst-case

chance constraint (23) (with only the first and second moment information), and a deterministic

constraint (23). We remark that in a recent paper, Zymler et al. (2011) has extended this equivalence

relationship to the non-linear case. It would be interesting to see whether this makes it possible to

analyze probabilistic envelope constraints for the non-linear optimization problem.

Proof of Theorem 2: For fixed k≥ 1/2 and constant l, the following constraints are equivalent:

P(x⊤δr
i ≥ l)≥ k

⇐⇒ l≤Φ−1(k)
(

x⊤Σx
)1/2

⇐⇒ l≤ x⊤δ, ∀‖δ‖Σ−1 ≤Φ−1(k).

(27)

Next we show that (6) is equivalent to

P

(

δ
r⊤x≥ (b− a⊤x)− t(r)

)

≥Φ(r), ∀r≥ 0, (28)

If (6) does not hold, then there exists s∗ ≥ 0 and ǫ > 0 small enough such that

P
[

(a+ δ
r)⊤x≥ b− s∗

)

<Φ
(

t−1(s∗)− ǫ
)

.

Let r∗ = t−1(s∗)− ǫ, then by definition t(r∗)≤ s∗. Hence

P
[

(a+ δ
r)⊤x≥ b− t(r∗)

)

≤ P
[

(a+ δ
r)⊤x≥ b− s∗

)

<Φ
(

r∗
)

,
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i.e., Inequality (28) does not hold.

On the other hand, suppose Inequality (28) does not hold. Thus, there exists r∗ such that

P

(

δ
r⊤x≥ (b− a⊤x)− t(r∗)

)

<Φ(r∗).

Let s∗ = t(r∗). By definition t−1(s∗)≥ r∗. Thus

P

(

δ
r⊤x≥ (b− a⊤x)− s∗

)

<Φ(r∗)≤Φ(t−1(s∗)),

i.e., (6) does not hold. Hence we conclude that (6) and (28) are equivalent.

By (27), Constraint (28) is equivalent to ∀γ ≥ 0,

(a+ δ
r)⊤x≥ b− t(γ), ∀‖δ‖Σ−1 ≤Φ−1

(

Φ(γ)
)

= γ.

Since t(·) is nondecreasing, this is equivalent to (5). Q.E.D.

The proof of Theorem 3 is identical to the proof of Theorem 2, and hence omitted.

A.2. Proof of Theorem 4 to Theorem 6

We first prove Theorem 4, the mean-variance model.

Proof of Theorem 4: Since lims→+∞P(s) may not converge to 1, we need to pay special attention

to the case where inf{y ≥ 0|P(y)≥ x}= ∅. To this end, let

S= {s|∃y≥ 0 :P(y)≥ s}.

Note that P(·) is non-decreasing and continuous from right, we have for x∈S,

P−1(x) =min{y ≥ 0|P(y)≥ x}.

And P−1(x) = +∞ for x 6∈S. To simplify notation, let g(x), x2/(1+ x2) and v(x),P−1(g(x)).

Note that g(x) is a strictly increasing function in R
+ onto [0,1), hence g−1(y) is uniquely defined

for any y ∈ [0,1). By definition we have when g(x)∈S,

v(x) =P−1(g(x)) = inf{y ≥ 0|P(y)≥ g(x)}= inf{y ≥ 0|g−1(P(y))≥ x}=min{y ≥ 0|g−1(P(y))≥ x};

and v(x) =+∞ when g(x) 6∈S.

Note that Constraint (7) can be rewritten as

(a+ δ)⊤x≥ b− v(‖δ‖Σ−1), ∀δ ∈R
n,

which by Theorem 1 is equivalent to

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥ g(v−1(s)), ∀s≥ 0, (29)
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where v−1(s) = sup{x|v(x)≤ s}.
Furthermore, we have the following

v−1(s) =sup{x|v(x)≤ s}=max
(

sup{x|g(x) ∈S, v(x)≤ s}, sup{x|g(x) 6∈S, v(x)≤ s}
)

.

Note that g(x) 6∈ S implies v(x) = +∞, hence {x|g(x) 6∈ S, v(x) ≤ s} = ∅, i.e., the second term

equals −∞. The first term equals

sup
{

x
∣

∣min{y ≥ 0|g−1(P(y))≥ x} ≤ s
}

= sup
{

x|∃y ∈ [0, s] : g−1(P(y))≥ x
}

= sup
{

x|g−1(P(s))≥ x
}

= g−1(P(s)).

Thus, we have that

v−1(s) = g−1(P(s)).

Substitute it into (29) and note that g(g−1(z)) = z we conclude that Constraint (7) is equivalent

to

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥P(s), ∀s≥ 0,

which establishes the Theorem. Q.E.D.

If we let g(x),Φ(x) (respectively Ψ(x)), then the proof of Theorem 5 (and of Theorem 6) are

identical to the proof of Theorem 4. Hence we omit the details.

Appendix B: Proofs of results in Section 4

In this appendix we provide proofs to Theorem 7 and Theorem 9.

Proof of Theorem 7: Note that Problem (10) is a minimization of a linear objective over a convex

set (denoted by C), since there are infinitely many linear constraints. Grötschel et al. (1988) shows

that a sufficient condition for such problem to be solved in polynomial time is the existence of a

polynomial-time separation Oracle of C, which is a sub-routine such that given a candidate solution

x, in polynomial time it either correctly reports that x ∈ C; or outputs an h and α such that

h⊤x<α, whereas for any z∈ C, h⊤z≥ α.

Thus, to complete the proof, we show the existence of a separation oracle. Note that it suffices

to show that for each i= 1, . . . ,m, the following convex set has a separation oracle:

Ci , {x|(ai + δi)
⊤x≥ bi − ti(‖δi‖Σ−1

i

), ∀δi ∈R
n}.

Fix a candidate solution x0, we have

min
δi∈Rn

[

δ
⊤
i x0 + ti(‖δi‖Σ−1

i

)
]

=min
y≥0

min
‖δi‖Σ−1=y

[

δ
⊤
i x0 + ti(‖δi‖Σ−1

i

)
]

=min
y≥0

[

− y
√

x⊤
0 Σix0 + ti(y)

]

,
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where the last equality is achieved at δi =−yΣix0/
√

x⊤
0 Σix0.

Therefore, x0 ∈ Ci if and only if

min
y≥0

[

− y
√

x⊤
0 Σix0 + ti(y)

]

≥ bi − a⊤
i x0.

In addition, if x0 6∈ C, then take δ∗
i =−y∗Σix0/

√

x⊤
0 Σix0 where y

∗ = argmin
[

−y
√

x⊤
0 Σix0+ ti(γ)

]

,

we have that

δ
∗⊤
i x0 + ti(‖δ∗

i ‖Σ−1
i

)< bi − a⊤
i x0,

whereas for any z∈ Ci, we have

δ
∗⊤
i z+ ti(‖δ∗

i ‖Σ−1

i

)≥ bi − a⊤
i z.

That is, the following hyperplane separates x0 and Ci,

(δ∗
i +ai)

⊤x= bi − ti(‖δ∗
i ‖Σ−1

i

).

Thus, since in polynomial time we can solve

minimize: ti(y)−βy, subject to: y ∈R
+;

we have a polynomial-time separation Oracle, which implies that Problem (10) is tractable.

Q.E.D.

Proof of Theorem 9: We establish the first claim. SinceP(s) = 1−γ exp(−αs), we have P−1(t) =

max[− 1
α
log(1− t)+ logγ

α
,0]. Thus, the penalty function is

t(s),P−1(
s2

1+ s2
) =max

[ 1

α
log(1+ s2)+

log γ

α
, 0
]

.

It is easy to check, 1
α
log(1+ s2)+ logγ

α
is convex on [0,1], and concave on [1,∞).

Let C be the feasible set of Constraint (14), then by Theorem 4 we have

C , {x|(a+ δ)⊤x≥ b− t(‖δ‖Σ−1), ∀δ ∈R
n}.

From the proof of Theorem 7, a candidate solution x0 ∈ C if and only if

min
y≥0

[

− y
√

x⊤
0 Σx0 + t(y)

]

≥ bi − a⊤x0.

Note that Σ is full rank and positive semi-definite, which implies that
√

x⊤
0 Σx0 > 0 for any non-zero

x0. Hence, substituting t(s) = 1
α
log(1+ s2)+ logγ

α
we have that for for any non-zero x0,

lim
y→+∞

[

− y
√

x⊤
0 Σx0 + t(y)

]

=−∞,
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which establishes the first claim.

We turn to establish the second claim. To apply Theorem 4 requires a probabilistic envelope

function on R
+ instead of [s−, s+]. Therefore, we let

P̂(s),







0 if s < s−;
1− γ exp(−αs) if s− ≤ s≤ s+;
1− γ exp(−αs+) if s > s+;

which is non-decreasing and continuous from the right. In addition, observe that Constraint (15)

is equivalent to

inf
δr∼(0,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

≥ P̂(s), ∀s≥ 0.

By definition, we have that

P̂−1(x) = inf{y ≥ 0|P̂(y)≥ x}=















0 if x= 0;
s− if 0<x< 1− γ exp(−αs−);
max[− 1

α
log(1−x)+ log γ

α
, 0] if 1− γ exp(−αs−)≤ x≤ 1− γ exp(−αs+);

+∞ if 1− γ exp(−αs+)<x.

Note that when x≥ 1− γ exp(−αs−), we have − 1
α
log(1−x)+ log γ

α
≥ s− ≥ 0. This leads to

t̂(s) = P̂−1(
s2

1+ s2
)

=



























0 if s= 0;

s− if 0< s<
√

1
γ exp(−αs−)

− 1;

1
α
log(1+ s2)+ logγ

α
if
√

1
γ exp(−αs−)

− 1≤ s≤
√

1
γ exp(−αs+)

− 1;

+∞ if
√

1
γ exp(−αs+)

− 1≤ s.

Theorem 7 asserts that Constraint (15) leads to a tractable optimization problem if for any

β ≥ 0, minimize:s≥0 [t̂(s)− βs] is tractable. By the definition of t̂(s), it thus suffices to show that

the following is tractable:

Minimize:
1

α
log(1+ s2)+

logγ

α
−βs

Subject to:

√

1

γ exp(−αs−)
− 1≤ s≤

√

1

γ exp(−αs+)
− 1.

(30)

Recall that 1
α
log(1+ s2)+ logγ

α
is convex on [0,1] and concave on [1,+∞). Thus, due to convexity,

by line search in polynomial time we can solve the scalar-variable optimization problem

Minimize:
1

α
log(1+ s2)+

log γ

α
−βs

Subject to:

√

1

γ exp(−αs−)
− 1≤ s≤

√

1

γ exp(−αs+)
− 1

0≤ s≤ 1.
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Due to concavity, we can solve (by checking the two extreme points of the feasible set)

Minimize:
1

α
log(1+ s2)+

log γ

α
−βs

Subject to:

√

1

γ exp(−αs−)
− 1≤ s≤

√

1

γ exp(−αs+)
− 1

s≥ 1.

Hence in polynomial time we can solve (30), which implies the second claim. Q.E.D.

Appendix C: Proof of results in Section 5

In this appendix we prove Theorem 11. We start with a simple lemma.

Lemma 3. Let c2 > 0 and ǫ= |c1|/c2< 1, then

(1− ǫ/2)[Φ(c2)−Φ(−c2)]≤Φ(c1+ c2)−Φ(c1− c2)≤Φ(c2)−Φ(−c2).

Proof: Note that by symmetry of the density function of Gaussian random variable, we have

that

Φ(c1+ c2)−Φ(c1− c2) = Φ(−c1+ c2)−Φ(−c1− c2).

Thus, without loss of generality we assume that c1 ≥ 0. By definition of the cumulative distribution

function, we have that

Φ(c2)−Φ(−c2)− [Φ(c1+ c2)−Φ(c1− c2)]

=

∫ c1−c2

−c2

1√
2π

exp(−x2/2)dx−
∫ c1+c2

c2

1√
2π

exp(−x2/2)dx

≥ c1
1√
2π

exp(−c22/2)− c1
1√
2π

exp(−c22/2)= 0,

where, the inequality holds due to the fact that the pdf of a Gaussian random variable is decreasing

when positive, and increasing when negative. Hence we proved the right hand side of the lemma.

Again using the monotonicity of the pdf of Gaussian distribution, we have

Φ(c1−c2)−Φ(−c2) =

∫ c1−c2

−c2

1√
2π

exp(−x2/2)dx≤ c1
c2

∫ 0

−c2

1√
2π

exp(−x2/2)dx=
ǫ(Φ(c2)−Φ(−c2))

2
.

Thus,

Φ(c1 + c2)−Φ(c1− c2)

≥Φ(c2)−Φ(c1− c2)

= Φ(c2)−Φ(−c2)− [Φ(c1− c2)−Φ(−c2)]

≥ (1− ǫ/2)(Φ(c2)−Φ(−c2)),

which establishes the left hand side of the lemma. Q.E.D.

Now we turn to prove Theorem 11.
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Proof of Theorem 11: Let P̂(s) = (P(s)+1)/2, which is also non-decreasing and continuous from

right then we have

P−1 [2(Φ(‖δ‖Σ−1)− 1/2)] = P̂−1 [Φ(‖δ‖Σ−1)] ,

which by Theorem 5 implies that Constraint (21) is equivalent to

P
[

δ
r⊤x≥−s

)

≥ P̂(s) = (P(s)+ 1)/2; ∀s≥ 0;

b− c≤ a⊤x≤ b+ c.

Since δ
r ∼N (0,Σ), Constraint (21) is thus equivalent to

Φ

(

s√
x⊤Σx

)

≥P(s)/2+1/2; ∀s≥ 0;

b− c≤ a⊤x≤ b+ c.
(31)

Similarly, Constraint (20) is equivalent to

Φ

(

s√
x⊤Σx

)

≥P(s)/(2− ǫ)+ 1/2; ∀s≥ 0;

b− c≤ a⊤x≤ b+ c.
(32)

Fix a x and a s > 0, then

P(b− s≤ (a+ δ
r)⊤x≤ b+ s) =P(b− a⊤x− s≤ δ

r⊤x≤ b− a⊤x+ s)

=P(b− a⊤x− s≤ z ≤ b− a⊤x+ s),

where z is a random variable follows N (0,
√
x⊤Σx). Let ẑ ∼N (0,1), the right hand side equals

P((b− a⊤x− s)/
√
x⊤Σx≤ ẑ ≤ (b− a⊤x+ s)/

√
x⊤Σx)

= Φ((b− a⊤x+ s)/
√
x⊤Σx)−Φ((b− a⊤x− s)/

√
x⊤Σx).

Note that for x satisfying that |b− ax| ≤ c, we have that

(1−ǫ/2)(2Φ

(

s√
x⊤Σx

)

−1)
(a)

≤ Φ((b−a⊤x+s)/
√
x⊤Σx)−Φ((b−a⊤x−s)/

√
x⊤Σx)

(b)

≤ 2Φ

(

s√
x⊤Σx

)

−1.

From (a), if Φ
(

s√
x⊤Σx

)

≥P(s)/(2− ǫ)+ 1/2, then

Φ((b− a⊤x+ s)/
√
x⊤Σx)−Φ((b− a⊤x− s)/

√
x⊤Σx)≥P(s).

This implies that Constraint (32), and equivalently Constraint (20) bounds the original constraint

from the inside. Similarly, (b) implies that Constraint (21) bounds the original constraint from the

outside. Q.E.D.
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Appendix D: Approximation of the robust linear regression problem

In this appendix we provide the detailed derivation of the approximation of the robust linear

regression. Recall that as we discussed in Section 5.2, when min{s|P(s)> 0} is large, the constraint

P
(

|bi − (ai+ δ
r
i )

⊤x| ≤ ξi + s
)

≥P(s), ∀s≥ 0,

can be approximated by

δ
⊤x≥−P−1 [2(Φ(‖δi‖Σ−1)− 1/2)] ; ∀δi ∈R

n. (33)

Notice that in Problem (2), we have

P(s) =

{

0 if s < s∗;
1− γ exp(−αs) if s≥ s∗.

Thus, by definition we have

P−1(s) =







0 if x= 0;
s∗ if 0<x< 1− γ exp(−αs∗);
− 1

α
log(1−x)+ log γ

α
if 1− γ exp(−αs∗)≤ x.

Therefore, Constraint (33) is equivalent to

(a) δ⊤x≥ 0 if 2(Φ(‖δi‖Σ−1)− 1/2)= 0;

(b) δ
⊤x≥−s∗ if 0< 2(Φ(‖δi‖Σ−1)− 1/2)< 1− γ exp(−αs∗);

(c) δ
⊤x≥ 1

α
log(1− 2(Φ(‖δi‖Σ−1)− 1/2))− logγ

α
if 1− γ exp(−αs∗)≤ 2(Φ(‖δi‖Σ−1)− 1/2).

Note that Constraint (a) is superfluous, and Constraint (b) is implied by

δ
⊤x≥ 1

α
log(1− 2(Φ(‖δi‖Σ−1)− 1/2))− logγ

α
if 1− γ exp(−αs∗) = 2(Φ(‖δi‖Σ−1)− 1/2).

Thus, Constraint (33) reduced to (c), which can be further simplified to

δ
⊤
i x≥ 1

α
log(2Φ(−‖δi‖Σ−1))− log γ

α
; ∀‖δi‖Σ−1 ≥Φ−1

(

1− γ exp(−αs∗)

2

)

,

which leads to the approximation formulation.

Appendix E: Proofs to results in Section 6

In this appendix we prove Theorem 12.

Proof of Theorem 12: Fix x and s and let c∗ be such that c∗i =−sign(xi)ǫi. We note that

inf
c:ci∈[−ǫi,ǫi],Σ�Σ∗

inf
δr∼(c,Σ)

P
[

(a+ δ
r)⊤x≥ b− s

]

= inf
δr∼(c∗,Σ∗)

P
[

(a+ δ
r)⊤x≥ b− s

]

= inf
δr

′∼(0,Σ∗)

P
[

(a+ δ
r′)⊤x≥ b− s+

n
∑

i=1

ǫi|xi|
]

.
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Thus, Constraint (23) is equivalent to

inf
δr

′∼(0,Σ∗)

P
[

(a+ δ
r′)⊤x≥ b− s+

n
∑

i=1

ǫi|xi|
]

≥ 1− 1
(

t−1(s)
)2

+1
, ∀s≥ 0.

By Theorem 1, this is equivalent to

(a+ δ)⊤x≥ b− t(‖δ‖(Σ∗)−1)+
n
∑

i=1

ǫi|xi|, ∀δ ∈R
n. (34)

Therefore, it suffices to show that (22) and (34) are equivalent to establish the theorem. We prove

this by showing that if x violates one constraint, then it must violate the other.

Suppose x violates (34), i.e., for some δ
′ the following holds

(a+ δ
′)⊤x< b− t(‖δ′‖(Σ∗)−1)+

n
∑

i=1

ǫi|xi|.

Let δ be such that δi = δ′i− ǫisign(xi), then we have

(a+ δ)⊤x= (a+ δ
′)⊤x−

n
∑

i=1

ǫi|xi|< b− t(‖δ′‖(Σ∗)−1)≤ b− t(‖T (δ)‖(Σ∗)−1),

where the last inequality follows from the definition of T (·). Thus, x violates Constraint (22).

Conversely, suppose now that x violates Constraint (22), i.e., for some δ
′ the following holds

(a+ δ′)⊤x< b− t(‖T (δ′)‖(Σ∗)−1).

We have

(a+T (δ′))⊤x< b− t(‖T (δ′)‖(Σ∗)−1)+ (T (δ′)− δ
′)⊤x≤ b− t(‖T (δ′)‖(Σ∗)−1)+

n
∑

i=1

ǫi|xi|,

where the last inequality follows from the definition of T (·). Letting δ = T (δ′), x violates (34),

which completes the proof. Q.E.D.
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Prékopa. 1970. On probabilistic constrained programming. In Proceedings of the Princeton Symposium on

Mathematical Programming. 113–138.
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