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Distinguishing Infections on Different Graph Topologies
Chris Milling, Constantine Caramanis, Shie Mannor and Sanjay Shakkottai

Abstract

The history of infections and epidemics holds famous examples where understanding, containing and ultimately treating an
outbreak began with understanding its mode of spread. Influenza, HIV and most computer viruses, spread person to person, device
to device, through contact networks; Cholera, Cancer, and seasonal allergies, on the other hand, do not. In this paper we study
two fundamental questions of detection: first, given a snapshot view of a (perhaps vanishingly small) fraction of those infected,
under what conditions is an epidemic spreading via contact (e.g., Influenza), distinguishable from a “random illness” operating
independently of any contact network (e.g., seasonal allergies); second, if we do have an epidemic, under what conditions is
it possible to determine which network of interactions is the main cause of the spread – the causative network – without any
knowledge of the epidemic, other than the identity of a minuscule subsample of infected nodes?

The core, therefore, of this paper, is to obtain an understanding of the diagnostic power of network information. We derive
sufficient conditions networks must satisfy for these problems to be identifiable, and produce efficient, highly scalable algorithms
that solve these problems. We show that the identifiability condition we give is fairly mild, and in particular, is satisfied by two
common graph topologies: the grid, and the Erdös-Renyi graphs.

I. INTRODUCTION

People and devices routinely interact through multiple networks – contact networks – be they virtual, technological or
physical, allowing the rapid exchange of ideas, fashions, rumors, but also viruses and disease. Throughout this paper we
refer to anything that spreads over a contact network as an epidemic. Understanding if something is indeed an epidemic
best described through contact-network spreading, and secondly, understanding the causative network of that epidemic, is of
critical important in many domains. Economists, sociologists and marketing departments alike have long sought to understand
how ideas, memes, fads and fashions, spread through social networks. Meanwhile, epidemiology has understood the value of
knowing the causative network of disease epidemics, from Influenza to HIV. Indeed, at one point, HIV was known as the “4H
disease” where 4H referred to “Haitians, Homosexuals, Hemophiliacs, and Heroin users” [3], [4]. Understanding the causative
network has greatly contributed to controlling the worldwide spread of the virus.

While smartphone viruses have not yet supplanted computer viruses as the spreading technological threat of the hour, their
potential for broad destructive impact is clear. Just as different human viruses may have different dominant spreading networks
(again, compare Influenza and HIV), so may smartphone viruses spread over multiple networks, including bluetooth, SMS/MMS
messaging, or e-mail.

A first step towards containing epidemics, be they technological or physical, relies on properly understanding the phenomenon
as an epidemic in the first place, and then, accurately understanding the causative spread, before then adopting network-specific
strategies for containment, quarantining and treatment.

Many factors complicate the process of determining the causative network. First, possibly because of long latency/hybernation
periods, variation in reporting/detection, or simply lack of data, in some cases it may be difficult or impossible to collect accurate
longitudinal data. Equally importantly, the reporting set of those “infected” (be they people or devices) may be only a tiny
fraction of those in fact infected. Therefore in this paper, we consider the most dire information regime: we assume we have
data from only a single snapshot of time, where only a (perhaps vanishing) fraction of the infected population reports.

With these data, this paper focuses on determining the causative network for the spread of an epidemic (e.g. virus, sickness,
or opinion) from limited samples of the network state.

A. Setting and Results

We model people/devices/etc. as a set of nodes, V , of a graph. The nodes in V become infected by an epidemic that spreads
according to either graph G1 = (V,E1), or G2 = (V,E2), propagating along the edges of these graphs, according to an SI
model of infection [5]. Given a (potentially small) sub-sample of the infected nodes at a single snapshot in time, our objective
is to determine the network over which the epidemic is spreading. If one of the graphs, say G2, is a star graph, where each
node has a single edge to an external infection source, this models the problem of distinguishing an epidemic spreading on
G1, from a random illness spreading according to no network structure.
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This paper is about understanding when the two processes – spreading on G1 or G2 – are statistically distinguishable, and
moreover when this can be done by an efficient algorithm. Evidently, in certain regimes, no algorithm can distinguish between
the two processes. First, the graphs need to be sufficiently different. We quantify this precisely in Section II. Beyond this,
certainly, if (almost) everyone is infected, or if (almost) none of those infected report, then nothing can be done. Our results are
presented in terms of these two quantities: we are interested in understanding the maximum number of nodes (people/devices)
that can be infected, and simultaneously the minimum number of these that actually report they are infected, so that our
algorithms correctly distinguish the true spreading process, with high probability.

There are two regimes of graph topologies we consider: the setting where G2 is a star graph – we call this the ‘infection
vs. random sickness’ problem – and then the setting where both G1 and G2 exhibit nontrivial network structure – we call this
the ‘graph comparison’ problem. For the sake of the mathematical exposition, we find it more natural to present first the graph
comparison problem, and then the infection vs. random sickness problem.

We provide efficiently computable algorithms to answer the above questions, and then provide sufficient conditions on the
regimes where our algorithms are guaranteed to succeed, with high probability. Specifically, our main contributions are as
follows:
(i) Algorithm: We develop efficiently computable algorithms for both problems. For inferring the causative network in the

graph comparison problem, we develop what we call the Comparative Ball Algorithm. For the ‘infection vs. random
sickness’, we develop two algorithms: the Threshold Ball Algorithm and the Threshold Tree Algorithm. These algorithms
build on the intuition that infected nodes are clustered more strongly on the true causative network. If on one network,
the clustering is tighter, it is more likely that it is driving the infection. We quantify clustering based on the ball radius
that contains the infected nodes.

(ii) Guarantees for General Graphs: For the graph comparison problem, we identify two natural graph conditions that we
use to give very general performance guarantees for our Comparative Ball Algorithm. The first property is called the (a)
Speed condition; a graph satisfies this if the epidemic ball radius increases linearly in time. The second key property is
called the (b) Spread condition; a graph satisfies this if a randomly selected collection of nodes are sufficiently spread
apart, with respect to the natural metric induced by the graph. For any two graphs that satisfy both (a) and (b), we
derive upper bounds on the number of total infected nodes, and lower bounds on the number of reporting nodes, so that
our Comparative Ball Algorithm is guaranteed to correctly determine the causative network (as n → ∞ and with high
probability).

(iii) Grids and the Erdös-Renyi Random Graphs: For both d-dimensional grids, and the giant component of the Erdös-Renyi
random graph (with constant asymptotic average degree), and for both the graph comparison and infection vs. random
sickness problem, we derive bounds on the parameters associated with the speed and spread conditions, thus, providing
sufficient conditions on the regime where we can determine the causative network.

B. Related Work

The infection model we consider in this paper is the susceptible-infected (SI) model where nodes transition from susceptible
to infected according to a memoryless process [5]. Much of the work on this model has focused on the predictive or analytic
side, focused on characterizing the spread of the infection under various different settings. For example, [6] considers graphs
with multiple mixing distances (that is, local and global spreading), while [7] considers the setting where the infected nodes
are mobile. There are other approaches to modeling infection, and while interesting to extend the current ideas and analysis
there, we do not consider these in the present work.

Our work, in contrast, lies on the inference side, where given (partial) information about the realization of an epidemic, the
goal is to infer various properties or parameters of the spreading process. While quite different in terms motivation and goals,
a few recent works have also considered epidemic inference. In [8], the authors provide a Bayesian inference approach for
estimating the transmission rates of the infection. Alternatively, one can use MCMC methods to estimate the model parameters
[9], [10]. A similar problem is considered in [11], [12], where, given a set of infected nodes, one seeks to determine which
node is most likely to be the original source of the infection.

On the technical side, several of our results are related to first-passage percolation. In the first-passage percolation basic
formulation, there is a (lattice) graph of infinite size. For each edge, an independent random variable is generated that represents
the time taken to traverse that edge. Some node is denoted as the source, and the time taken to reach another node is the
minimum of the total time to traverse a path over all paths between the source and that destination. This is equivalent to an
infection traveling through the network as considered here. Work has been done to analyze various characterizing properties of
this percolation, such as the shape of the infection and the rate at which it spreads. In the sequel, we find particularly useful
percolation results on trees [13] and lattices [14].

C. Outline of the Paper

The paper is organized as follows. In Section II, we define precisely the infection model as well our two main problems:
determining the causative infection network between two graphs, and between a graph and a random sickness. Section III
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contains our analysis of the problem of distinguishing infections between two different graphs. We provide an efficient algorithm,
and then the success criteria of this algorithm for distinguishing between epidemics on general graphs. We show that the
sufficient conditions we provide are satisfied by a general class of graphs, that include two standard graph topologies, d-
dimensional grids and Erdös-Renyi graphs. Then, in Section IV, we turn to the problem of distinguishing an infection from a
random sickness. Recall that this is equivalent to taking one of the two graphs to be the star graph. Star graphs, however, do
not have non-trivial neighborhoods, and hence the algorithm and analysis from the previous part do not immediately carry over.
We develop two new algorithms for this setting, and provide success guarantees for each. We consider grid and Erdös-Renyi
graphs. Finally, Section V contains the simulations data for each of these problems and illustrates the empirical performance of
our algorithm on these graphs. Our results demonstrate that on synthetic data, empirical performance recovers the theoretical
results. We also test our algorithms on a real-world graph, and our simulations show that here too, our algorithms are quite
effective.

II. THE MODEL

We consider a collection of n nodes (vertices V ) which are members of two different networks (graphs). These graphs are
denoted by G1 = (V,E1) and G2 = (V,E2); they share the same vertex set but have different edge sets. For example, G1

could represent the n vertices arranged on a d−dimensional grid, and G2 could be an Erdös-Renyi graph. Note that G2 does
not need to have qualitatively different structure from G1: Indeed G2 could also be a d−dimensional grid, but with a different
node-to-edge mapping.

A. Objective

We assume that the two graph topologies, G1 and G2 are known. At some point in time, an epidemic begins at a random
node and spreads according to the edges of one of the two graphs, following the infection model described below in Section
II-B. At some snapshot in time, a small random subset of the infected nodes report their infection. From the knowledge of the
graph topologies and the identity of the reporting nodes (but without knowledge of the other infected nodes) our objective is
to design an algorithm that (asymptotically, as the size of the problem scales) correctly determines which graph the epidemic
is spreading on.

We first study the setting where both G1 and G2 have non-trivial neighborhoods, and the goal is to detect which graph is
responsible for spreading the epidemic; we call this the Graph Comparison Problem. We then consider the setting where G2

is the star graph, hence modeling the problem of distinguishing an epidemic from a random illness.

B. Infection Model

We assume that an epidemic propagating on one of the two graphs, G1 or G2. The objective is to determine on which
network it is spreading. We reiterate that this ‘epidemic’ could model many situations, including the spread of a cellphone
virus, physical sickness of humans, and opinions or influence about products or ideas.

Given that the epidemic is on graph Gi, the spread occurs as follows (the standard SI dynamics [5]). A node is randomly
selected to be the epidemic seed, and thus is the first “infected” node. At random times, the illness spreads from the sick nodes
to some subset of the neighbors of the sick nodes, according to an exponential process. Specifically, associate an independent
mean 1 exponential random variable with each edge incident to an infected and an uninfected (a susceptible) node. The
realization of this random variable represents the transit time of the infection across that specific edge – a random variable.
Thus an infected node proceeds to infect its neighbors, with each non-infected neighbor becoming infected after the random
transit time associated with the edge between the infected node and this neighbor. This process proceeds until the entire graph
Gi is infected.

If the graph is a star graph, then every node is incident to a single external node. Consequently, nodes become sick at the
same rate, and independently of every other node. This process, then, is stochastically equivalent to a random illness, where
by a given time t, each node has become sick independently with some fixed probability q̂.

In either case, the infection continues until some (unknown) time t. At this time, a sub-sample of the infected nodes report
their infection state independently, each with some probability q < 1. We let S denote the set of infected nodes, and Srep ⊆ S
the set of reporting infected nodes.1

C. Graph Structure

For the statistical problem of distinguishing the causative network to be well-posed, the contact networks encoded by graphs
G1 and G2 must be sufficiently different. Note that this does not imply that the topology of the graphs must be different (indeed,
it could be identical). Rather, the neighborhoods of each graph must be distinct, i.e., the nodes that are near an infected node
with respect to one graph, must be different from the nodes near the same infected node, with respect to the other graph. We

1Note that we suppress the dependence of both S and Srep on n, unless required for clarity.
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note that if this is not the case, then both graphs encode approximately the same causative network, and hence solving the
comparative graph problem is not that important.

In this paper, we require that corresponding nodes on the two graphs have independent neighborhoods.2 It is easiest to
explain this condition by means of a random construction, which is also the one we assume for the results in the sequel. Let
G1 and G2 be graphs of the same size n, whose nodes are unlabeled. Then randomly label the nodes of graph G1 from ‘1’
to ‘n’ uniformly, and independently and uniformly at random label the nodes of graph G2. Nodes of the same label represent
the same entity (person, device), i.e., if a node on one graph is infected, the corresponding node on the other graph is also
infected.

This independent neighborhood condition approximately holds in typical settings. Consider for instance the several hundred
“nodes” (people, or devices) that come within blue-tooth range during a walk through the mall. This list likely has extremely
small overlap (possibly only the few friends accompanying us on the mall excursion) with the set of nodes that send us e-mail
or SMS on a regular basis.

III. GRAPH COMPARISON PROBLEM

The graph comparison problem consists of distinguishing the causative graph for an infection spreading on one of two
structured graphs G1 and G2. We make precise what we mean by structured graphs below, but intuitively, both graphs
have non-trivial neighborhood structure, in contrast to the star graph. This is the key technical feature that differentiates the
comparative graph problem from the infection vs. random sickness problem, which we take up in Section IV. As the algorithm
reveals, the key in the comparative graph problem is that, under appropriate conditions, the infection, or epidemic, is clustered
on either G1 or G2. In the case where G2 is the star graph, there is no notion of clustering there, so our algorithms must
detect clustering vs. absence of clustering.

We turn to the details of the comparative graph problem. The first order of business is understanding precisely what conditions
we require the topology of graphs G1 and G2 to satisfy, making precise the notion of “non-trivial neighborhood structure”
that, where, unlike the star graph, an epidemic exhibits some statistically detectable clustering. There are two key properties
required: first, the infection must spread at a bounded speed; second, a random collection of nodes on the graph must, with
high probability, not exhibit a strong clustering. Of course, the star graph fails with respect to the minimum spread of random
nodes condition. As another example that fails the bounded speed condition, consider a tree whose nodes have degree dk+1 at
level k.

We now state these conditions precisely, and in addition, we show, many graphs satisfy these conditions, including familiar
topologies like the d-dimensional grid and the Erdös-Renyi graphs. It is also easy to see that any graph with bounded degree
also satisfies these two conditions.

We need first a simple definition:
Definition 1: Given a graph G = (V,E) and a subset of its nodes, S ⊆ V , let RadiusBall(G,S) denote the radius of the

smallest ball that contains S. This can be computed in time at most O(card(V )2).
Let G = {G(n)} denote a family of graphs, where G(n) denotes the subset of the graphs of G that have n nodes. For each n,

there is a (possibly trivial) probability space
(
G(n), σ(G(n)), P (n)

)
. Concrete examples include the set of d-dimensional grid

graphs, Erdös-Renyi graphs with bounded expected degree, d-regular trees, etc.
Definition 2: A family G satisfies the speed and spread conditions, if there exist constants sG , bG and βG , such that for any

sequence {G(n)} picked randomly from the product probability space
∏
n G(n), the following hold with probability approaching

1 as n increases, where the probability is over the random subset of nodes in the definitions below, and, in the case of random
families, G, such as Erdös-Renyi graphs, over the selection of G(n) as well:

Speed Condition: For infections starting at a randomly selected nodes and infection times t(n) → ∞, the set S(n) of
nodes infected at time t(n) satisfies RadiusBall(G(n), S(n)) < sGt

(n).
Spread Condition: First, diam(G(n) = Ω(log n). Second, a random set S(n) of nodes of G(n), with card(S(n)) >
βG log n, satisfies RadiusBall(G(n), S(n)) > bGdiam(G(n)).

These two conditions essentially encode the properties required so that an infection spreading on a graph G
(n)
1 (chosen

from family G1) exhibits clustering, and, conversely, if it is spreading on another graph G
(n)
2 (chosen from family G2) with

independent neighborhoods (as described above) then there is no clustering with respect to G(n)
1 .

Note that to ease notation, whenever the context is clear, we drop the superscript (n) that denotes the number of nodes.

A. The Comparative Ball Algorithm

We provide an algorithm for the Comparative Graph Problem, called the Comparative Ball Agorithm, and then give a theorem
with sufficient conditions guaranteeing its success. The algorithm is natural, given the discussion above. We find the smallest
ball on that graph that contains all the reporting infected nodes. We take the ratio of the radius of this ball to that of the

2We note that we can envision other conditions based on clustering of epidemics on the two graphs which also serves as alternate sufficient conditions. For
simplicity, we restrict ourselves to the ‘random node index’ condition in this paper.
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graph’s diameter. These ratios – called the score of each graph – serve as a topology independent measure of clustering on
each graph. The Comparative Ball Algorithm returns the graph with the smallest normalized clustering ratio. This is formally
described below.

To specify our algorithm precisely, we require the following definitions. Given a graph G, a node v, and a radius r, we
denote by Ballv,r(G) the collection of all nodes on the graph G that are at most a distance r from node v (graph distance
measured by hop-count). As we have done above, we denote the diameter of the graph by diam(G). Given any collection of
nodes S, we denote by Ball(G,S) the smallest-radius ball that contains all the nodes in S, and we use RadiusBall(G,S) as
in the definition above, to denote its corresponding radius.

Algorithm 1 Comparative Ball Algorithm
Input: Two graphs, G1 and G2; Set of reporting infected nodes Srep;
Output: G1 or G2

a1 ← RadiusBall(G1, Srep)
b1 ← diam(G1)
x1 ← a1/b1
a2 ← RadiusBall(G2, Srep)
b2 ← diam(G2)
x2 ← a2/b2
if x1 ≤ x2 then

return G1

else
return G2

end if

B. Main Result: General Graphs

We prove that if G1 and G2 satisfy the speed and spread conditions given above (i.e., they have finite speed and spread
constants), then the Comparative Ball Algorithm can distinguish infections on any two such graphs (with probability 1, as
n→∞). The speed and spread conditions turn out to be fairly mild. In Section III-C we show that, among many others, two
commonly encountered, standard types of graphs satisfy these properties: d−dimensional grids and Erdös-Renyi graphs. The
proof that Erdös-Renyi graphs satisfy the speed and spread conditions immediately implies that bounded-degree graphs also
satisfy speed and spread conditions.

Our results are probabilistic, guaranteeing correct detection with probability approaching 1, as the number of nodes n in
the graphs (recall the vertex sets of the two graphs are the same – it is on these nodes that the infection is spreading) scales.
Therefore, our results are properly stated on a pair of families of graphs, {(G(n)

1 , G
(n)
2 )}, where each G(n)

1 comes from some
family G1, and similarly for G2. For notational simplicity, we refer simply to G1 and G2 to denote both specific graphs in this
sequence, and the entire sequence as well. Thus, by diam(G1) we mean the diameter of the specific graph G(n)

1 , hence this
is a value that depends on n, where as the quantities sG1 , bG1 and βG1 depend on the family, and are independent of n. The
infection time is t(n), and we require t(n) →∞. Like for the graphs, we drop the superscript for clarity and use t to denote
the infection time.

Theorem 3.1: Consider families of graphs G1 and G2 satisfying the speed and spread conditions above, and let {(G(n)
1 , G

(n)
2 )}

denote a sequence of graphs drawn from G1 and G2. Consider infection times t(n) such that the number of reporting infected
nodes scales at least as max(βG1 , βG2) log n. Then if t < bG2diam(G1)/sG1 , the Comparative Ball Algorithm correctly identifies
an infection on G1 with probability approaching 1. In addition, if t < bG1diam(G2)/sG2 , then the Comparative Ball Algorithm
correctly identifies an infection on G2 with probability approaching 1.

Proof: By symmetry, it is sufficient to prove that an infection is detected on G1. For every n, let Srep (again we suppress
dependence on n when it is clear from the context) denote the set of reporting sick nodes, where card(Srep) > βG2 log n. Note
that by the independence assumption, this set of nodes is randomly distributed over G2. By the speed and spread conditions,
with probability approaching 1 as n scales, RadiusBall(G1, Srep) < sG1t and RadiusBall(G2, S) > bG2diam(G2). Then the
score for the first graph satisfies x1 < sG1t/diam(G1) < bG2 by hypothesis. Similarly, x2 > bG2diam(G2)/diam(G2) = bG2 .
Therefore, the algorithm correctly identifies an infection.

C. Speed and Spread Conditions: Grids and the Erdös-Renyi Graph

In this section we show that the spread and speed conditions are fairly mild, by demonstrating that they hold on two common
types of graphs: the d-dimensional grid, and the Erdös-Renyi graph. The d-dimensional grid graph is an example of a contact
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graph where the infection spreads between nodes in spatial proximity (e.g., the Bluetooth virus, human sickness). The second
topology is an Erdös-Renyi graph, a random graph forming a network with low diameter. This topology models an infection
spreading over long distance networks, such as the Internet or over social networks. We show that both of these networks satisfy
the spread and speed conditions, and hence that the Comparative Ball Algorithm successfully determines the causative network
on these graphs. As mentioned above, our proofs for the Erdös-Renyi graphs immediately carry over to all bounded-degree
graphs.

1) d−Dimensional Grids: Let the graph G = Grid(n, d) be a grid network with n nodes and dimension d, so the side length
is n1/d. We avoid edge effects by wrapping around the grid (a torus). This avoids dealing with non-essential complexities
resulting from the choice of the initial source of the infection.

First, we establish limits on the speed of the infection after time t has passed. Next, we show lower bounds on the spread,
i.e., the ball size needed to cover a random selection of nodes of sufficient size. Together, these show that grid graphs satisfy
the speed and spread conditions.

Since we model the time it takes the infection to traverse an edge as an independent exponentially distributed random
variable, the time a node is infected is the minimum sum of these random variables over all paths between the infection origin
and that node. This simply phrases the infection process in terms of first-passage percolation on this graph. This allows us to
use a result characterizing the ‘shape’ of an infection on this graph (see [14]). Let I(t) be the set of infected nodes at time t.
Identifying the nodes of the graph with points on the integer lattice embedded in Rd with the infection starting at the origin,
let us put a small `∞-ball around each infected node. This allows us to simply state inner and outer bounds for the shape of
the infection. To this end, define this expanded set as B(t) = I(t) + [−1/2, 1/2]d.

Lemma 1 ([14]): There exists a set B0 and constants C1 to C5 such that for x ≤
√
t,

P{B(t)/t ⊂ (1 + x/
√
t)B0} ≥ 1− C1t

2de−C2x

and

P{(1− C3t
−1/(2d+4)(log t)1/(d+2))B0 ⊂ B(t)/t}

≥ 1− C4t
d exp (−C5t

(d+1)/(2d+4)(log t)1/(d+2)).

That is, the shape of the infected set B(t) can be well-approximated by the region tB0.
Moreover, one can show that this set B0 is regular in that it contains an `1-ball and is contained in an `∞ ball: {x : ‖x‖1 ≤

µ} ⊂ B0 ⊂ [−µ, µ]d, where µ
4
= supx{(x, 0, ..., 0) ∈ B0}, effectively the rate the infection spreads along an axis [14]. Note

that µ does not depend on the realization of the process, only the statistics of the spread. We use this result to establish the
outer bound of the infection.

Proposition 1: Let G(n) = Grid(n, d) and let t(n) denote any sequence of increasing times, t(n) → ∞. As defined above,
S

(n)
rep , denotes the (random) subset of nodes infected by the epidemic, that report their infected status. Then there exists a

constant µ such that
RadiusBall(G(n), S(n)

rep ) < 1.1dµt(n),

with probability converging to 1 as n→∞.
Proof: We drop the indexing w.r.t. n, since the context is clear. Let µ

4
= supx{(x, 0, ..., 0) ∈ B0} and m = 1.1dµt.

Then we must show RadiusBall(G,Srep) < m with probability approaching 1. Note that if the infection can be limited
to the subgrid [−m/d,m/d]d (with appropriate translations), then this condition is satisfied. Define E as the event that
RadiusBall(G,Srep) ≥ m. Therefore, using Lemma 1,

P (E) < 1− P{B(t) ⊂ [−m/d,m/d]d}

< C1t
2de−C2t

−1/2(m/(dµ)−t)

= C1t
2de−0.1C2t

1/2

→ 0.

Hence, we see that RadiusBall(G,Srep) satisfies the required bound with high probability.
The following theorem provides a lower bound on the radius of the ball needed to cover a collection of random nodes

uniformly selected from the grid. We require that the number of random nodes grows at least as log n.
Proposition 2: Let G(n) = Grid(n, d). Let S(n) be a collection of nodes chosen uniformly at random from G(n), such that

card(S(n)) > log n for sufficiently high n. Then

RadiusBall(G(n), S(n)) > n1/d/4,

with probability converging to 1 as n→∞.
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Proof: Again we drop the n-index wherever context makes it clear. By assumption, we have a set S of random nodes
with card(S) > log n. Define X = card(S). We show the probability all nodes in S are within some ball of radius n1/d/4
decays to 0 with n. Then consider one of the n such balls. There are less than l = (n1/d/2)d nodes in that region (the number
of nodes in a ‘box’ of side n1/d/2). Within this ball, there are at most

(
l
X

)
arrangements of the sick nodes out of

(
n
X

)
total

possible arrangements. Therefore, the probability all the sick nodes are within the region is no more than(
l

X

)/(n
X

)
=
l!(n−X)!

(l −X)!n!

≤ (l/n)X .

Using a union bound, we find that the probability there is a ball of that size containing all nodes in S is at most n(l/n)X .
Then

n(l/n)X < n

(
1

2d

)logn

= n1−d log 2

→ 0.

Therefore, RadiusBall(G,S) > n1/d/4 with probability converging to 1.
Since the diameter of a grid is (nearly) d/2n1/d, we see that a grid satisfies both the speed condition (Proposition 1) and

the spread condition (Proposition 2), and hence the Comparative Ball Algorithm performs well on grid graphs.
2) Erdös-Renyi Graphs and Bounded Degree Graphs: Now we consider Erdös-Renyi graphs, representing infections that

spread over low diameter networks (the diameter grows logarithmically with network size). An Erdös-Renyi graph is a random
graph with n nodes, where there is an edge between any pair of nodes, independently with probability p. We study the Erdös-
Renyi graph in the regime where p = c/n, for some positive constant c > 1. This setting leads to a disconnected graph;
however, there exists a giant connected component with Θ(n) nodes with high probability in the large n regime. In this paper,
we restrict our attention to epidemics on this giant component. Thus we limit both the infection and the random set of reporting
nodes (due to the labeling when the infection occurs on the alternative graph) to occur exclusively on the giant connected
component. If the infection on the other graph contains too many nodes for the giant component, we simply ignore the excess,
but this point is already outside the regime of interest.

We establish two results in this section. We first prove an upper bound on the ball size for an infection up to a limited time,
and next, we demonstrate a lower bound on the ball size for a random collection of nodes.

Note that the two results given in this section also hold for bounded-degree graphs. The proofs immediately carry over to
this class. For simplicity, and because the randomness of the Erdös-Renyi graphs presents some further complications, we state
everything in terms of the Erdös-Renyi graphs.

Proposition 3: Let G(n) denote the connected component of a realization of a G(n, p) graph, and let the sequence t(n)

denote increasing time instances, scaling (without bound) with n. As above, let S(n)
rep denote the random subset of nodes

reached by the epidemic, that also report. Then there exists a constant C6 such that

RadiusBall(G(n), Srep) < C6t
(n),

with probability converging to 1 as n→∞.
Proof: Since the dependence on n is clear, we drop the index of n. This theorem essentially states that there is a maximum

speed at which the infection can travel on an Erdös-Renyi graph. The statement follows from a similar maximum speed result
for trees [15]. Therefore, it remains to show how this result can be applied to an Erdös-Renyi graph. To do this, we upper
bound an infection on an Erdös-Renyi graph by a tree that represents the routes on which an infection can travel. Since an
Erdös-Renyi graph is locally tree-like [16], we expect this approximation to be fairly accurate for low times, though this is
not necessary for the proof.

Consider the tree G̃ formed as follows. The root of the tree is the initial infected node. The next level contains copies
of all nodes adjacent to the original node in the Erdös-Renyi graph. Each of these have descendants that are copies of their
neighbors, and so on. Note all nodes may (and likely do) have multiple copies.

We start an infection at the root of G̃ and let it spread for time t. Consider the induced set of infected nodes, S̃rep, as the
set of nodes in G which have copies that are infected on G̃. Since the distance of a copy from the root of G̃ is no less than
the distance from the original node to the original infection source, we see that the distance the infection has traveled on G̃
is no less than the distance from the infection source to the farthest node in S̃rep (on G). Note that the S̃rep stochastically
dominates the true infected set S. That is, for all sets T , P (T ⊂ S̃rep) ≥ P (T ⊂ Srep).

This stochastic dominance result follows from the fact that the transition rates are universally equal or higher for the induced
set. Hence, RadiusBall(G,Srep) is also stochastically dominated by RadiusBall(G, S̃rep), and the latter is upper bounded
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by the depth of the infection in the tree, which using the speed result, is bounded by C6t for some speed C6. That is, with
probability tending to 1,

RadiusBall(G,Srep) < C6t.

Next, we use the neighborhood sizes on this graph to provide a lower bound to the ball size needed to cover a random
infection.

Proposition 4: Let G(n) = G(n, p), and let S(n) denote a collection nodes sampled uniformly at random from G(n), such
that card(S(n)) scales at least with log n. Then

RadiusBall(G(n), S(n)) >
log n

3 log c
,

with probability converging to 1 as n→∞.
Proof: We suppress the index n for clarity. We proceed by bounding the probability that all the random nodes are within

a ball of radius m. This is possible only if all nodes in S are within distance 2m from any given node in S. Now, the number
of nodes within a distance 2m from a given node is no more than 16m3c2m log n with probability 1− o(n−1) [17]. Then the
probability of all nodes fitting inside one such ball is at most(

16m3c2m log n

n

)card(S)−1

<

(
16m3c2m log n

n

)logn−1

.

Then this decays to 0 at least as fast as n−1 if

16m3c2m log n

n
< n−1/ logn.

Finally we set m = logn
3 log c as desired. Hence c2m = n2/3. Using this substitution, the above term reduces to

16m3c2m log n

n
=

16m3n2/3 log n

n

=
16(log n)4

27(log c)3n1/3

< (log n)4n−1/3 < n−1/ logn (1)

for sufficiently large n. Therefore, RadiusBall(G,S) > logn
3 log c with probability converging to 1.

The diameter of the giant component of an Erdös-Renyi graph is Θ(log n/ log c) [16]. Thus, Propositions 3 and 4 establish
that an Erdös-Renyi graph satisfies both the speed and spread conditions respectively.

IV. INFECTION VS. RANDOM SICKNESS

We now turn to the setting where G2 is the star graph. This is the problem of distinguishing an epidemic spreading on a
structured graph, from a random illness affecting any given node independently of the infection status of any of its neighbors.
As discussed above, and as with the graph comparison problem, distinguishing these two modes of infection becomes difficult
when many nodes are infected, and when only a small fraction of the infected nodes report their infection.

For this problem, we label the structured graph G. In an infection, the sick nodes will be clustered on G. On the other hand,
in the case of random illness, the infection is not guaranteed to exhibit clustering on any graph. Moreover, the star graph,
of course, fails to satisfy the spread conditions. Therefore, the graph comparison algorithm and its analysis cannot suffice.
Instead, we must find a test for the absence of clustering. It is most natural to use a simple threshold test for the degree of
clustering. This threshold, however, itself depends on the parameters of the problem, in particular, the rate at which infected
nodes report their condition (the parameter q), and the time elapsed since the epidemic began propagating, or, equivalently, the
expected infection size. We consider first the setting where these parameters are explicitly known, and then turn to the setting
where time (and hence, the expected infection size) is not known. In this case, we demonstrate that this can be estimated with
sufficient accuracy, based on the reporting nodes.

A. Threshold Algorithms

We now present two algorithms for this inference problem. As with the Comparative Ball Algorithm, these are computationally
simple to run, as we demonstrate in Section V, where we run them on large-size synthetic and real-world graphs.

1) The Threshold Ball Algorithm: The Threshold Ball Algorithm is quite similar to the Comparative Ball Algorithm. Our
goal is to return either INFECTION or RANDOM if the sickness is from an infection on G or a random sickness respectively.
It uses a threshold parameter, that represents the degree of clustering, where here we use the radius as a proxy for this level of
clustering. This threshold may be calculated from the time t if known, or estimated from the reporting sick nodes otherwise.
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Algorithm 2 Threshold Ball Algorithm
Input: Graph G; Set of reporting sick nodes Srep; Threshold m
Output: INFECTION or RANDOM

k ← RadiusBall(G,Srep)
if k ≤ m then

return INFECTION
else

return RANDOM
end if

2) The Threshold Tree Algorithm: The Threshold Tree Algorithm is similar, but rather than use ball-radius as a proxy for
degree of clustering, it uses the weight of a minimum-weight spanning tree connecting all reporting infected nodes. We denote
the weight of this tree on graph G for set S as SizeTree(G, S). This algorithm also requires a threshold parameter. As before,
the appropriate threshold may be calculated using the time t, or estimated from the set of reporting sick nodes.

Algorithm 3 Threshold Tree Algorithm
Input: Graph G; Set of reporting sick nodes Srep; Threshold m
Output: INFECTION or RANDOM

k ← SizeTree(G,Srep)
if k ≤ m then

return INFECTION
else

return RANDOM
end if

B. Summary of Results

We analyze this inference problem and in particular the performance of our two algorithms, the Threshold Ball Algorithm
and the Threshold Tree Algorithm, on three types of graphs. First, we consider an infection on a d-dimensional grid. In this
case, both our algorithms are able to (asymptotically) eliminate Type I and Type II error, for up to a constant fraction of sick
nodes, even when only a logarithmic fraction report sick. Orderwise, it is clear that this is the best any algorithm (regardless
of computational complexity) can hope to achieve. Our empirical results verify this performance, and also show that the Ball
Algorithm outperforms the Tree Algorithm on the grid.

Next we consider tree graphs. Here we show that the Tree Algorithm can correctly discriminate between infections and
random sickness for larger numbers of reporting sick nodes than the Ball Algorithm is able to handle. Finally, we analyze
Erdös-Renyi graphs under two different connectivity regimes: a low-connectivity with edge probability close to the regime
when the giant component emerges; and a high connectivity regime the produces densely connected graphs. Again, we show
that each algorithm can identify an infection with probabilities of error that decay to 0 as the network size goes to infinity,
for appropriate ranges of parameters. Not surprisingly, the more densely connected, the more difficult it becomes to obtain
a good measure of ‘clustering.’ Consequently, in these latter regimes, we find that one needs to intercept the sickness much
earlier, i.e., with many fewer reporting sick nodes, in order to hope to accurately discriminate between the two potential
sickness mechanisms. In the Erdös-Renyi setting, we are unable to find direct analytic results to compare our two algorithms.
However, in Section V we evaluate them empirically and find that the Ball Algorithm tends to perform better, despite its
relative algorithmic simplicity.

C. Multidimensional Grids

Let G(n) be a n-node d-dimensional grid network, with side length n1/d. As before, to avoid edge effects, we let the opposite
edges of the grid connect, so that the graph forms a torus, thereby eliminating any dependence of our results on the initial
source of an infection. In this section, we show that both the Threshold Ball Algorithm and the Threshold Tree Algorithm
can successfully distinguish an epidemic from a random illness, even when many nodes are infected, yet very few report the
infection.

We consider first the Threshold Ball Algorithm. The key result here is the Shape Theorem given in Lemma 1, which, recall,
essentially says that with high probability, the shape of the set of infected nodes closely resembles a ball. The key quantity,



10

then, is the radius of this ball, i.e., the threshold the algorithm chooses in order to decide if the underlying cause of the illness
is a spreading epidemic, or a random illness.

Like before, we denote the set of reporting nodes Srep(n). We first assume that in addition to the reporting likelihood,
q, we know the time t(n) that has elapsed since the first infection (or, equivalently, the expected size of the infection). The
threshold the algorithm uses is then a simple (linear) function of t(n). We then give an adaptive algorithm, that estimates t(n)

and hence the optimal threshold to use, from the number of infected nodes reporting, and the reporting likelihood. We omit
the superscript n when it is clear from context.

The next result says that as long as the number of reporting sick nodes is at least log n, then even if a constant fraction of
nodes are infected, the Threshold Ball Algorithm can successfully distinguish the cause of the illness, provided that the time
t is known. We note that this requirement on the number of reporting sick nodes is essentially tight, i.e., the result cannot be
improved orderwise. We also note that this requirement on the number of reporting nodes, along with the time t, implicitly
constrains the underlying parameters of the problem setup, namely q. We also prove the algorithm succeeds under similar (but
slightly more restrictive) conditions when t is not known. We use µ to denote the expected rate that an infection travels along
an axis on the grid. As remarked above, this rate µ is only a function of the dimension of the graph, since we assume the
spreading rate to be normalized. We have the following.

Theorem 4.1: Consider the Threshold Ball Algorithm (Algorithm 2). Suppose that the expected number of reporting nodes
scales at least as log n.
(a) Suppose t is known. Set the threshold m = 1.1dµt. Then if the expected number of infected nodes is less than n/(4d)d,

P (error)→ 0.

(b) Next, suppose time t is unknown. Let Xrep be the number of nodes reporting an infection, card(Srep). Use threshold
m = 1.1d(Xrep log log n/q)1/d. Then provided that the expected number of infected nodes is less than n/((4d)d log log n),

P (error)→ 0.

In other words, an infection can be identified in both cases with probability approaching 1 as n tends to infinity. Note that
the guarantee is identical, up to the log log n factor in the denominator; this is the price we pay for not explicitly knowing the
initial time of the infection.

Proof of Theorem 4.1(a):
This proof follows along similar lines as those in Section IV-C. First consider the Type II error probability, the probability

a spreading infection is labeled a random sickness. This follows from the intuitive fact that an epidemic cannot spread at a
rate that is a constant factor faster than µ, its expected rate of spread. Indeed, from Proposition 1,

RadiusBall(G,Srep) < 1.1dµt,

with probability tending to 1 as n→∞. This is equivalent to the Type II error probability tending to 0.
Now consider the Type I error probability, namely that a random sickness is mistaken for an infection. From Proposition

2, since the number of reporting sick nodes, Srep, satisfy Srep > log n, the smallest ball that contains these random nodes
satisfies, with high probability,

RadiusBall(G,Srep) > n1/d/4.

Moreover, from the shape theorem of Lemma 1, we know that if the reporting sick nodes were in fact due to an epidemic,
then nearly all the nodes within the smallest ball containing the reporting sick nodes, would in fact be sick. More precisely,
Lemma 1 says that given any radius a constant factor less than n1/d/4, with high probability, all nodes inside that ball are
infected. Thus, all nodes in a ball of radius 0.9n1/d/4 would be infected, if the true infection mechanism were an epidemic.
But this means that the total number of nodes actually infected is at least the number of nodes in this ball. By assumption, the
expected number of infected nodes does not exceed n(1/4d)d. Comparing these, we reach a contradiction. Hence, the Type I
error probability also tends to 0.

We now use the previous result to prove that the adaptive threshold, where we use the number of reporting nodes to estimate
t, also works. First we state a simple lemma to characterize the number of sick nodes.

Lemma 2: If at least X nodes are sick, then the number of reporting nodes is at least (1− δ)qX with probability at least
1− exp(−(1− δ)2qX/2).

Proof: This is a well known Chernoff bound.
Theorem 4.1(b) follows from this in a simple manner.

Proof of Theorem 4.1(b):
Let Xrep be the number of reporting sick nodes, and let X̄ = Xrep/q (that is, X̄ is basically the expected number of sick

nodes based on the number reporting). From the previous lemma, we have

P (X̄ log log n < card(S))→ 0.
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Let µ be the asymptotic rate at which an infection travels, as before. Let ε > 0. From the proof of Theorem 4.1(a), at time t,
we know for δ > 0

P (card(S) < 2(1− ε)(µt)d)→ 0.

Hence t < (X̄ log logn)1/d

µ(2(1−ε))1/d with high probability. Naturally, increasing t only increases the infection size, so it is only necessary

to consider the maximum likely t. In particular, if the threshold m = µtmax = µ(X̄ log logn)1/d

µ(2(1−ε))1/d , then from Theorem 4.1(a), the
adaptive thresholding algorithm has Type I error probability approaching 0. In addition, if X̄ is ω(log n), the Type II error
probability decays to 0 as well, from the same theorem.

D. Trees

We consider the problem on tree graphs. Unlike graphs (and more generally, geometric graphs), trees have exponential
spreading rates, and hence manifest fundamentally different behavior. Indeed, while simple, tree graphs convey the key
conceptual point of this section: the difficulty of distinguishing an epidemic from a random sickness on graphs where the
infection spreads quickly. In addition, while the results do not immediately carry over, the behavior on a tree provides an
intuition for the behavior of an infection on an Erdös-Renyi graph, which we cover in the next section.

Thus, let G(n) be a balanced tree with n nodes, constant branching ratio c ≥ 2, and a single root node. In the case of an
infection, instead of choosing a node at random to be the original source of the infection, we always choose the root of the
tree. This is the most interesting case, since otherwise a constant fraction of the nodes are very far from the infection source
and bottlenecked by the root node. Also, this precisely models the scenario for locally tree-like graphs, such as Erdös-Renyi
graphs. We again omit the indexing on n when it is clear by context.

First we examine the performance of the Threshold Ball Algorithm on this graph. Again recall the meaning of t: it is the
time at which the sicknesses are reported, and also a proxy for the expected number of infected nodes.

Theorem 4.2: Suppose the Threshold Ball Algorithm (Algorithm 2) is used. Additionally, suppose t is sufficiently large that
the expected number of reporting nodes is at least log n.
(a) In the case t is known, there exist constants b, β such that if the expected number of infected nodes is less than nβ , then

the tree algorithm with threshold m = 1.1bt succeeds:

P (error)→ 0.

(b) On the other hand, suppose t is not known. Define Xrep as card(Srep). Then there exists constants b2 and β, with the
threshold set m = 1.1b2 log(Xrep(log log n)2/q), where if the expected number of infected nodes is less than nβ ,

P (error)→ 0.

The constant β is identical is both parts (a) and (b).
Proof of Theorem 4.2(a): To prove this theorem, we prove the following more general statement:

For some constant β < 1, if qE[card(S)] = ω(1) and E[card(S)] < nβ , then the Type I error probability tends to 0. Next,
there exists a constant b such that if b0 > b and the threshold m > b0t for all n, then the Type II error probability converges
to 0 asymptotically, as the tree size scales.

The Type II error bound follows from results in first passage percolation [15]. In particular, one can compute the fastest-
sustainable transit rate. This quantity is basically the time from the root to the leaves, normalized for depth, as the size of the
tree scales. Formally (again, see [15] for details), let us consider a limiting process of trees whose size grows to infinity, with
Γn denoting the balanced tree on n nodes, and δ(Γn) denoting the set of paths from the root to the leaves, and for a node
v ∈ p for some path p ∈ δ(Γn), let Tv denote the time it takes the infection to reach node v. Then the fastest-sustainable
transit rate is defined as:

lim
n

inf
p∈δ(Γn)

lim sup
v∈p

Tv
depth(v)

.

Basic results [15] show that this quantity exists and is finite, and thus shows that the rate at which an infection travels, defined
as the maximum distance of the infection from the root over time, converges to a constant b that depends on the branching
ratio. The probability that an infection travels at a faster rate converges to 0 in the size of the tree. This establishes the Type
II result.

The Type I error result follows simply as well. Given the branching ratio, c, there are cm+1−1
c−1 nodes within a distance m

from the root. Again letting Srep denote the number of reporting sick nodes, the probability of a Type I error is controlled
by ( c

m

n )Srep – the probability that the randomly sick nodes are closer than the threshold m to the root. Then if cm is o(n), it
is sufficient that the probability that Srep = 0 goes to 0. This occurs if the expected number of reporting sick nodes is ω(1).
That is, we need qE[card(S)] = qe(c−1)t = ω(1), calculating E[card(S)] with a simple differential equation. Alternatively, if
cm = αn for some constant α < 1, then we require Srep to increase with n with probability 1. The same condition as before
is sufficient for this to be true. This completes the Type I result.
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Using both these results, there is a choice of m such that both error types become rare as long as cb0t < αn, so ct < (αn)1/b0 .
The theorem follows using a particular threshold.

Proof of Theorem 4.2(b): First, note that E[card(S)] scales as e(c−1)t. In fact, for any fixed ε > 0, card(S) > e(c−1)t/(1+ε)

with probability approaching 1 (for example, see [18]). Now we can proceed as in the proof of Theorem 4.1(b).
As before, let Xrep be the number of reporting sick nodes, and X̄ = Xrep/q. Then we conclude tmax = (1 + ε)/(c −

1) log(X̄(log log n)2). Hence, by setting b2 = (1+ ε)b/(c−1), we see the Type II error probability converges to 0 by Theorem
4.2(a). Using the same theorem, we see the Type I error also goes to 0.

Thus, the Threshold Ball Algorithm succeeds until the farthest infected node reaches the edge of the graph. At this point,
the ball radius can increase no further, thus there is no hope of distinguishing an infection from a random sickness. Since
this farthest point travels at a faster rate than the bulk of the infection, the Ball Algorithm can only work up to some time
logc n/b. The Threshold Tree Algorithm, however, is better suited for this setting. We consider this next, and show that the
Tree Algorithm can still correctly identify an infection with high probability nearly to the point where Θ(n) nodes are sick.
This includes infection times close to logc n, the time it takes for every node to be infected. From this, we see that the Tree
Algorithm works for a wider range of times compared to the Ball Algorithm. This is also demonstrated by simulations in
Section V.

We note that the threshold in the results below on the Tree Algorithm, depend on E[card(S)] instead of depending explicitly
on t, but as discussed previously, these are essentially equivalent, and we switch between the two merely to simplify notation
and the exposition.

Theorem 4.3: Consider when the Threshold Tree Algorithm (Algorithm 3) is applied to this problem. Suppose q > log log n/ log n,
and t is sufficiently large that the expected number of reporting nodes is at least log n.
(a) Consider when t is known. Then for any constant α < 1, if the expected number of infected nodes scales as less than nα,

with threshold m = E[card(S)] log log n,
P (error)→ 0.

(b) Suppose t is not known. Set Xrep = card(Srep), the number of nodes reporting an infection. Use threshold m =
Xrep/q(log log n)3. Then if for any constant α < 1, the expected number of infected nodes is less than nα,

P (error)→ 0.

Proof of Theorem 4.3(a): We prove the following generalization of the theorem: The Type I error probability converges
to 0 for any choice of the threshold m = o(qE[card(S)] log n) with qE[card(S)] = O(nα) for some α < 1. In addition, the
Type II error probability converges to 0 if m = ω(E[card(S)]).

First we prove the Type II error result (mistaking an infection for a random sickness). Since the Steiner tree containing
the reporting nodes can be no larger than the infection itself, the Type II error converges to 0 as long as we use a threshold
m = ω(E[card(S)]) from Markov’s inequality. Next, we evaluate the Type I error probability (mistaking a random sickness
for an infection). This requires estimating the size of the Steiner tree containing the reporting sick nodes. By assumption, the
number of reporting sick nodes increases with n, the probability that there are sick nodes on at least two subtrees of the root
node goes to 1, hence the root of the tree is in the Steiner tree connecting the randomly sick nodes with high probability.
Given this, we see that a node is in the Steiner tree if and only if it is infected or a node below it in the tree is infected. By
assumption, E[card(Srep)] > log n. Let Xrep = card(Srep), and hence Xrep is ω(1). Choose the first level in the tree that
has at least Xrep/c nodes. Then there are between Xrep/c and Xrep subtrees below that level. It is straightforward to show
that each sick node in the tree has at least a 1/2 probability of being a leaf node since c ≥ 2. Since at least Xrep nodes are
sick, at least Xrep/4 of the leaf nodes are sick and distributed independently among the at most Xrep subtrees. Therefore, the
total number of subtrees with sick nodes at the bottom is at least Xrep/(8c). In addition, each leaf node in a separate subtree
requires a path at least up to the aforementioned level in the Steiner tree. This gives us the following high probability bound
on the Steiner tree size.

SizeTree(Srep) >
Xrep

8c
(logc n− logcXrep)

> Xrep
(1− α) logc n

8c
.

For any w = o(E[Xrep]), we know that Xrep > w with probability approaching 1 since the number of sick nodes in a random
sickness is highly concentrated. Therefore, if m = o(E[Xrep] logc n), which is equivalent to m = o(qE[card(S)] log n), the
Type I error probability tends to 0.

Proof of Theorem 4.3(b): Let Xrep = card(Srep). Let X̄ = Xrep/q, roughly the expected number of total sick nodes.
Then X̄ log log n upper bounds card(S) with high probability as shown previously. In addition, like before, card(S) log log n >
E[card(S)] with probability approached 1. Then from Theorem 4.3(a) with m = X̄(log log n)3, we see that both probability
of errors decrease to 0 asymptotically.
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E. Erdös-Renyi Graphs

In this section, we consider Erdös-Renyi graphs. A notable difference in the topology of Erdös-Renyi graphs and grids is
that the diameter of the former scales much more slowly (logarithmically) with graph size. That is, Erdös-Renyi graphs are
more highly connected, in the sense that no two nodes are too far apart. This makes distinguishing an infection from a random
sickness more difficult on these graphs.

We consider two connectivity regimes: the regime where the giant component first emerges, and each node has a constant
expected number of edges, and then a much more highly connected regime, where the graph demonstrates different local
properties, and discrimination between random sickness and infection is harder still.

1) Detection with Constant Average Degree: We first consider Erdös-Renyi graphs with constant average degree. Define
the graph G(n) = G(n, p) to be the graph with n nodes, where for each pair of nodes, there is an edge between them with
probability p. In the section above, we use c to denote the branching ratio. We overload notation and use it again to measure
the spread of the graph, but here as the expected degree: let p = c/n with c > 1. In this regime, the graph is almost surely
disconnected, but there is a giant component. Since this problem would be trivial on a disconnected graph, we limit both the
infection and random sick nodes to the giant component. We show that unlike the case of trees, our algorithms are unable
to distinguish infection from random sickness when nearly a constant fraction of nodes are infected. Instead, we consider
infections that cover only o(n) nodes. As is well-known (e.g., [16]) in this connectivity regime, the graph is locally tree-like,
and hence tree-like in the infected region. This allows us to leverage some results from the previous section, although direct
translation is not possible, particularly in the analysis of our second algorithm. We will drop the index on n for clarity.

Again we note that in the next two theorems, the threshold depends on t and E[card(S)], respectively. As discussed, these
are essentially equivalent, and the choice amounts to ease of notation and exposition.

Theorem 4.4: Suppose we use the Threshold Ball Algorithm (Algorithm 2). Consider the case when the expected number
of reporting nodes is no less than log n.
(a) Suppose we have knowledge of t. There are constants b, β where, using threshold m = bt and with expected number of

infected nodes less than nβ ,
P (error)→ 0.

(b) Consider unknown t. We set Xrep to be the number of nodes reporting an infection, card(Srep). Then there exists constants
b2 and β such that for threshold m = b2 log(Xrep/q(log log n)2) and if the expected number of infected nodes is less nβ ,

P (error)→ 0.

The constant β is the same for both (a) and (b).
Proof of Theorem 4.4(a):

Consider the Type II error probability. In this case, from Proposition 3, there is a constant b such that, with probability
converging to 1,

RadiusBall(G,Srep) < bt = m.

Therefore, the Type II error probability tends to 0.
Now we bound the Type I error probability. From Proposition 4, with probability tending to 1,

RadiusBall(G,Srep) >
log n

3 log c
.

Therefore, it is sufficient to show m < logn
3 log c . Since the infection size is o(n), we use a branching process approximation to

find that for some λ, E[card(S)]→ eλt. Define β = λ/(3b log c). Since E[card(S)] < nβ by hypothesis,

λt < β log n.

With some computation, m = bt < log n/(3 log c). Hence, the Type I error probability also decays to 0.

Proof of Theorem 4.4(b): As is shown above, E[card(S)] scales asymptotically as eλt for some constant λ. In particular, for
abitrary constant ε > 0, E[card(S)] > eλt/(1+ε) with probability approaching 1. Then let Xrep be the number of reporting sick
nodes and let X̄ = Xrep/q, so X̄ log log n > card(S) with probability tending to 1 as shown previously. From this, we conclude
tmax = (1+ε)/λ log(Xrep/q(log log n)2). Then by Theorem 4.2(a), with b2 = (1+ε)b/λ and m = b2 log(Xrep/q(log logn)2),
we see that the Type II error probability converges to 0. From the same theorem, the Type I error goes to 0 as well.

The Tree Algorithm is more complex to analyze for this graph. The more delicate analysis comes from the challenge of
bounding the size of the Steiner tree for the random sickness process, needed to control Type I error.

Theorem 4.5: Suppose the Threshold Tree Algorithm (Algorithm 3) is applied to this problem. Assume that the expected
number of reporting nodes is at least log n and q is constant.
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(a) Consider the case where t is known. Let the threshold m = E[card(S)] log log n. For any α < 1/2, if the expected number
of infected nodes scales as less than nα,

P (error)→ 0.

(b) Suppose we have unknown t. Define Xrep as card(Srep). In this case, set the threshold to be m = (Xrep/q)(log logn)3.
Then like before, for any constant α < 1/2, if the expected number of infected nodes is less than nα,

P (error)→ 0.

Proof of Theorem 4.5(a): We show the following more general statement: The Type II error probability decays to 0
if the threshold is chosen as m = ω(E[card(S)]) and E[card(S)] = o(n). The Type I error probability goes to 0 when
m < kqE[card(S)] for some constant k = o(log(n/(qE[card(S)])2)) and qE[card(S)] = o(

√
n).

First, if the sickness is from an infection, the smallest tree connecting the reporting sick nodes must have size no more than
the actual number of sick nodes. Hence, to bound the Type II error, it is sufficient to bound the probability the number of
infected nodes is over a certain size. This probability decreases to 0 as long as m is ω(E[card(S)]) when E[card(S)] = o(n).
To see this, recall that in this regime, the graph looks locally tree-like. Consequently, we can bound the maximum number of
infected nodes using bounds on the distance an infection can travel (e.g., see [15]). Again, Markov’s inequality provides the
exact error bound in the theorem statement.

To control Type I error probability, that a random sickness is mistaken for an infection, we must lower bound the size of
the Steiner tree of a random sickness. For v ∈ Srep, let dv denote the distance from that node to the nearest other sick node.
First we show that

∑
v∈Srep

dv ≤ 2SizeTree(G,Srep). Note that the bound is attained for some graphs, such as a star graph
with the central node uninfected.

Consider the Steiner tree subgraph, and duplicate all edges on it. Since the degree of each node in the subgraph is even,
there is a cycle that connects all these nodes. Naturally, the length of this cycle, which is twice the size of the Steiner tree, is
larger than the length of the smallest cycle connecting all sick nodes. In addition, the length of this cycle is at least

∑
v∈Srep

dv ,
since the distance from one sick node to the next sick node in the cycle is clearly no smaller than the distance from that sick
node to the closest sick node. This establishes that

∑
v∈Srep

dv ≤ 2SizeTree(G,Srep).
Now we simply need to bound dv . To do this, we need an understanding of the neighborhood sizes in a G(n, p) graph. But

as the size of the graph scales, this is also straightforward to do: recalling that the probability of an edge is c/n and hence
the expected degree of each node is (asymptotically) c, then for typical nodes and arbitrary constant ε > 0, there are no more
than ((1 + ε)c)

d nodes within distance d provided that d = ω(1), using a branching process approximation.
Let Xrep be the number of reporting sick nodes. Now assume Xrep = o(

√
n). Let ε > 0 and l = εn/X2

rep. Let k =
o(log(n/X2

rep)). Using the above distance distribution calculation, we find that each sick node v, there are less than l nodes
within distance k. As the sick nodes are randomly selected, the probability that none of these are within a distance k from v
is bounded by (1 − Xrep/n)l → e−ε/Xrep → 1 − ε/Xrep. Thus the distance to the closest sick node to v is at least k, i.e.,
dv > k, with high probability, and using a simple union bound, the same is true, simultaneously, for all sick nodes. Hence the
Steiner tree joining the set of reporting sick nodes is of size at least SizeTree(G,Srep) ≥ (1/2)

∑
dv = (1/2)kqE[card(S)],

with probability decaying to zero. Therefore, the Type I error probability tends to 0 as long as the threshold satisfies m <
kqE[card(S)]/2, for k = o(log(n/(qE[card(S)])2)). Using this result, we find that the Tree Algorithm can succeed so long
as q log(n/(qE[T ])2) = ω(1). This is a complex condition, though the conditions given in the theorem are sufficient for it to
be true.

Proof of Theorem 4.5(b): As in previous sections, we let Xrep be the number of reporting sick nodes, and define
X̄ = Xrep/q. Then as in Theorem 4.5(a), X̄ log log n upper bounds card(S) and card(S) log log n > E[card(S)] with
probability approaching 1. Then from Theorem 4.5(a), we see that for the specified threshold, both probability of errors
decrease to 0 asymptotically.

2) Detection on Dense Graphs: Now we consider the case of an Erdös-Renyi graph with a denser set of edges. Higher
connectivity means the infection spreads faster, making it more difficult to distinguish between spreading mechanisms. The
performance depends critically on the exact scaling regime. We consider the regime where there exists d ∈ Z and constants
ε, h ∈ R such that ε < nd−1pd < h holds for all n as n → ∞. This connectivity regime has been studied in various places
– see, for example, [19] for further discussion of this scaling regime and properties of these dense graphs. The next result
bounds the size of the Steiner tree on a random collection of nodes, and is the key result for bounding the Type I error.

Lemma 3: Suppose nodes become sick, independently of each other, with probability n1/d/n, so that the expected number of
reporting sick nodes is qn1/d. Further suppose G = G(n, p) whose parameters satisfy ε < limn→∞ nd−1pd < h for d > 4. Let
Z be the size of the minimum Steiner tree connecting the reporting sick nodes. Also, let m < (d−3)qn1/d/2 be the threshold
for the Steiner tree size in the Tree Algorithm. Then Z satisfies the following probabilistic limit: limn→∞ Pr(Z < m) = 0.

Proof: Using precisely the same argument as above, we can lower-bound the size of the Steiner tree by
∑
dv ≤ 2Z,

where the sum is over all reporting sick nodes, and as before, dv denotes the minimum distance from a reporting sick node v
to the nearest other reporting sick node. To lower bound the size of this sum, we rely on a result from [19] that shows that in
this scaling regime, the asymptotic distribution of the distance between two random nodes is positive on only d and d+1. That
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is, almost all nodes are either at distance d or d + 1 from any given node v, and thus the distance distribution concentrates
sharply around d. To put this another way, let Fd be the probability that a random node is at distance more than d from A.
Then for any d̂ > 1, if nd̂−1pd̂ < h, we have

limFd̂ = lim
n→∞

exp−n
d̂−1pd̂ .

Recall limn→∞ nd̂−1pd̂ is bounded between ε and h.
Now we condition on the number of sick nodes, card(S). Using the same definite as before, let Xrep be the random variable

with Xrep = card(Srep). Note E[card(S)] = n1/d and the expected number of reporting sick nodes E[Xrep] = qE[card(S)].
We can compute the probability that the closest sick node is at distance more than d̂ from a sick node v simply as FXrep

d̂
→

exp−(Xrep/n)(np)d̂ . Using our scaling regime, we know that (εn)1/d < np < (hn)1/d. To simplify notation, let h′ = h1/d. We
have

F
Xrep

d−3 → 1−Xrep/n(np)d−3

> 1−Xrep/h
′nn(d−3)/d.

Using a simple union bound, we find that the probability that some reporting sick node is within distance d− 3 of another
reporting sick node is at most X2

rep/h
′nn(d−3)/d. Since Xrep is a binomial random variable (since we condition on card(S)),

it concentrates about its mean: for any ε′ > 0, Pr((1− ε′)E[Xrep] < Xrep < (1 + ε′)E[Xrep])→ 1. When Xrep is within this
range, we find that

∑
dv > (d− 3)(1− ε′)E[Xrep] with probability at least 1− (1 + ε′)2h′E[Xrep]2n−3/d > 1−Cn−1/d for

some constant C. This converges to 1 for large enough n. Thus, we have shown the desired result.
Now the probability of error calculations and hence the proof of correctness for the Tree Algorithm follows directly from

the above.
Theorem 4.6: For graph G as above, suppose the expected number of reporting sick nodes is qn1/d and t is known.

Then for the Threshold Tree Algorithm, the probability of a Type I error converges to 0, as long as the threshold satisfies
m < (d − 3)qn1/d/2. The probability of a Type II error upper bounded by 2/(d − 3 − ε) as long as the threshold satisfies
m > (d− 3− ε)qn1/d/2, for any value of ε > 0 such that ε+ 3 < d. This bound converges to 0 as d→∞.

Proof: Consider first the probability of a Type I error. This is the probability that a random sickness has a Steiner tree of
size less than m. From Theorem 3, this probability converges to 0 if E[card(S)] = O(n1/d).

Second, consider the probability of a Type II error. As we have argued before, the size of this tree is no more than the total
number of infected nodes, so it is sufficient to find the probability there are more than m infected nodes. The Type II error
probability bound follows from using Markov’s Inequality.

V. SIMULATIONS

The above sections give theoretical guarantees for the correctness of our algorithms, and thus characterize their ability to
distinguish the cause of an illness – be it detecting one graph versus another as the causative network, or the determination that
a sickness is an epidemic or a random illness. In this section, we explore these questions empirically. We validate our theoretical
analysis on graphs that are generated from the ensembles we address in our theorems (grids, random graphs, trees) and then
also consider epidemics on real-world graphs, and demonstrate that on these topologies as well, our algorithms perform well.

A. Graph Comparison

We simulated the performance of the Comparative Ball Algorithm to evaluate the performance empirically. We determined
the error rate over a range of t for several pairs of graphs. We evaluated the two different standard graph topologies considered
earlier, grids and Erdös-Renyi graphs.

We simulated the infections on various pairs of the graphs over a range of times. In order to portray the results in a comparable
way, we plotted the error rate versus the average infection size instead of time. This is necessary because different times result
in very different infection sizes for the different graphs. That is, the infection is large even at low t on an Erdös-Renyi graph,
and vice versa for a grid graph. This would introduce a misleading effect in the results.

Each node in the graphs received a random label to ensure independence. We use n = 1, 600 for each graph with q = 0.25.
For the Erdös-Renyi graphs, we use p = 2/1, 600. The probability of error was computed over 10, 000 trials. There are two
possible types of errors in each simulation, when the infection spreads on the first graph, and when it spreads on the second.
We label the error event ‘T:G1; A:G2’ for the error where the infection in fact travels on graph G1 (True event), but the
algorithm incorrectly labels it as occurring on graph G2 (Algorithm output).

The results of these simulations are shown in Figure 1. Note that up to about 5% of the network reporting an infection, the
error rates are low in all cases. The error rates are consistently low for the ‘T:Grid1;A:Grid2’ comparison up to the point where
the whole network is infected. When comparing a grid and an Erdös-Renyi graph, there is a bias to label it an Erdös-Renyi
graph at higher times, causing the ‘T:Grid;A:G(n,p)’ error to be very high and conversely, the ‘T:G(n,p);A:Grid’ error to be
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Fig. 1. This figure shows the error probability for the algorithm on pairs of standard graphs. Various (conditional) error probabilities are illustrated – ‘T:’
corresponds to the true network, and ‘A:’ corresponds to the algorithm output.

Fig. 2. This figure shows the error probability for the G(n,p) vs. Grid graphs for the scaled diameter setting (diameter of G(n,p) graph is scaled by 1.6).

very low. This suggests that by simply modifying the Comparative Ball Algorithm to normalize with respect to a scaled graph
diameter (where the scaling parameter would be graph dependent), we could balance these two error probabilities, and thus
result in improved performance. To illustrate, by choosing a diameter scaling value of 1.6 for the Grid graph, the plot in
Figure 2 indicates that one could distinguish between G(n,p) and Grid graphs for a significantly larger range. We plan to study
a systematic approach for such scalings as future work.

B. Infection vs. Random Sickness

In this section we provide simulation-based evidence of the theoretical results for the Threshold Ball Algorithm and Threshold
Tree Algorithm. The simulations aim to demonstrate, in particular, two facts. First, the thresholds specified in Section IV do
actually work empirically, and as the graph size increases, the probability of both types of error decrease to zero. In addition,
this provides insight into how quickly the probability of error decays. While our results include rate estimates given as part
of the proof of correctness, we have not made an effort to optimize these in this work. Next, we seek to describe the relative
performance of each algorithm, and show that it is as described above. Thus, we show that the Threshold Ball Algorithm
outperforms the Threshold Tree Algorithm on a grid; the Threshold Tree Algorithm performs better than the Threshold Ball
Algorithm on a balanced tree; and on an Erdos-Renyi graph, the performances are similar, with the Threshold Ball Algorithm
performing slightly better. We accomplish this by determining the probability of error for a range infection sizes. The larger
the fraction of infected nodes, the more difficult the problem becomes; hence we call an algorithm superior if it works for a
larger fraction of infected nodes.

We note that to perform our simulations, it was necessary to use an approximate Steiner tree algorithm to perform the
Threshold Tree Algorithm in a reasonable time frame. Naturally, since the exact problem is NP-hard, this would be required in



17

any practical use of this algorithm at the moment. However, as a consequence, the empirical results may differ from the true
theoretical result that would be obtained by employing an exact algorithm. Nevertheless, approximation algorithms typically
have reasonable performance and we do not expect significant deviation from the correct results. The approximation algorithm
we use is the Mehlhorn 2-approximation algorithm provided by the Goblin library [20]. This algorithm is an efficient algorithm
which produces a Steiner tree with no more than twice the optimal number of edges.

Each of the points in these results represents the average of 10, 000 runs. The average infection size, which is used to
normalize the expected infection size in a random sickness, was determined by averaging the results of 10, 000 infections.
For each simulation, we use a reporting probability q = 0.25, and other parameters (n, t and m) as specified in each section
below. Finally, the graphs are plotted with error bars at 95% confidence.

Fig. 3. Empirical Type I and Type II error probability vs graph size for grid graphs. The sample size is 10, 000 and infection size scales linearly with n.

Fig. 4. Empirical Type I error probability vs graph size for graphs G(n, 2/n). The sample size is 10, 000 and infection size scales orderwise as
√
n.

1) Error Rate Versus Graph Size: Though our theoretical results have characterized the range for which each algorithm
works, naturally we wish to see empirically the error probability for each algorithm and the rate at which the error decreases
as graph size increases. Both Type I and Type II error probabilities were determined for each algorithm and graph topology.
For this section, we have chosen time to keep the fraction of infected nodes at a consistent scaling. In particular, t = 0.2

√
n

for the grid, and t = 0.5 log(0.5n) with p = 2/n for the Erdös-Renyi graph. The exact constants for these scalings were
chosen empirically so that the probability of error was low and the Type I and Type II errors were as balanced as possible.
The thresholds m were also chosen with the same scaling, according to our theoretical results. To be exact, for the grid, the
Threshold Ball Algorithm used threshold m = 0.75

√
n and the Threshold Tree Algorithm used threshold m = 0.28n. For the

Erdös-Renyi graphs, the Threshold Ball Algorithm used threshold m = 0.69 log(4.33n) and the Threshold Tree Algorithm
used threshold m = 0.03

√
n log n log n.

Figure 3 presents our results for grid graphs. The error probability of the Threshold Ball Algorithm on a grid is very low,
while the tree algorithm performs relatively poorly. This is expected since the Threshold Ball Algorithm is closely aligned
with the true shape of an infection on this graph. The Threshold Tree Algorithm has a much higher error probability which
decays slowly with n, in particular the Type II error.

Next, the results for Erdös-Renyi graphs are in Figure 4. Here we see again that the Threshold Ball Algorithm performs
better than the Threshold Tree Algorithm, at least for larger n, and that the error probability also seems to be decreasing faster
for the Threshold Ball Algorithm as well. Though a tree more closely matches the infection shape on an Erdös-Renyi graph,
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Fig. 5. This figure shows the overall error probability for each algorithm, for each of the three topologies we consider.

it is also easier for a random sickness to mimic a small tree, especially for small world graphs like Erdös-Renyi graphs. This
causes the Threshold Ball Algorithm to be ultimately superior. The Threshold Tree Algorithm is superior for larger infection
sizes on bottle necked graphs (such as trees) where the random sickness can be easily distinguished, as we see in Section
V-B2.

2) Error Rate Versus Infection Size: Next, we examine empirically how the infection duration affects the probability of
error for each of our algorithms. As discussed above, we compare the two algorithms by the range of infection sizes for which
they work, and accordingly, we call an algorithm superior if it maintains a lower probability of error for a larger infection
size (fraction of total infected nodes). We use thresholds that minimize the empirical overall probability of error. That is,
the sickness was chosen to be either an infection or simply random with equal probability, and the threshold with minimum
probability of error from the simulations was chosen.

These results are presented in Figure 5 for grids, trees, and Erdös-Renyi graphs. For each of the graph topologies, we used
a graph size of n = 1, 600. The error probability is plotted against the average infection size from the simulation. This choice
better conveys how infection size affects the error rate, which is the chief question of interest.

These charts allow us to compare the performance of the algorithms. It is clear that the error probability of the Threshold
Ball Algorithm is less than that of the Threshold Tree Algorithm on both the grid and Erdös-Renyi graphs. On these graphs, the
Threshold Ball Algorithm performs uniformly better across variations in fraction of nodes infected. However, the results on a
tree are more complex. When the total infection is small, the Threshold Ball Algorithm has superior performance. However, as
a larger fraction of the network becomes infected, the Threshold Tree Algorithm has better performance. We believe it is this
right tail that is most significant. In the regime where many of the nodes are infected, the infection is likely to have reached
some of the leaves by this time, thus explaining the superiority of the Threshold Tree Algorithm in this regime. However, many
practical applications of these algorithms would occur when the infection is still of limited size, in which case the Threshold
Ball Algorithm would perform better. The best algorithm would depend on the circumstances.

It is particularly interesting to ask how these results extend to real-world graphs, as opposed to random (or highly regular)
graphs that we have constructed. To this end, we used the call-graph from an Asian telecom network. In this graph, each node
is a cell customer, and there is an edge between two users if they contacted each other over this network during a certain range
of time. Since the original graph was too large for practical simulation times, we cut out a partial subset. We chose a random
node and all nodes with a distance 9 and used the induced subgraph generated by these nodes. The resulting graph has size
n = 13, 189. The probability of error for a range infection sizes are presented in Figure 6. We see that the results are similar
to those for a Tree graph, where the Threshold Ball Algorithm performs better on small infections, but it is out performed by
the Threshold Tree Algorithm in larger infections. This is to be expected, as the intuition for the Threshold Ball Algorithm
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Fig. 6. This figure shows the overall error probability for each algorithm on a real world graph.

stems from the geometry of spatial grid-like networks. The call-graph here is very much tree-like (however, with very small
diameter and high degree), and infections are unlikely to propagate to the same depth across various leaves. This results in
poor Ball “fits,” especially as the infected fraction of nodes grows. This intuition is indeed borne out in the simulations.

VI. CONCLUSIONS

When an infection/virus is seen spreading over a group of people/machines, one may have multiple possibile spreading
regimes for the infection in mind, and want to know which the infection is most likely travelling on. We considered this
problem both in the case of two well structured graphs, and in the case of comparing an infection from a random sickness. For
two structured graphs, we have shown that this is possible to do with high accuracy if the regimes are independent and satisfy
two properties: 1) An infection spreading according the regime should be localized in the contact graph, and 2) A random set
of nodes should be spaced far apart on the graph. When these conditions are satisfied (in the sense given in this paper), the
correct spreading regime can be detected accurately with high probability by determining on which graph the infection appears
to be more clustered. In addition, we have shown two standard types of graphs, grids and Erdös-Renyi graphs, satisfy these
properties. In the case of comparing an infection and a random sickness, we developed two algorithms that solve the problem.
We proved these algorithms do so with high probability for grids, tree, and Erdös-Renyi graph for ranges of infection sizes
dependent on the graph topology. Our simulations here demonstrate the efficacy of our algorithms.
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