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Exploiting Sparse Dynamics For Bandwidth
Reduction In Cooperative Sensing Systems
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Abstract—Recently, there has been a significant interest in de-
veloping cooperative sensing systems for certain types of wireless
applications. In such systems, a group of sensing nodes periodi-
cally collects measurements about the signals being observed in the
given geographical region and transmits these measurements to a
central node, which in turn processes this information to recover
the signals. For example, in cognitive radio networks, the signals
of interest are those generated by the primary transmitters and
the sensing nodes are the secondary users. In such networks, it is
critically important to be able to reliably determine the presence or
absence of primary transmitters in order to avoid causing interfer-
ence. The standard approach to transmitting these measurements
from the sensor nodes to the fusion center has been to use orthog-
onal channels. Such an approach quickly places a burden on the
control-channel-capacity of the network that would scale linearly
in the number of cooperating sensing nodes. In this paper, we show
that as long as one condition is satisfied: the dynamics of the ob-
served signals are sparse, i.e., the observed signals do not change
their values very rapidly in relation to the time-scale at which the
measurements are collected, we can significantly reduce the control
bandwidth of the system while achieving near full (linear) band-
width performance.

Index Terms—Compressed sensing, compressive sampling, co-
operative sensing, null-space property, restricted isometry.

I. INTRODUCTION

C OOPERATIVE sensing is a promising technique that has
received a lot of attention recently due to the necessity for

reliable decision-making. Here, a group of wireless nodes col-
lects measurements about some signals of interest. The obser-
vations are then reported to a central node, which in turn applies
some appropriately-chosen decision rule to recover the signals.
Such an architecture finds application in two closely-related and
well-studied settings.
The first setting is (de-)centralized detection in sensor net-

works— a group of sensor nodes commanded by a fusion center
—where the observed signals could be temperature or humidity
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readings, military targets, etc. Much work (see [1]–[4] and ref-
erences therein), both theoretical and practical, has studied and
optimized various aspects of the cooperative sensing architec-
ture, e.g., quantization functions at the sensing nodes, the com-
bining process and decision metric at the fusion center, the com-
munication scheme between the sensing nodes and the fusion
center, etc. This is a rich area of research and hence, our ref-
erences are far from a comprehensive list. The second setting
is a cognitive radio network where the observed signals are
other unlicensed (secondary) or licensed (primary) transmitters.
While the ideas in this paper are applicable to both the afore-
mentioned settings, we review some literature from the latter as
it is most relevant to the technical developments proposed here.

A. Spectrum Sensing in Cognitive Radio Networks

Cognitive radio technology, introduced by J. Mitola [5], is a
promising solution to the growing scarcity of wireless spectrum,
one that can potentially increase the spectrum utilization effi-
ciency as recognized by the FCC [6], [7]. Traditionally, a portion
of spectrum is allocated or licensed for use by a specific group of
users by regulatory agencies. On the other hand, cognitive radio
networks call for cognitive (unlicensed/secondary) users to op-
erate on the same frequency band as the primary licensed users
while attempting to access the spectrum seamlessly. In other
words, the cognitive users need to adjust their operating param-
eters to guarantee minimal impact to the primary licensed users.
For example, DARPA’s Next Generation program [8] has been
interested in developing spectrum sensing techniques that pre-
vent interference to existing occupants of the frequency band.
To increase spectral efficiency, the FCC recently opened up TV
whitespaces (54 MHz-806 MHz) for unlicensed use [9]. While
the ruling calls for access to a central database to determine TV
band availability, the traditional use case for spectrum sensing,
we believe it still plays an important role in providing accept-
able quality-of-service (QoS) over unlicensed bands. For ex-
ample, a database administrator could provide multiple classes
of service to a querying secondary user where the higher class
would be provided with a per-TV-band estimate of the interfer-
ence statistics from other unlicensed users in the band. Spectrum
sensing might be necessary in this context in order to collect
such statistics.
Cooperative or collaborative sensing in the context of cog-

nitive radio networks consists of a group of secondary users or
specially-placed sensor nodes that collect measurements over
some sensing timewindow about the activity of the primary user
and transmit these measurements to a central node. The central
node or fusion center may often be the cognitive base station.
Cooperative sensing techniques can be classified appropriately
based on the type of decision metric used at the fusion center.

1053-587X/$31.00 © 2013 IEEE
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We focus on one of the simplest schemes that relies on energy
detection. Most prior work on energy-detection-based coopera-
tive sensing (see [10]–[14] and references therein), the signal is
typically a single binary hypothesis modeling a system with one
primary user that is either ON or OFF. In cooperative sensing,
the measurements from each cognitive sensor node are typi-
cally linearly weighted and combined to form a decision statistic
that is in turn compared against a threshold to produce a binary
output. The paper by Ganesan and Li [10] constitutes one of the
earliest contributions that establishes the gains in detection (of a
single primary user) probability due to cooperation in the pres-
ence of channel fading. Peh et al. [11] and Lee [14] study the
tradeoff between sensing time and throughput of the cognitive
network since longer sensing times lead to higher primary detec-
tion probabilities but lower secondary throughputs. Quan et al.
[12] further optimize the linear weighted combiner studied by
Ganesan and Li [10] by choosing weights that maximize the de-
tection probability. While the above authors designed soft-com-
bining systems where the sensors typically report their measure-
ments to the fusion center without any processing, Li et al. [13]
consider hard-combiningwhere local decisions aremade at each
sensor, and design a voting rule to produce the final binary de-
cision. Finally, Mishra et al. [15] compare the performance of
hard-/soft-combining and study the effects of correlated fading
on the detection probability. We refer the reader to recent survey
papers by Akyildiz et al. [16] and Yucek [17] for a more com-
prehensive list of references along with further discussion on
the other types of cooperative spectrum sensing such as cyclo-
stationary feature detection.

B. Our Contributions

In almost all of the reviewed literature, the standard approach
to transmit the measurements from the sensor nodes to the fu-
sion center has been to employ orthogonal channels. This means
that the control bandwidth demanded by a standard cooperative
sensing scheme scales linearly in the number of sensing nodes.
This immediately places a significant burden on the bandwidth
requirements of the network and might be impractical in some
scenarios as recognized by Akyildiz et al. [16]. In this work, we
focus on reducing the amount of control bandwidth required by
considering the structure that may often exist in the dynamics of
the observed signals. Thus, we immediately build on and extend
past models by adding a temporal dimension to the observed
signal and by considering multiple discrete signals instead of a
single binary hypothesis.
The key idea that we exploit in this paper is the following:

while the observed signals at a snapshot in time in general live
in some arbitrary high dimension, often, there is a time-scale
separation between the sensing time window and the behavior
of the observed process. For example, TV transmitters would
turn ON/OFF on a significantly slower time-scale (e.g., in the
order of minutes) than sensor measurement windows (e.g., in
the order of milliseconds). Under these circumstances, the dy-
namics of the observed signal vector are likely to be sparse. It
has long been known, and recently popularized under the name
of compressive sampling, that whereas linear measurements
are required to reconstruct a vector or signal in , if it is

-sparse (i.e., it has non-zero coefficients) then under appro-
priate conditions on the measurements, are enough
[19], [20], [22]. By developing similar tools, and applying them
on the dynamics, rather than the signal directly, we show that
with greatly-reduced control bandwidth, our algorithms perform
close to the linear control bandwidth case. The performance is
measured in terms of the similarity between the recovered signal
and the true signal.
To the best of our knowledge, this is the first work in the

domain of wireless networks1 to exploit sparsity in the dynamics
of the observed signal. As this is likely much more prevalent
than sparsity in the actual trajectory of the signal (of course, if
the trajectory is sparse, then so are the dynamics) we expect this
high-level idea to find broad application. More concretely, the
main contributions in this paper are as follows:
(1) A first (to the best of our knowledge) application of com-

pressive sampling to reduce the control bandwidth in a
cooperative sensing system.

(2) A proof that path-loss matrices satisfy the null space
property thereby allowing for efficient acquisition or
sensing of the observed signal using standard convex
programs such as -norm minimization and Lasso [25].
The proof technique is novel since path-loss matrices
contain entries that have non-zero mean and are not in-
dependent, a scenario that has not been dealt with exten-
sively in past literature on compressive sampling2.

(3) Simulation results that establish the competitive perfor-
mance of our algorithm in comparison to the full control
bandwidth case.

The rest of this paper is organized as follows. In Section II,
we introduce the system model for the cooperative sensing
network under consideration. In Section III, we discuss the
compressive sampling algorithm that enables cooperative
sensing using significantly-reduced control overhead. We es-
tablish the “goodness” of path-loss-induced sensing matrices
in Section IV. The complete cooperative sensing algorithm
is presented in Section V. Simulation results establishing the
competitive performance of the algorithm are contained in
Section VI. Concluding remarks are made in Section VII.
Notation: denotes element of matrix while

denotes element of vector . is the transpose operator. For
, , denotes the vector restricted

to the entries in . For , ,
denotes the sub-matrix of formed by the rows contained in
. Finally, is the -norm operator on vectors.

II. SYSTEM MODEL

We consider a network with sensing nodes and a single
fusion center operating in slotted-time. We introduce the neces-
sary measurement and signal models below.
Signal generation: We assume the signal of interest is being

generated by multiple physical entities (e.g., TV transmitters)
that are each dropped uniformly on a circle of radius centered
at the origin. There are a total of such signal generators that

1Sparse changes in the dynamics of the signal have been used in other areas
such as image processing to achieve video compression [18].
2We do not use the terminology “compressed sensing” to avoid confusion

with “cooperative sensing”.
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Fig. 1. Network with signal generators (not shown) uniformly distributed on
the blue circle of radius . There are sensing nodes in the network
equally-divided across two circles of radii and respec-
tively. This gives rise to partitions and .
The sensing nodes are equally-spaced on each circle as shown.

are located at points where .
The vector signal emitted at time is denoted by

where corresponds to the
power emitted by physical entity or signal generator and
comes from some finite, discrete set.
Spatial distribution of sensing nodes : There are
sensing nodes that are placed on a collection of cir-

cles of radii , where is such that is
even . Circle contains interfering receivers located at fixed
points that are equally-spaced

as shown in Fig. 1. We note that this would
roughly be the case when becomes large and the users are
uniformly distributed on this collection of circles. The fusion
center is located at some arbitrary point on the -plane.
The above spatial distribution model affords us analytical

tractability. In the simulations section, we show that the pro-
posed algorithms work even under a more general spatial
model where both the sensing and signal nodes are scattered
uniformly on a regular square grid. For the sake of the analysis,
we also partition the sensing nodes according to the circle they
belong to thus creating partitions such that

and for . Within
each circle, the nodes are numbered or ordered in diametrically
opposite pairs as shown in Fig. 1, a labelling rule that is feasible
since is even. In other words, all pairs ,
will correspond to a pair of diametrically opposite nodes on
circle .
Channel model: The distance between the -th signal gen-

erator at location and -th sensing node at
is given by which
induces the following path-loss gain3

(1)

between the same. This model is an approximation of the
free space path-loss model (with path-loss coefficient two)
[21], a choice that affords us analytical tractability while com-
promising very little on modeling accuracy. The composite
channel gain between -th signal generator at location
and -th sensing node at is given by

(2)

3The analysis in this paper can be extended to cover other path-loss models.

where models small-scale Rayleigh fading.
Distances do not change as a function of time since sensor nodes
are deterministically placed and signal nodes are assumed fixed,
once drawn from a uniform distribution.
Sensor measurement model: We adopt the sensing model

in [11], [15], where each sensor collects a set of samples over a
window of size time slots. In particular, at time sensor node
receives the signal

where is additive noise. Each sensor then forms the fol-
lowing measurement over a -window of samples,

(3)

The sensors then send their measurements to the fusion center
via orthogonal error-free control channels. The fusion center
is charged with the task of recovering the observed signal

. In this work, we do not explicitly account for the
time incurred in transmitting measurements to the fusion center
and for subsequent actions such as data transmissions by the
secondary network in the case of cognitive radio, as we are
primarily interested in reducing the control bandwidth between
the sensors and the fusion center. Thus, the time index iterates
only across sensing windows.
Sparse dynamics: Due to mismatches between the

time-scale of the signal generators and the sensor sample
collection period, we assume that the vector exhibits the
following behavior. The signal remains constant through
the -th collection window and is
denoted by . Furthermore, only a subset of signals change
between the -th and the -th collection window, i.e.,

is a sparse vector. This model is effective when
the signal values change on a slower time-scale in relation to
the sensing timeline. This is indeed what one typically expects
for systems that exhibit a time-scale separation between the
sensing network and the signal emitting process. Under the
sparse dynamics assumption and for sufficiently large,
we invoke the Law of Large Numbers (LLN) and write the
measurements in (3) as

(4)

where from (2); is a
noise term that models the inaccuracies of the LLN over finite
averaging windows. It is well-known from the Central Limit
Theorem that . The term is
referred to as LLN-noise through the remainder of this paper.
Next, in the context of the measurement model in (4), we in-
troduce a signal recovery algorithm that will be developed fur-
ther through the course of this paper and that exploits the sparse
structure of the observed dynamics.
Recovery algorithm: We assume that a subset

of the measurements are transmitted
through orthogonal control channels to the fusion center at
the end of sensing window . The fusion center must recover the
signal . The naïve approach to recovering would be to
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transmit all the measured values, i.e., set ,
to the fusion center4. The above naïve solution would consume
a control bandwidth of . If the process is completely
general, there is little that can be done to remedy this problem,
and partial feedback (of only a subset of ) will necessarily
result in degraded performance. However, as discussed in the
introduction, for networks where only a subset of signal gen-
erators (e.g., TV transmitters) change their state between two
adjacent sensing windows, we show that it is possible to reduce
the control bandwidth. Using ideas from subset selection and
compressive sampling, the next section considers how sparse
dynamics can be exploited in order to achieve near-optimal
performance while reducing the bandwidth consumption.

III. RECOVERING DYNAMICS THROUGH
COMPRESSIVE SAMPLING

In this section, we propose a compressive sampling approach
to efficiently recover the signal . Before we discuss the re-
covery algorithm, we take a short diversion into the topic of
compressive sampling.

A. Compressive Sampling

The topic of compressive sampling has received tremendous
interest in the recent years [19], [20], [22]. The theory essen-
tially states that one can recover sparse data exactly, given an
under-determined system of equations. The generic problem is
the following: Given a signal , one receives
linear, potentially noisy measurements: . Here,

encodes the measurement matrix and de-
notes additive noise, usually of bounded norm.
For a general vector , independent measurements

are required to hope to reconstruct . When , the problem
therefore is under-determined. If is sparse, however, in some
settings the problem is no longer under-determined, and can be
solved exactly by considering standard convex programs such
as

in the noisy case and

(5)

in the noiseless case. The former is the so-called Lasso [25] for-
mulation for model selection (subset selection) while the latter
-norm minimization problem is called Basis Pursuit. Many

such results have appeared in the literature, e.g., [19], [20], [22],
[29], under the umbrella of compressive sampling. Indeed, the
results are attractive from an algorithmic perspective since the
convex relaxation is easily solvable, with computation time that
scales gracefully as the size of the problem increases, allowing
the efficient solution of very large problems. The above convex
programs succeed as long as the linear equations, or measure-
ments, satisfy a property called Null Space Property (NSP),
which essentially amounts to the statement that there are no very
sparse vectors in the null-space of the measurement matrix .

4The fusion center may recover the signal using standard tools such as least-
squares.

The theoretical connections between Lasso and Basis Pursuit
have been well-analyzed by authors such as Tropp [24].

B. The Recovery Algorithm

Returning to our problem, we define
and apply the model selection paradigm outlined above, to the
dynamics vector rather than the signal vector itself. We
can assume that at some initial time , is known. At time
, we “query” a subset of sensors and receive measurements

. We can then construct the difference
in measurements

Since the left hand side, , is known, this falls precisely
into the sparse recovery paradigm developed above. More con-
cretely, let be the subset of queried users with size

. Then, is chosen according to the fol-
lowing algorithm:

Algorithm 1: Protocol to choose query set of size

1: Set , .

2: while do

3: Choose any pair of diametrically opposite receivers
from circle , i.e., .

3: .

3: Set

4: Increment and .

5: end while

Note that the output query set is not unique since the choice
of node-pairs is left open. Let be the set of all possible output
query sets from Algorithm 1 above. For the example in Fig. 1,
one possible output query set for is . It is
necessary for a query set to be selected in this way for the sake
of analytical tractability. As with the spatial distribution model,
we adopt a more general querying model in our simulations sec-
tion. Under such a querying model, it is of immediate interest to
determine the smallest query size (or control bandwidth) that
the system requires in order to recover reliably using

(6)

As mentioned earlier, in this work, we do not consider the
number of bits required to communicate reliably to
the fusion center as we are interested primarily in the scaling
behavior of the control bandwidth.
Compressive sampling theory states that recovery of any
-sparse vector through Lasso or Basis Pursuit is possible in a
noiseless setting if and only if the sensing matrix
satisfies the NSP [26] of order . This property is defined in
the next section. We note that in our application, the sensing
matrix is provided by the channel as opposed to traditional
compressive sampling where the designer is often allowed to
choose a convenient sensing mechanism. In the next section,
we present the main result of this paper, which states that
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path-loss matrices make for good sensing matrices
in the noiseless case, i.e., when . Recovery results that
are proved for Basis Pursuit, which, in the absence of noise,
carry over to Lasso [24]. While the theory is developed for the
noiseless case with , our simulations consider finite
averaging windows and demonstrate that sparse recovery still
remains effective in this setting.

IV. NSP OF PATH-LOSS MATRICES

In this section, we establish that path-loss matrices
satisfy the Null Space Property (which will

be defined shortly) when the control bandwidth obeys
. Lemma 4, Lemma 5 along with The-

orem 4 constitute the main results in this section.

A. Preliminaries

Let the support set of be denoted by . A vector is
-sparse if . We define the null space property from
Gribonval et al. [27]. Given a matrix , let denote its
null space.
Definition (Null space Property): A matrix satis-

fies the null space property of order if for all sub-
sets with , the following
holds where

. Based on this property, the fol-
lowing recovery result [27] has appeared both implicitly and
explicitly in works such as [26], [28].
Theorem 1: [27] Let . Then, any -sparse vector

may be recovered by solving (5) iff satisfies the NSP of order
.
The NSP is typically quite difficult to prove directly leading

to the development of sufficient conditions that are easier to es-
tablish. One such sufficient condition is the Restricted Isometry
Property [29] that has become quite popular in recent years and
is defined below.
Definition (Restricted Isometry Property): A matrix
satisfies the Restricted Isometry Property (RIP) of order if

there exists such that for all ,

(7)
holds for all sets with . Here, is the sub-
matrix of formed by rows in .
Here, is called the Restricted Isometric Constant of
. The RIP essentially requires that all sub-matrices

of be well-conditioned. Under such a conditioning, perfect
recovery of is possible as stated in the following theorem.
Theorem 2: [34],[35] Let . If satisfies the RIP

with , then every -sparse vector
is the solution to the -norm minimization problem in

(5).
Thus, the RIP with a sufficiently small constant immediately

implies the NSP in the context of -recovery. The approach we
use to prove “goodness” of path-loss matrices is motivated
by the following observation. In general, the null space of a
product of two matrices contains the null space of and
therefore if satisfies the NSP, so does . This allows us to

study the class of linearly-processed path-loss matrices
where

(8)

and is the standard block-diagonal operator;

(9)

with and independent across . The
Bernoulli random variables have support . We focus
our attention on establishing the recovery properties of
rather than . We show that satisfies the RIP with

measurements and hence the NSP. The trans-
formation essentially subtracts rows of corresponding
to diametrically opposite pairs of sensors in the same partition.
Thus, the dimension of is still . The transformation
weights and adds adjacent rows of .
According to our spatial distribution model, since the posi-

tions of the sensing nodes are fixed, the columns of (and
hence ) become stochastically independent since each inter-
fering transmitter is independently thrown. At this point, we will
rely heavily on recent results from Vershynin [30] and Adam-
cyzk et al. [23] that deal with sensing matrices containing inde-
pendent columns. Before we reproduce the RIP result [23], [30]
for matrices with independent columns, we present a primer on
sub-gaussian and sub-exponential random variables along with
some useful results from non-asymptotic matrix theory.

B. Useful Concentration Inequalities

We refer the reader to the tutorial paper by Vershynin [30] for
a great introduction to non-asymptotic matrix theory. Lemmas
1–3 below are well-known past results that are summarized in
this paper [30]. The proofs are not reproduced due to lack of
space.
Lemma 1: Let be a random variable. The following prop-

erties are equivalent with parameters ,
differing from each other by at most an absolute constant factor.
(i) Tails: for all ,

(ii) Moments: for all ,

(iii) Super-exponential moment: .

Moreover, if then properties (i)–(iii) are also
equivalent to the following property:

(iv) Moment generating function:
for all .

A random variable that satisfies the above property is called a
sub-gaussian random variable. Such random variables are often
characterized by the -norm5, which is defined as

It follows that if the -norm of is finite,
then is a sub-gaussian random variable with .
This is in fact the case for bounded random variables with sym-
metric distributions.

5Alternate definitions of this norm have been adopted (such as in [31]) that
are all equivalent within a constant factor.
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Lemma 2: Let be a symmetrically distributed, bounded
random variable with . Then, is a sub-
gaussian random variable with .
In higher dimensions, a random vector of dimension is

called sub-gaussian if is sub-gaussian for every .
Lemma 3: Let be a collection of independent, zero-

mean, sub-gaussian random variables. Then, is a sub-gaussian
random vector with for some .

Before we move on to proving the RIP (hence NSP) for ma-
trix , we require one more definition. A random vector
of dimension is called isotropic if for all

.

C. NSP of Linearly-processed Path-loss Matrices

We reproduce the recent RIP result [30], [31] concerning ma-
trices with independent columns. We refer the reader to [30],
[31] for the proof.
Theorem 3: Let be a

random matrix whose columns are independent, isotropic
and sub-gaussian with .
Furthermore, let the columns satisfy almost
surely for all . Then, the normalized matrix is

such that if for some

, then with probability at least

. Here, and are
positive scalars that depend only the worst-case sub-gaussian
norm .
As mentioned earlier, the channel matrix

contains independent columns
since the positions of the sensing nodes are fixed. However,
each column contains entries that are not centered, not isotropic
and that are highly coupled. This is because all entries in
are now completely determined by the position of signal

generator . For this reason, it is not immediately clear whether
the columns are sub-gaussian.
To finally prove the NSP of , we show that after

left-multiplication by matrices and , the entries of ma-
trix are sub-gaussian and satisfy the sufficient conditions in
Theorem 3. The following lemmas and theorem constitute the
main theoretical results of this paper.
Lemma 4: The matrix of size

contains independent, isotropic, centered, sub-gaussian
columns.

Proof: See Appendix A.
Lemma 5: For matrix of size ,

we have that almost surely.
Proof: See Appendix B.

Theorem 4: satisfies the NSP of order almost
surely when .

Proof: From Lemma 4, contains independent,
isotropic, centered, sub-gaussian columns. From Lemma 5,

is such that almost surely. Thus, the matrix
satisfies the sufficient conditions of Theorem 3, which

implies that satisfies the RIP and hence the NSP when
. Since the null space of contains the null

space of , the result follows.

Next, we discuss how this sparse recovery algorithm is incor-
porated into the development of a complete cooperative sensing
algorithm. In particular, since we are estimating dynamics rather
than the signal itself and due to the presence of LLN-noise, the
real possibility of error propagation arises. This has not been
heretofore addressed in the literature, to the best of our knowl-
edge. In the next section, the algorithm introduces explicit steps
to control this. The simulations in Section VI demonstrate the
effectiveness of our approach.

V. COMPLETE COOPERATIVE SENSING ALGORITHM

The essential conclusion of the previous section is that the
signal vector can be recovered by acquiring
noise-free measurements if the dynamics of are -sparse.
The complete sensing algorithm is presented in Algorithm 2.

Recall that we do not consider the actions taken post-sensing
and the time taken (equiv. throughput per control channel) to
transmit the measurements to the fusion center as we are only
interested in scaling properties in this work. The algorithm oper-
ates in three modes; in dynamics mode, the algorithm retrieves
signals dynamics incurring logarithmic control bandwidth and
then estimates the recovery error. If the estimated recovery error
is too high, the algorithm switches to partial reset mode in the
next sensing window or slot where the fusion center retrieves
the signal directly while incurring linear bandwidth. Following
partial reset, the system returns to dynamics mode. This opera-
tion is overlaid by a periodic (with a pre-set period) reset mode
where again the fusion center again retrieves the signal directly
incurring linear bandwidth.

Algorithm 2: Sensing algorithm

1: Primary inputs: sensing window sizes , number of sensors
, number of signal emitters , sparsity factor , error

reset period

2: Initialize mode “dynamics”

3: for each do

4: if then

5: During time slots , each sensor
samples the signal of interest times and averages the
same to obtain as per (4).

6: if mode[k-1] = “dynamics” then

7: The fusion center queries sensors
indexed by set according to Algorithm 1 and
computes the change in received signal levels

8: Dynamics mode: Once acquired, the fusion center
estimates the change in measurements

by solving the following optimization problem:

(10)

9: The fusion center sets
, where

is a suitably-chosen thresholding function with that
is used to recover discrete sparse signals in noisy
environments.

10: if then

11: The fusion center then queries and acquires extra
measurements from additional sensors
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. Next, the fusion
center computes

(11)

which essentially represents the average recovery
error on the extra measurements.

12: if , i.e., the estimate is accurate, then

13: Set to be the final estimate of the signal.

14: Set “dynamics”.

15: else

16: Set “partial reset”.

17: end if

18: end if

19: else if “partial reset” then

20: Partial Reset Mode: The fusion center queries all
sensors and uses the measurements to directly
recover the final estimate by solving

(12)
and setting

21: Set “dynamics”.

22: end if

23: else if then

24: During time slots , each sensor
forms as per (4).

25: Full Reset Mode: The fusion center then queries all
sensors and uses the measurements to directly
recover the final estimate by solving (12).

26: Set “dynamics”.

27: end if

28: end for

In a typical sensing slot, the Lasso procedure in Step 8 re-
covers . The recovery is almost surely exact when
is -sparse and when is sufficiently large. However, as this
might not always be the case in reality, error propagation is
a critical aspect that needs to be managed when operating on
the dynamics of the signal. The following remarks describe the
steps taken by the algorithm to address the same:
• The system selects a parameter that represents the
number of sensing slots after which the fusion center must
query all sensors and recover the absolute signal as op-
posed to the dynamics.

• During typical operation, i.e., when , we
estimate the accuracy of in Step 11 immediately fol-
lowing compressed sampling in Step 9. The technique is
commonly referred to as cross-validation[32]. If the esti-
mated error is larger than the threshold , we queryall re-
maining sensors and recover the absolute signal in the
next time slot.

• Once more, due to the sources of noise described above,
the vectors retrieved by Lasso in ((10) will almost never
be truly sparse. Thus, we introduce a thresholding function

to recover a discrete signal.

Fig. 2. Illustrative example of grid model used in simulations with .

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
sensing algorithm using numerical experiments.

A. Simulation Setup

The simulation setting is described in the following:
Network geography- We consider a square region with side

length 1 kilometer. We partition this square area into
micro-cells, each of dimension , which is suf-
ficiently small to ensure at most one signal generator or sensor
per micro-cell. We index the micro-cells by ,
counted column-wise as shown in Fig. 2. Each micro-cell con-
tains one potential signal generator that is located at the center
of the square micro-cell. The sensors are positioned one per
micro-cell, i.e, .
Signal dimension and channel state knowledge- By virtue

of the above geographical model where we have “discretized”
the locations of the sensors and signal generators, the fusion
center may now pre-compute based on the grid. This re-
moves the need for real-time knowledge about the positions of
the signal generators. However, this comes at a price, namely,
an increase in the dimension of the signal from to . Thus,
the value , is non-zero if a signal gener-
ator is present and active at micro-cell on the grid.
Signal activity- In our simulations, we assume that the sig-

nals are binary-valued, i.e., . The
activity of each signal generator or micro-cell is modeled
as a Markovian ON-OFF process where the transition proba-
bility from 0 to is and from to 0 is
. The probability that the signal changes state from sensing

window to the next can be computed as
. Thus, on average or roughly sig-

nals change their state, which reflects the sparse dynamics. As
per our system model, we assume that is known and thus, we
are only interested in estimating the support at time . Hence-
forth, the true support at time be given by

, while the estimated support by Algo-
rithm 2 is given by .
Post-recovery thresholding- We use a simple per-element

thresholding function

else
(13)

to recover the actual sparse entries themselves. Note that we
have to account for negative values for since represents
differences in (10). Based on empirical evidence, we select
as this value is seen to maximize the performance metric that

is discussed next.
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Performance metric- To measure the signal recovery accu-
racy of our algorithm, we use set similarity. Given two sets

, the similarity is defined as

(14)

In the context of our sensing problem, i.e., setting
and , we see that essentially counts the fraction of
elements that are correctly recovered at time and may alterna-
tively be interpreted as one minus the normalized (by ) ham-
ming distance between the recovered and the true signal. Now
since we are dealing with a stochastic, time-varying system, we
are interested in the long-term average similarity that is given
by

(15)

where is the length of our simulation counted as the total
number of sensing windows. We select for our
simulations.
Other algorithm parameters- For the initial set of ex-

periments with a sparsity factor of , the number of
measurements for recovery and error measurement are set to

and
with associated query sets6

and . Later, when we ex-
plore the performance of our algorithm under different sparsity
factors, we choose a different number of measurements. The
regularization parameter is set to . The remaining pa-
rameters such as , and are varied in our experiments.
Control bandwidth- Note that the parameters , , ,

and have a direct bearing on the bandwidth consumed by our
algorithm. To analyze the bandwidth consumed in Algorithm
2, we basically count the fraction of time spendt in each of the
modes in Steps 8, 20 and 25. For a total communication duration
of sensing windows, i.e., , let the time spent in
dynamics mode be given by . Then, the bandwidth consumed,
is given by

otherwise
(16)

and the savings over full (linear) control bandwidth can be ex-
pressed as . The control bandwidth, in addition to
the similarity measure in (14), is an important evaluation metric,
one that forms the core motivation of this paper.
Through the remainder of this section, we explore the many

interesting tradeoffs that are inherent in our proposed sensing
design in the context of the above parameters.

B. Simulation Results

Having described our simulation setup in detail, we now
proceed to analyze the performance of our algorithm. Since
the “optimal” naïve algorithm in itself does not achieve perfect

6The query set was generated uniformly at random. Our experiments showed
that the exact choice of sets did not affect the results much for the simulation
setup under consideration.

Fig. 3. Average similarity versus window size with sparsity factor of
.

recovery due to LLN noise, we adopt the following method-
ology for comparison. We fix a sensing window size and
determine the similarity performance of the naïve algorithm
with full linear bandwidth, i.e., set in Algorithm 2
with . We then run and tune Algorithm 2 over the pa-
rameters and while fixing the same sensing window
size . We record the similarity and bandwidth performance
of Algorithm 2 over the entire space of parameters .
We repeat this process over many sensing window sizes

. We show
that with careful tuning, Algorithm 2 consumes considerably
lesser bandwidth while achieving an average similarity that is
within of the optimal full linear bandwidth approach in the
worst-case.
In Fig. 3, we plot the similarity performance of the linear

bandwidth algorithm over many sizes of sensing windows
for a sparsity factor of or . We see that at
around , we achieve near-perfect recovery. The
exact similarity values are available in Table I. Next, we
proceed to tune Algorithm 2 with the goal of achieving an
average similarity that is “close” to the naïve algorithm while
consuming lesser bandwidth. In particular, we study the accu-
racy-bandwidth performance of our approach while varying
the error threshold and the reset period over the space

. This amounts
to a total of configurations per window size .
The results are tabulated in Table I. Note that in Table I, we
have introduced the following additional metric that succinctly
summarizes the dual requirements of accuracy and bandwidth
reduction:

(17)

where is the difference in long-term average simi-
larities between the naïve and compressive-sampling-based al-
gorithm. To compare the two approaches, for each , we se-
lect the configuration that minimizes (17), thereby balancing
accuracy vs. bandwidth savings, as our competing configura-
tion. As an example, the smallest value of (17) for is
highlighted in Table I. Thus, we can construct a similarity vs.
window size curve for our compressive sampling algorithm in
Fig. 3.
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TABLE I
ACCURACY-BANDWIDTH RESULTS FOR ALGORITHM 2

From Fig. 3, we see that as the window size increases, the
performance of the compressive sampling algorithm approaches
that of full linear bandwidth. Furthermore, we see that over all

, we are at
worst within of over the naïve algorithm, albeit while con-
suming significantly less bandwidth. In particular, from Fig. 3,
we observe that at moderately large values of W such as

, we can achieve within of the optimal accuracy while
consuming at least lesser bandwidth. As we move to larger
values , we are now within of the optimal ac-
curacy while consuming at least less bandwidth. The exact
bandwidth values can be found in Table I. Recognizing that dif-
ferent applications may give rise to various alternatives to (17),
e.g., bandwidth savings might be more less important than ac-
curacy, one may also consider the configuration that yields the
second smallest value of (17) as the competing configuration.

Fig. 4. Average similarity versus window size for (a) different sparsity
factors and (b) an alternate signal model.

From Table I, we see that the bandwidth savings when consid-
ering the second smallest values are around – .
Next, we study the performance of our algorithm under dif-

ferent sparsity factors and signal models. In Fig. 4(a), we plot
similarity results for different sparsity factors of and ,
i.e., . The number of measurements are set to

for the case and for
the case. As with the earlier experiment, for each , we
record the accuracy-bandwidth values of the -config-
uration that minimizes (17). For the case, by reducing the
number of observations, we are now able to save around in
bandwidth (uniformly across all ) while maintaining roughly
the same level of similarity performance as compared to the case
with the sparsity factor. On the other hand, with a sparsity
factor of , by retaining the same number of measurements
at , we lose at most in average similarity
across the window sizes of interest. The bandwidth reduction in
this case is around uniformly across all .
In our final experiment, we modify the signal activity model

to the following:We choose five signal generators uni-
formly at random and flip their states. Note that this model en-
sures that the sparsity factor is exactly whereas the previous
model guaranteed this sparsity factor in an expected sense. The
results of this experiment are presented in Fig. 4(b). We clearly
see that the linear bandwidth achieves perfect recovery as early
as . The performance of compressive sampling is sig-
nificantly better too, with a bandwidth saving of around
uniformly across all . The results in Figs. 3 and 4(b) clearly
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establish the impact of the sparse dynamics model on the per-
formance of the recovery algorithm.
Thus, by exploiting the structure in the emitted signal, we are

able to achieve significant savings in control bandwidth over the
naïve algorithm while not overly compromising on recovery ac-
curacy. Recognizing that the number of parameters that control
the algorithm is quite large, we believe that with more exten-
sive tuning/optimization of the various components, e.g., error
measurement budget , further savings might be possible, es-
pecially as the scale or dimension of the problem grows. Finally,
we note that the proposed compressive sampling approach has
been applied to (even) more general spatial distribution models
such as one where both the sensor and signal nodes are thrown
uniformly at random on a square area, in the absence of a grid.
The results are as promising but not presented here due to lack
of space.

VII. CONCLUSIONS

In this paper, we apply ideas from the field of compressive
sampling to reduce the control bandwidth in cooperative sensing
systems. We are particularly interested in settings where the dy-
namics of the signals being observed are sparse. This is indeed
what one typically expects for systems that exhibit a time-scale
separation between the sensing network and the signal emitting
process. We prove theoretical RIP-/NSP-based recovery results
for path-loss matrices in networks with circular geometries. We
then develop a complete cooperative sensing algorithm that ad-
dresses key issues such as error propagation that are certain to
arise in practice. We demonstrate that our approach can pro-
vide significant bandwidth savings over the naïve linear band-
width case under more general spatial distributions. Extending
the theory to cover these general spatial distributions remains
an open problem that deserves attention.

APPENDIX A
PROOF OF LEMMA 4

Recall that represents the sub-matrix of containing
the rows specified in . The entries of sub-matrix are
identically distributed. This follows from the observation that
any two sensor nodes on the circle of radius will perceive the
same distribution of signal nodes that are uniformly distributed
on a circle. Recall that the transformation essen-
tially subtracts rows of corresponding to diametrically op-
posite users on each circle. Thus, the columns of are inde-
pendent and all entries are centered.
The next step is to show that the entries

are symmetric. This is does not follow immediately from the
fact that and are identically distributed when indices
and come from the same partition since they are not
independent. Hence, we appeal to the concept of exchangeable
random variables, which is defined below for the special case of
a pair of random variables.
Two random variables and are called exchangeable if

their joint cumulative distribution function (cdf) is symmetric,
i.e., if .It is known the difference of
two identically distributed, exchangeable random variables is
indeed symmetric [33]. Thus, we only need to establish this
property for the case when and come from the same

circle, say , since the definition of in (8) precludes any other
possibility. To establish that and are exchangeable,
we compute the joint cdf , when and
come from the same circle , as follows

where we have modified the distance function as

(18)

for notational convenience through the remainder of the proof.
The set is defined as

and denotes the volume of the set . The volume of set
can be expressed as a sum of the volumes

corresponding to smaller sets. To that effect, we define

and can thus write

From this characterization, we can immediately conclude that
, which gives

our the desired result that and are exchangeable. It is
clear from the above arguments that exchangeabilty essentially
follows from the uniform distribution of the signal emitters.
The symmetry of is crucial for our next step where we

argue that columns of remain independent (denoted
by ). By definition, . Thus, to prove

that the columns of are independent, we
need to show that for any arbitrary and .
Since the Bernoulli random variables are independent across
rows and since , we clearly have that

. Thus, we only need to establish that
for or equivalently that . But this

follows from the symmetry of which means that knowledge
of reveals no information about the random variable .
Thus, the columns of are independent. In addition, they are
identically distributed and hence we can now focus on studying
the properties of column without loss of generality.
The random vector is isotropic since

and
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for , implying

that
To prove that is sub-gaussian, we first condition on the
position of the first signal emitter . This will allow us
to apply Lemma 1 and Lemma 2 since is now completely
known thereby making a collection of independent random
variables. The elements are symmetric and bounded with

when conditioned on position .

Lemma 6: There exists such
that

Proof: By definition, the distribution of for
depends on the distance between the corre-

sponding diametrically opposite sensors on circle along
with the distribution of the first interfering user. Since this dis-
tance always remains the same independent of and , the result
follows.
Hence, by Lemma 2 and since , is sub-gaussian

with where .
Here, we have introduced notation to indicate ex-
plicitly that we have conditioned on the location of the first in-
terfering user. Now, from Lemma 1, we conclude that is a
sub-gaussian vector when conditioned on the location of the first
signal node with . However, since
the sub-gaussian norm computed above is inde-
pendent of , this implies that is a sub-gaussian vector
with . This can be seen by applying the Law of
Total Probability to the definition of sub-gaussianity in Lemma

APPENDIX B
PROOF OF LEMMA 5

To show almost-sure convergence of the norm of , we need
to prove that such that

where the probability is computed over the random location
. We instead prove the following more

general statement that such that

(19)
Note that (19) is a completely deterministic convergence state-
ment in contrast to the earlier probabilistic statement. From the
proposed query protocol in Algorithm 1 , we see that the number
of sensors selected for feedback is a monotonically increasing
function of for all circles. This means that we can study the
convergence of the norm for any one circle (a sub-vector of )
and draw conclusions about the norm concentration of the en-
tire vector . Consider the first partition of sensors on circle
and let the size of this partition be . Then, we see that

as and hence, we can shift our focus to
proving the property

(20)
where in fact . Recall that the squared-distance between
a signal generator located at and sensor node on is
given by where is defined in (18) and where

. Now let where

is given in the definition (1). Then, can equivalently be
expressed as . Now, we
proceed to prove (20) by observing that

(21)
This conclusion follows since the expression on
the left is essentially the Riemann sum of the
integral on the right. This means that for any given

, such that when , we have that

. Next, we calculate

(22)

By substituting (18) in (21) and (22), we see that the variable of
integration may be switched and hence

(23)

which implies that

.

Convergence in (20) follows since is bounded below by
Lemma 6 and the fact that
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