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Abstract—We study the problem of allocating limited feedback
resources across multiple users in an orthogonal-frequency-divi-
sion-multiple-access downlink systemwith slow frequency-domain
scheduling. Many flavors of slow frequency-domain scheduling
(e.g., persistent scheduling, semi-persistent scheduling), that adapt
user-sub-band assignments on a slower time-scale, are being con-
sidered in standards such as 3GPP Long-Term Evolution. In this
paper, we develop a feedback allocation algorithm that operates in
conjunction with any arbitrary slow frequency-domain scheduler
with the goal of improving the throughput of the system. Given
a user-sub-band assignment chosen by the scheduler, the feed-
back allocation algorithm involves solving a weighted sum-rate
maximization at each (slow) scheduling instant. We first develop
an optimal dynamic-programming-based algorithm to solve the
feedback allocation problem with pseudo-polynomial complexity
in the number of users and in the total feedback bit budget. We
then propose two approximation algorithms with complexity fur-
ther reduced, for scenarios where the problem exhibits additional
structure.

Index Terms—Convex relaxations, limited feedback, multi-user
feedback allocation, random vector quantization, sub-modular
functions, throughput-optimal, uplink feedback.

I. INTRODUCTION

O RTHOGONAL-FREQUENCY-DIVISION-MUL-
TIPLE-ACCESS (OFDMA) is the multiple-access

technology of choice for many current and future wireless
standards such as 3GPP Long-Term Evolution (LTE), IEEE
802.16e (WiMAX) and Long-Term Evolution Advanced
(LTE-A). With the singular goal of achieving higher through-
puts in order to keep pace with the ever-growing suite of
data-hungry applications, OFDMA systems typically operate
in conjunction with a fast frequency-domain scheduler that
allows for aggressive adaptation to the fading conditions of the
channel. Here, user-sub-band assignments are typically made
once every 1 ms, 2 ms or 5 ms depending upon the standard
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under consideration. In the quest for higher data rates, the
overhead incurred in enabling such fast frequency-domain
scheduling is often ignored.
Primarily, there are two types of overhead that facilitate

user scheduling in an OFDMA downlink system. These are:
the overhead incurred in (i) communicating user-sub-band
assignments and in (ii) collecting channel state information
(CSI) from all users commonly referred to as the process of
feedback. To address the first issue, recently, there has been
an increasing interest in “slow” frequency-domain sched-
uling [1]–[5] instead of its faster counterpart for applications
where the overhead demands of the latter do not justify its
use. For example, LTE adopts (semi-)persistent scheduling
for voice-over-IP applications that typically do not have high
throughput demands [1]–[4]. Here, user-sub-band assignments
are decided on a slower time-scale while link adaptation (on the
fast time-scale) specifically in the semi-persistent approach, is
achieved through Hybrid Automatic Repeat Request (HARQ)
re-transmissions. Li et al. [5] show that slow OFDMA sched-
uling can achieve throughputs close to the ideal case in many
real-world scenarios.
Moving on to the implications of (ii), we borrow an example

of a typical LTE setting recently provided in Ouyang et al. [23]:
In LTE, the smallest unit of bandwidth that can be assigned to
a user for data transmission is called a resource block, which
is essentially a group of OFDM sub-carriers. If we consider a
10 MHz LTE system with resource blocks shared by

users equipped with standard 4-bit codebooks (mod-
ulation/coding tables) at the mobiles, we have a total feedback
bandwidth of per sub-frame
[6]. Given a typical uplink data rate of 48 kb per sub-frame, this
consumes 20% of the uplink capacity, clearly making feedback
bandwidth consumption an important bottleneck. This obser-
vation, amongst others, has motivated the development of lim-
ited feedback techniques [7]–[15]. In general, adapting the size
of the codebook (e.g., CSI table at the mobiles) [8]–[10] and
sub-carrier grouping [11]–[15], subject to a constraint on the
total available feedback bandwidth, are two of the most popular
multi-user limited feedback approaches in the literature. In the
former, the size of the codebook on each OFDMA sub-band, and
potentially the codebooks themselves, are periodically chosen
based on the “state” of the network. In the latter, feedback reduc-
tion is achieved through a grouping technique where one CSI
report is generated for a group of OFDMA sub-bands.
In this paper, we propose a feedback allocation policy that

operates in conjunction with a slow frequency-domain sched-
uler assumed given. In particular, given a scheduling assignment
on a slower time-scale, i.e., once every time slots, the feed-
back allocation policy decides user codebook sizes again on the
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same time-scale. Thus, in the context of past literature, we focus
on the former limited feedback approach of choosing dynamic
codebook sizes as a function of the network state (e.g., chan-
nels, queues, etc.), a process that we call feedback allocation
henceforth1, to address the second type of overhead. The differ-
ence between our approach and past work on dynamic codebook
selection is that our algorithm adapts to queue sizes and hence
user applications, in addition to the channel state thereby gen-
eralizing earlier methods.
The main contributions of this paper are the following:
1) We propose a throughput-optimal feedback allocation
policy that overlays a given slow scheduler. The proposed
policy takes the form of a weighted sum-rate maximiza-
tion problem that needs to be solved once every time
slots. Throughput-optimality is with respect to the space
of all possible feedback allocation policies while fixing the
particular data scheduler of interest.

Efficient algorithmic implementability of these policies is a crit-
ical design requirement, and this is the focus of our remaining
contributions. Our focus is aligned with several papers over the
last decade, which study the algorithmic aspects of queue-based
scheduling for specific network structures and resource allo-
cation problems (see, e.g., [24]–[28] and references therein).
Needless to say, the difficulty in solving the weighted sum-rate
maximization problem in each slot is intricately tied to the re-
source being optimized. Recently, significant strides were made
by Tan et al. [27], [28] in solving the joint queue-based sched-
uling and power control problem that has attracted much in-
terest over the years (see [26] and references therein). Here,
the possible transmission rates in each slot come from a contin-
uous region induced by all possible power allocations. The au-
thors [27], [28] solve non-convex power-control problems (e.g.,
weighted sum-rate) accurately and efficiently by using solutions
to related convex problems (e.g., max-min rate) in an intelligent
manner. Optimality is established under many channel settings.
While the lack of convexity is due to interfering users in [27],
[28], in the model by Huang et al. [26], self-noise due to channel
estimation error forms the cause. The authors [26] nevertheless
propose both optimal and sub-optimal approaches with varying
degrees of complexity. In contrast to power allocation, in our
case, the region of possible rates in each slot is discrete and
is induced by all possible splits of the total feedback budget.
This allows us to leverage many powerful tools from the area of
combinatorial optimization. With the exception of the work of
Ouyang and Ying [23], the problem of feedback allocations has
not been considered in the past, to the best of our knowledge.

2) We develop a dynamic programming algorithm that
solves the weighted sum-rate feedback allocation problem
with pseudo-polynomial complexity in the number of
users and the total feedback bit budget. This approach is
exact and requires no assumptions on the structure of the
weighted sum-rate function.
3) We show that in many practical wireless systems, the
weighted sum-rate is non-decreasing and sub-modular in
the feedback budget. Using this observation, we leverage

1One can in general consider a more comprehensive feedback allocation
policy that includes both codebook-size adaptation and sub-carrier grouping.
However, such policies are beyond the scope of this paper and a subject for
future study.

sub-modular optimization results from combinatorial
optimization (e.g. [19]–[21]) and propose a reduced-com-
plexity algorithm with an approximation guarantee of

.
4) Multiple-input-single-output (MISO) beamforming is
being considered as a potential transmission mode in the
Long Term Evolution standard [1]. For such systems, we
show that when the popular Random Vector Quantization
codebook [17], [33], [34] is used, we are able to reduce
the complexity even further and provide an approximation
guarantee of 1/2.

The rest of this paper is organized as follows. In Section II,
we introduce the system model for feedback allocation and
slow data scheduling. In Section III, we discuss the notion of
throughput-optimality in queueing networks and introduce a
throughput-optimal joint feedback allocation and slow data
scheduling policy. In Section IV, we solve the optimal online
feedback optimization problem for both objectives while in
Section V, we investigate methods of reducing the complexity
of the optimal online optimization problem by exploiting
more structure in the objective function. Simulation results
are presented in Section VI. Concluding remarks are made in
Section VII.
Notation: denotes element of matrix while

denotes element of vector . Given matrices ,
means , . ,

and represent the non-negative real numbers, non-negative
integers and positive integers respectively.

II. SYSTEM MODEL

We consider the downlink of a frequency-division-duplex
OFDMA system with sub-carriers/sub-bands and users
that operates in slotted-time. The network model is described
below:
Channel State: The true supportable rate for user on sub-

band at time is given by . We assume that is er-
godic and comes from a finite but potentially large set . We
assume that the mobile has perfect knowledge of the channel
state in every time slot. The cumulative distribu-
tion function for rate is given by

, , where denotes a large-scale fading
gain that is dependent on user position and comes from a fi-
nite set . Users change positions once every slots
where denotes the large-scale fading coher-
ence time. For ease of notation, we introduce a counter

to keep track of the slower large-scale fading time-scale,
i.e., . For convenience, we also
set making implicit the dependence on
and . Note that the large-scale coefficient is typically only
distance-dependent and independent of frequency allowing us
to omit the index when representing it. We assume that the
base station has perfect knowledge of and all distribu-
tion information . Most importantly, represents the
time-scale at which feedback optimizations and scheduling as-
signments are decided.
Traffic Model: Each user , has a queue of

untransmitted packets with queue-length that is maintained
at the base station with associated arrival rate .
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Feedback Model: The base station allocates a feedback
budget of bits to user such that
where represents the total limited feedback budget of the
system. Let the sub-carriers in our OFDMA system be in-
dexed by . Assume that user is allocated
sub-bands by the slow scheduling algorithm.
Given a budget of bits by the base station and an as-
signment of size , the user employs
a codebook of size bits for sub-band
where ; represents the
per-sub-band budgets for user that are chosen by the user to
maximize rate.
Quantized Channel State: Given a budget of and a

sub-band assignment , the actual post-quantization rate
achieved by user at time where , on sub-band

is denoted by . Note that the ac-
tual achievable rate is determined by the quantization budgets
(along with the codebook of course), that are decided on the
slower time-scale indexed by , as well as the true state of the
channel at current time .
Network State: The network state at time is given by

, which is a collection
of channel distributions and queue lengths on the slower
time-scale. In general, the feedback allocation and slow sched-
uling policies make allocation and assignment decisions,
respectively, for time slots based on state .
Expected Rates and Virtual Users: Let

denote the expected rate (through
the course of time slots) for user on sub-band . The total
expected rate that is achieved by user given a sub-band
assignment and allocation is then given by

. We make an observation at this
point that helps us simplify the presentation of the results. Since
the rate is additive across sub-bands, and is a function of a
band-independent channel gain, one may consider and analyze
an equivalent virtual system where the number of users is equal
to the number of sub-bands. This removes the dependence of
the feedback allocation policy on the assignments . In
other words, the equivalent system would consist of users
assigned to sub-bands with feedback allocations
and rates . As for the queue lengths, one can
simply “replicate” the same queue length for all virtual
users , i.e., . Once the op-
timal feedback allocation and virtual rates
are computed, we can map back to the original system by
calculating the true rate for user as .
Through the remainder of this paper barring the final simula-

tions section, we study the equivalent system mentioned above
where we have users assigned to sub-bands. Having defined
all the ingredients of our OFDMA downlink network, we move
on to the next section where we develop the feedback allocation
policy that periodically makes decisions based on the network
state.

III. THROUGHPUT-OPTIMAL FEEDBACK ALLOCATION WITH
SLOW SCHEDULING

In this section, we develop a feedback allocation (codebook
size adaptation) protocol that when operated in conjunction with

a given slow data scheduling policy, guarantees throughput-op-
timality. This means that given an arrival rate vector , if there
exists any scheduling policy that can guarantee bounded ex-
pected queue sizes, then so can the proposed policy, which falls
under the MaxWeight family of policies that was pioneered by
Tassiulus and Ephremedis [29].
As mentioned towards the end of the last section, we now

have a virtual system with users assigned to sub-bands with
feedback allocations , rates
and queues . Through the remainder of this paper,
until Section VI, we replace the index by for convenience,
with the implicit understanding that we are dealing with virtual
users. The feedback allocation policy is presented below.

Algorithm 1:MaxWeight feedback allocation with slow data
scheduling

1: while do

2: if then

3: Set

4: Solve

(1)

5: end if

6: end while

A few remarks about the above algorithm are in order:
(i) Throughput-optimality: The algorithm is throughput-op-
timal with respect to the space of policies that make feed-
back allocation and assignment decisions once every
slots. This means that if any policy that makes feedback
allocation and assignment decisions once every slots
can stabilize a set of arrival rates , then so can the
proposed policy in (1). Let the region of rates that can be
stabilized by the policy in (1) be denoted by . The above
notion of throughput optimality for queueing systems has
been used extensively in the literature (see [24], [25], [29],
[30] and references therein). We do not prove throughput-
optimality as it follows from standard Lyapunov tech-
niques that are well-established in the queueing literature
[30].

(ii) Computational complexity: While the optimization
problem characterizes optimal performance, solving it
exactly may be computationally prohibitive. In fact, a
brute-force approach to solving (1) would incur a com-
plexity of .

The final remark forms the basis for the remainder of this
paper. The brute-force approach to solving (1) is clearly in-
feasible from an implementation perspective. We take up the
issue of complexity starting in Section IV and propose a host
of computationally-efficient algorithms to solve the feedback
allocation problem in (1). We wish to highlight that all algo-
rithmic developments can be applied to full-buffer (saturated)
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systems where scheduling schemes such as proportional fair-
ness become applicable. This is because most schedulers of in-
terest solve a weighted sum-rate maximization problem at each
instant [31].

IV. OPTIMAL FEEDBACK ALLOCATION THROUGH
DYNAMIC PROGRAMMING

In Section III, we have established that for queue stability, we
are interested in solving the following online weighted sum-rate
maximization problem

(2)

The form of the functions would of course
depend on the underlying physical system and is intimately
connected to the computational complexity of the problem.
In fact, for complex modulation/coding schemes the function
might only be available as a look-up table. While the opti-
mization problem characterizes optimal performance, solving
it exactly may be computationally prohibitive. Thus, the focus
of this paper becomes algorithmic. We propose novel solutions
to (2) through Sections IV and V that explore the natural
tradeoffs between accuracy, complexity and the structure of the
weighted sum-rate function. We start by showing that by using
Dynamic Programming, the exact solution can be obtained in
pseudo-polynomial time.
Theorem 1: The online resource allocation problem (2) can

be solved exactly in time .
Proof: Order the users arbitrarily. We choose to work

with the existing order w.l.o.g. For any given arbitrary weights
, , define to be the weighted

rate for user given we allocate bits to this user and define
to be the

maximum weighted sum-rate if we have bits to allocate
amongst the first users with . It follows that

, . We can write a recursion
. The

optimality of this recursion can be established using stan-
dard induction arguments similar to the two-dimensional
knapsack problem [16]. This rule gives rise to a table with
a total of elements. In order to compute element

in the table, using our recursion, we incur a com-
plexity of . Hence, the total complexity can be
calculated as

.
Thus, we have proposed an exact solution using dynamic pro-

gramming, which has pseudo-polynomial2 complexity
and which is applicable to any type of weighted sum-rate func-
tion. Therefore, in contrast to the joint power-control and sched-
uling problems in [26]–[28] and owing to the discrete nature
of the feedback allocation problem we consider in (2), we do
not require any special channel-induced properties of the objec-
tive function such as those imposed on its partial derivatives in
Lemma 2 of [27], in order to find an optimal solution.

2An algorithm has pseudo-polynomial complexity if its running time is a
polynomial in the size of the input in unary. The size of the input to (2) in unary
at most where .

Note that in Theorem 1 with , is equal to
(2) and dynamic programming essentially gives us a technique
to compute by solving smaller sub-problems. The fol-
lowing toy example with users and a total bit budget of

bits illustrates a typical series of computations en route
to calculating .
Example (Dynamic Programming): Order the two users ar-

bitrarily, say user 1 first followed by user 2. Then, initialize the
following weighted rates appropriately for , 1, 2,

Once initialized, we then compute value

. Finally, we calculate

the desired optimal weighted sum-rate with two users and two
bits.
To understand the computational requirements in the con-

text of a real-world system, consider the LTE example that was
presented in the introduction to this paper. Here, we had the
following parameters: , with 4-bit modula-
tion/coding tables at the mobiles. To model the limited feedback
constraint, let , , which has an
intuitive interpretation of being able to provide full feedback to
at most users; represents no constraint on feedback re-
sources for this setting. Then, a feedback bandwidth of
corresponds to a complexity of roughly operations,
which is clearly quite daunting. Thus, while the dynamic pro-
gramming approach is indeed viable for sufficiently small sys-
tems, we require algorithms with faster running times that might
be less accurate. This forms the focus of the remainder of this
paper.

V. REDUCED-COMPLEXITY RESOURCE ALLOCATION

In this section, we show that if the weighted sum-rate
functions have additional structure, we can develop faster al-
gorithms. As is often done for computationally hard problems,
one seeks efficient but potentially sub-optimal algorithms,
but then proves lower bounds on the performance. In this
vein, we develop more computationally efficient algorithms
that approximately solve (2), and provide theoretical lower
bounds on their performance. The long-term performance of
these approximate algorithms in achieving queue stability is
characterized by Theorem 2 below. The proof is omitted as
these are well-known results in queuing systems.
We say that an algorithm is a -approximation,
, to (1) if it provides a solution such that

.
The following theorem is a generalization of the original result
by Tassiulus and Ephremedis [29]. It essentially states that
local approximation is consistent with the long-term objectives
we consider.
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Theorem 2: If , , then a
-approximation to the per-instant scheduling rule

stabilizes the system.
Recall from remark (i) in Section III that represents the re-

gion of rates that are stabilizable by Algorithm 1. The theorem
essentially states that for queueing systems: If we calculate a
-approximate solution to (2) in every time slot, one can achieve
a -fraction of the throughput region. This result paves the way
for the design of computationally-efficient algorithms, by con-
structing approximations to (2).
In Section V-A, we consider weighted sum-rate functions that

are non-decreasing and sub-modular in the feedback bit alloca-
tion. In short, sub-modularity refers to diminishing returns with
respect to the allocation of resources. This is a property that is
exhibited quite frequently by wireless systems in general, e.g.,
point-to-point capacity scales logarithmically in transmit power,
achievable rates in multiple antenna precoding systems exhibit
diminishing returns in the size of the codebook [17], [18], etc.
In the developments that follow, we exploit this property in
order to propose a greedy feedback allocation algorithm that
has complexity with approximation factor
of . Our main contributions are contained in Lemma 2
and Theorem 3.
In Section V-B, we focus on a class of weighted sum-rate

functions that arise in downlink scenarios where the base sta-
tion is equipped with multiple antennas and performs transmit
beamforming with quantized beamformer feedback. This is a
popular transmission strategy that been extensively researched
[17], [33]–[35] and adopted into standards such as W-CDMA
[32] and LTE [1]. We show that for this choice of physical
layer scheme, the weighted sum-rate maximization problem in
(2) is sub-modular for certain types of beamformer quantizers.
We illustrate the improvement in computational performance by
using the LTE example from the introduction.

A. Reduced-Complexity Resource Allocation Through
Sub-Modularity

We begin this section with a quick primer on sub-modular
optimization (summarized from [19]–[21]) that will be useful
for our purposes. In keeping with the literature, the approach
pursued in this section is graph theoretic in contrast to the rest of
this paper. A sub-modular function is defined as follows: Let
be a finite set and represent all its subsets. Then,

is a non-decreasing, normalized, sub-modular function if
(normalized), when

(non-decreasing) and if
and (sub-modular).

The following property of sub-modular functions is useful for
our analysis.
Lemma 1: If , , are sub-modular on set
, then , is a sub-modular function for

.
Having provided the definition of sub-modularity along with

a useful property, we now introduce the kinds of constraint sets
that are typically considered in the context of sub-modular op-
timization: (i) A set system where is a finite set and
is a collection of subsets of is called an independence system
if and satisfies if for , then . (ii) An

independence system is called a matriod if it satisfies the fol-
lowing additional property; if , and , then
there exists such that . (iii) Set is a
uniform matroid if for .
The optimization problem that has been considered in the

context of sub-modular functions and independence systems is

(3)

Since many NP-hard problems can be reduced to a sub-mod-
ular function maximization over an independence system, sig-
nificant research has focused on developing efficient approxi-
mation algorithms. In particular, the performance of the greedy
algorithm in solving special cases of (3) has been extensively
studied. Nemhauser et al. [22] considered problem (3) over uni-
form matroids and showed that the greedy algorithm provides a

approximation factor for this special case. Please refer
to Goundan et al. [19], Calinescu et al. [20] andVondrak [21] for
a summary of related results on sub-modular function optimiza-
tion over other families of constraint sets. The greedy algorithm
is presented later in the section in the context of our specific
feedback allocation problem.
Sub-Modularity in Feedback Allocation: We now show that

the optimal bit allocation problem in (2) may by posed as a
sub-modular maximization over a uniform matroid when the
rates exhibit sub-modularity. Let be a bipartite
graph where contains user nodes and contains bit
nodes, both ordered arbitrarily, i.e., and . Let
contain the set of all edges

. Given , we define
to represent the number of bits allocated to user , i.e., .
The independence system we are interested in is

where is the total bit budget. By definition,
is a uniform matroid and furthermore, is the set of all valid
allocations since if , then
and if , then . Now
the weighted sum-rate maximization problem in (2) in time slot
may be re-written as

The following result becomes immediate.
Lemma 2: If the function is non-decreasing and

sub-modular in the bit allocation , for
all users , and channel states , then

is a normalized, non-de-
creasing, sub-modular function on set for all channel states

.
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Proof: The result follows from Lemma 1.
Hence, the greedy algorithm can be used to solve the optimal

bit allocation problem in (2) with approximation factor .
The greedy algorithm for the specific case of our bit allocation
problem in time slot can be written as follows where

denote the increase in rate or
marginal utility if user is given one extra bit.

Algorithm 2: Greedy feedback allocation

1: Set , which is essentially a bit counter for each
user

2: Compute marginal utilities .

3: while do

4: Sort this list of marginal utilities.

5: Assign a bit to user who is on top of this list.

6: Update and re-compute

7: end while

We end this section by investigating the complexity of the
above algorithm in the following theorem.
Theorem 3: The greedy algorithm approximates the optimal

bit allocation problem in (2) to within a factor of while
incurring complexity .

Proof: Step 2 of this algorithm incurs complexity
for the first iteration . Subsequently, every

re-sort in Step 3 costs with a maximum of such
re-sorts. Thus, the total complexity is .
For the proof of the approximation factor, please refer to
Nemhauser et al. [22].
In the context of the LTE example introduced earlier, this

means that by exploiting the sub-modular structure in the rates,
we reduce the complexity from to operations.
Before we move on to the next section, we provide an example
of a common wireless setting where sub-modularity is exhib-
ited. Consider a traditional point-to-point single antenna wire-
less link with a -bit modulation-coding table at the receiver.
The modulation-coding table is constructed as follows. Given
a non-negative real number in the interval , , we
uniformly partition the interval into sub-intervals and imple-
ment the quantization scheme , ,

. Then, for any fixed position-dependent gain
of , the achievable rate of the system in a fading environment
can be written as

(4)

where is a truncated exp(1) random variable that has a max-
imum value of . The probability density function for such
a random variable is given by where

is a normalization factor. Note that this example considers
a traditional continuous fading model. One may obtain its dis-
crete version thereby conforming with our system model, by
sampling the support . Thus, the rate expression in (4) may

be treated as an approximation that becomes increasingly accu-
rate as we discretize the support more finely. For the case ,
the rate (4) can be explicitly computed as

Setting , the normalized incremental
gain with one extra bit can be calculated as

by splitting odd and even terms

(5)

Through simple numerical enumeration, one may confirm that
the 1-bit rate gain given above in (5) decreases over realistic bit
sizes of and hence, is a sub-modular
function. With a little more algebra, one may derive a similar
result for the general case with any arbitrary, non-negative, po-
sition-dependent gain .
In the next section, we provide another example of a wireless

system that exhibits sub-modularity. In particular, we consider
a class of multiple antenna wireless links and solve (2) in the
context of these systems.

B. Reduced-Complexity Resource Allocation For MISO
Systems

When the user rates are sub-modular in the bit alloca-
tion in every channel state , we use the greedy algorithm
in Section V-A to approximately solve the online feedback al-
location problem in (2) with complexity .
In this section, we show that 2 1 MISO quantized transmit
diversity systems exhibit sub-modular expected rates bringing
into use the results from the previous section. Furthermore, in
the context of these specific transmission schemes, we develop
an approximation algorithm based on convex relaxations with a
further-reduced complexity of and an approxima-
tion guarantee of 1/2 for typical operational signal-to-noise ra-
tios (SNR). Thus, aside from the usual impact on precision that
is typically omitted from running time calculations, the running
time of our algorithm no longer depends on the feedback budget
. In the example above, the running time is reduced even fur-

ther from operations to roughly 300 operations.
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We begin this section by investigating the effects of lim-
ited feedback on the aforementioned class of MISO systems.
It is well-known that the instantaneous SNR for a classical
2 1 single-stream beamforming MISO link is given by

where , is the transmit power,
is the noise power and , represents

the MISO channel with zero mean, unit variance complex
Gaussian entries. As with the example in the previous section,
the analytical rate expressions in this section are derived for
continuous vector channels, which are increasingly accurate
approximations as we sample the support more finely. Re-
call from Section II that models the effects of large-scale
fading. To achieve this maximum instantaneous SNR, the user
requires perfect feedback of the channel vector . However,
feedback in realistic systems is imperfect due to limited feed-
back budgets and quantization, the primary motivation for this
work. We assume that the channel vector is quantized using
the popular Random Vector Quantization (RVQ) technique
[17], [34]. This technique is briefly reviewed in the next section
when we present simulation results. Recent results [17], [33],
[34] bound (upper and lower) the loss in rate due to quanti-
zation of when using RVQ codebooks. In particular, both
upper and lower bounds on the rate loss due to quantization
for user take the form for some . Mo-
tivated by these results, we assume that the post-quantization
rate for user in the presence of large-scale fading takes the
form

, where we have
omitted the dependence on for brevity. We validate the use of
the above approximation through numerical testing in the next
section for many values of from a typical operational range
in a wireless system.
Thus, the optimization in (2) for the 2 1 MISO case takes

the specific form

(6)
where for short,

and denote the
one-tap and two-tap expected rates, respectively, for a Rayleigh
fading channel with the given SNR.
Relaxation and Approximation Guarantees: Through the re-

mainder of the section, we develop an approximation algorithm
to solve (6) in closed-form while incurring a complexity of

3. We provide an approximation guarantee of 1/2.
Theorem 4: Consider the following continuous relaxation of

(6) formed by replacing the discrete set with its natural con-
tinuous extension and dropping terms that are independent of
the variables :

(7)

The solution to this relaxation is

, where is chosen

such that and .
Proof: See Appendix A.

3We recognize that there is an additional storage cost of .

Next, we comment on the complexity of computing the above
fractional solution.
Theorem 5: Computing the above solution in Theorem 4 in-

curs a complexity of .
Proof: See Appendix A.

The following lemma states that weighted sum-rate function
in (6) is non-decreasing and sub-modular on set

, thereby allowing us to connect
and compare the results in this section with those in the previous
section on sub-modular functions. The proof is standard in the
literature on sub-modular functions and follows from the fact
that the fractional relaxation of the weighted sum-rate function
is concave in over the domain . It
is hence omitted.
Lemma 3: The weighted sum-rate function in (6) where
, , is

non-decreasing and sub-modular on this set .
Comparing the results in Theorems 3 and 5, we see that

by assuming less about the exact form of the communica-
tion system, we are incurring an added complexity cost of

, while providing a system-independent approxi-
mation guarantee of .
Once we solve for , we apply a floor operation in order

to enforce the integer constraints, i.e., we set
if and if . This leads us to the
task of quantifying loss due to integrality, which we do next.
We consider two cases: For , we have that

(8)

Similarly for and , we have that

(9)

From (8) and (9), we can compute the approximation factor as

(10)

Thus, the approximation factor critically depends on the

ratio , which essentially represents the rate gain due
an extra tap or antenna. In Fig. 1, we numerically compute

for a typical cellular range of 15 dB to 15 dB

and see that over this range. Combining the
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Fig. 1. Rate gain due to the addition of an extra antenna as a function of .

Fig. 2. Comparison of predicted rate (11) with true numerically computed er-
godic rate given for codebooks at various values of ; (a)
low-to-moderate (b) moderate-to-high .

results in Fig. 1 with (10), we can conclude that the proposed
relaxation/rounding algorithm has an approximation factor of
1/2.
In summary, the two proposed algorithms exploit the struc-

ture of the feedback allocation problem in settings such MISO
with quantized beamforming, to deliver lower complexity than
the optimal dynamic programming approach accompanied by
guarantees on accuracy. Note that the accuracy guarantees,
namely, for the greedy algorithm and 1/2 for the
convex program are independent of any system parameters
such as channel statistics, total bit budget , etc., and are hence,
a clear measure of worst-case performance. We now move on
to numerical simulations in the next section, which helps us
understand the actual performance against the backdrop of
these worst-case guarantees.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the greedy
feedback allocation algorithm in a MISO downlink network.
The simulations serve as a proof of concept for the proposed
dynamic feedback allocation approach. As the baseline case,
we introduce a static equal allocation algorithm that we de-
scribe in detail below along with the rest of the simulation setup.
Note that we now revert back (from the virtual system with
users) to the original system with users, i.e., the indices

, now track actual users.
Number of Users, OFDMA Bands and Data Scheduling

Policy: There are users in a 10MHz system with a total

of OFDMA sub-bands. Since the focus of these simula-
tions (and this paper) is primarily on quantifying the gains of dy-
namic feedback allocation, the users are assigned equal amounts
of spectrum for data transmission at the beginning of the com-
munication epoch that do not change with time, i.e., user is
always assigned to bands .
Small-Scale Fading, Average User SNRs and Traffic

Model: The users are stationary and have fixed average
SNRs through the entire epoch of communication. We
consider two average SNR profiles—(i) Large asym-
metry with average SNRs ,

,
, and (ii) Nearly sym-

metric with average SNRs ,
, ,

. Asymmetric profiles are of interest
because this is the regime where dynamic allocation would
arguably have most value. The small-scale fading channel real-
izations in each slot are generated according to the standard
complex Gaussian distribution. The arrivals are assumed to be
deterministic and symmetric with rates .
Feedback Budget and Baseline Equal Allocation: The

feedback budget is set to bits. The baseline algorithm
allocates an equal number of bits to each user, i.e., .
Each user in turn distributes these three bits as follows—two
bits to the first sub-band it is assigned and one bit to the second.
In other words, the per sub-band allocation for user is
and . The allocation is changed every slots.
MISO RVQ Codebooks and Post-Quantization Rate: For

each bit allocation , we generate codebook by choosing
two points uniformly at random from the sphere . For such a
codebook , we compute the ergodic rate over 1000 standard
(zero mean, unit variance), complex Gaussian channel realiza-
tions.We repeat this experiment over 100 codebooks and choose
the codebook that provides maximum ergodic rate. We
repeat this procedure for each and create a
super-codebook . Note that the codebook
generation procedure is done once at the beginning of the com-
munication epoch. In the previous section, we proposed

(11)

as an approximation for the ergodic rate given bits. In Fig. 2,
we compare (11) with the true (numerically computed) ergodic
rate given bits at various values in a typical operational
range. We see that (11) is indeed an accurate approximation.
Having described the simulation setup in detail, we now

present the results of our experiments. We compare the per-
formance of three algorithms—the greedy dynamic feedback
allocation algorithm in Algorithm 2, the equal allocation case,
and the case with perfect feedback (i.e., where the bit budget

)—under the two average SNR profiles. The results
for SNR profile with large asymmetry are plotted in Fig. 3. In
Fig. 3(a), we see that the greedy dynamic algorithm outper-
forms the static equal allocation approach by almost 13% while

consuming only an additional per
second of overhead. Furthermore, greedy dynamic allocation
achieves within 1.5% of the optimal allocation through dynamic
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Fig. 3. Throughput under the two feedback schemes with different average
SNR profiles. The average queue length is measured over 10000 iterations; (a)
Large asymmetry with profile (b) Nearly sym-
metric case with profile .

programming 4 thereby rendering the performance guarantee of
in Theorem 3 quite conservative.

In the nearly symmetric case however, the gains due to dy-
namic allocation decrease and almost vanish in the particular
experiment that we consider in Fig. 3(b), as would be expected.
We see that in this case, the greedy algorithm achieves within
20% of the optimal.
Thus, with minimal expenditure in overhead, the dynamic

allocation approach achieves notable gains in throughput for
asymmetric settings, thereby showing considerable promise for
systems with larger feedback budgets and a greater degree of
asymmetry (in traffic loads and channels).

VII. CONCLUDING REMARKS

We summarize the algorithmic contributions presented in
Sections IV and V in Table I. We observe from the table
that these algorithms explore the tradeoffs between accuracy,
computational efficiency and the structure of the weighted
sum-rate function. An interesting question and future direction

4The optimal weighted sum-rate is at most as large as the weighted sum-rate
with perfect feedback.

TABLE I
PROPERTIES OF PROPOSED ONLINE FEEDBACK ALLOCATION ALGORITHMS

pertaining to the section on MISO systems is whether such an
analysis can be extended to cover other commonly-deployed
multiple antenna architectures. Finally, the design of joint data
scheduling and feedback allocation policies is another direction
for future research.
In summary, we propose optimal feedback allocation poli-

cies for cellular downlink systems where the base station has
a limited feedback budget. This problem is solved using dy-
namic programming incurring pseudo-polynomial complexity
in the number of users and the total bit budget. When the
weighted sum-rate is a non-decreasing sub-modular function,
we leverage the theory of sub-modular function maximization
to propose a greedy algorithm with polynomial complexity
that has a approximation guarantee of . For MISO
transmit beamforming physical layer communication schemes
with quantized beamformer feedback, we recognize that the
weighted sum-rate function is non-decreasing and sub-modular
for RVQ codebooks. More importantly, it takes a special form
that allows us to develop an approximation algorithm based on
convex relaxations that can be solved in closed-form, incurring
lesser complexity than the greedy algorithm. We connect the
performance of the proposed approximate online algorithms to
the long-term throughput region of the system.

APPENDIX
PROOF OF THEOREMS 4–5

Proof of Theorem 4: The objective function is clearly
convex since is convex and since linear sums preserve
convexity. By studying (7) closely, we can also say that
is such that since if this not true, we can
increase the bit allocation for at least one user thereby de-
creasing the objective function. Since ,
is in the interior of our constraint set , which implies that
Slater’s constraint for strong duality is satisfied and that the
Karush-Kuhn-Tucker (KKT) conditions are sufficient in nature.
The Lagrangian cost function can be written as

for which
the KKT conditions are , , , and

. Since is a decreasing
function in , it follows that if ,

then and is

a valid solution to (7). If ,
and . Hence, we

can write the solution as

where is chosen such that .
Proof of Theorem 5: In order to compute the solution in The-

orem 4, we first need to sort in ascending order where
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. This has complexity .
Call this sorted set . Once sorted, we need to set
for each and test feasibility. Testing feasibility incurs ,
as it is a -term addition and scanning through each incurs

through the use of binary search. As we increase ,
more terms are set to zero. Once we locate and such
that is infeasible while is feasible, we can
compute in closed-form since it satisfies .
Hence, the total complexity is

.
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