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Abstract—We consider a server serving a time-slotted queued
system of multiple packet-based flows, where not more than
one flow can be serviced in a single time slot. The flows have
exogenous packet arrivals and time-varying service rates. At each
time, the server can observe instantaneous service rates for only
a subset of flows (selected from a fixed collection of observable
subsets) before scheduling a flow in the subset for service. We
are interested in queue-length aware scheduling to keep the
queues short. The limited availability of instantaneous service
rate information requires the scheduler to make a careful choice
of which subset of service rates to sample. We develop scheduling
algorithms that use only partial service rate information from
subsets of channels, and that minimize the likelihood of queue
overflow in the system. Specifically, we present a new joint
subset-sampling and scheduling algorithm called Max-Exp that
uses only the current queue lengths to pick a subset of flows,
and subsequently schedules a flow using the Exponential rule.
When the collection of observable subsets is disjoint, we show
that Max-Exp achieves the best exponential decay rate, among
all scheduling algorithms using partial information, of the tail
of the longest queue in the system. To accomplish this, we
introduce novel analytical techniques for studying the perfor-
mance of scheduling algorithms using partial state information,
that are of independent interest. These include new sample-path
large deviations results for processes obtained by nonrandom,
predictable sampling of sequences of independent and identically
distributed random variables, which show that scheduling with
partial state information yields a rate function significantly
different from the case of full information. As a special case,
Max-Exp reduces to simply serving the flow with the longest
queue when the observable subsets are singleton flows, i.e., when
there is effectively no a priori channel-state information; thus, our
results show that this greedy scheduling policy is large-deviations
optimal.

I. INTRODUCTION

Next-generation wireless cellular systems such as LTE-
Advanced [1] and WiMAX [2] promise high-speed packet-
switched data services for a variety of applications, including
file transfer, peer-to-peer sharing and real-time audio/video
streaming. This demands effective scheduling in typical wire-
less environments with time-varying channels and limited
resources, to guarantee high data rates to the users. Together
with maximizing data rates or throughput, the scheduling
algorithm at the cellular base station must keep packet delays
in the system low, in order to support highly delay-sensitive
applications like real-time video streaming.

There has been much recent work to develop wireless
scheduling algorithms with optimal throughput and/or delay
performance [3–7]. Such opportunistic scheduling algorithms
utilize instantaneous wireless Channel State Information (CSI)
from all users to make good scheduling decisions. However,
in a practical situation with a large number of users in the
network, channel state feedback resources could potentially
be limited, i.e., it might be infeasible to acquire complete
instantaneous CSI from all channels due to bandwidth and
latency limitations. Instead, it might be possible to request
CSI feedback from only a subset of users each time. Thus,
it is important to develop algorithms that can schedule using
only partial CSI rather than complete CSI, and at the same
time afford the best possible delay performance.

Using partial CSI – from subsets of channels – entails a
new dimension of opportunism in wireless scheduling. The
scheduling algorithm needs to make a careful choice of which
subsets to sample, together with how to use the sampled
CSI for scheduling. Recently, natural extensions of complete-
CSI scheduling algorithms to the partial-CSI setting have
shown to have throughput-optimal properties [8], yet it is
not clear how they perform in the sense of packet delays.
The general structure of low-delay, partial-CSI scheduling
algorithms remains unknown, i.e., how an algorithm should
choose “good” subsets of channels, whether any additional
backlog or statistical information is needed for picking subsets,
and if so, how much, how users should be scheduled in the
observed subset etc.

In this work, we develop algorithms for wireless scheduling
that use only partial CSI, i.e., from subsets of channels, and
that also enjoy high performance guarantees. We consider a
wireless downlink where a base station schedules users using
partial CSI from subsets of channels. Viewing the system
queue lengths as a surrogate for packet delays, we seek
scheduling strategies that can keep the longest queue in the
system as short as possible, i.e., minimize the likelihood of
overflow of the longest queue. We design a new scheduling
algorithm, that we term Max-Exp, that obtains partial CSI
relying on just current queue lengths and no other auxiliary
information. Employing sample-path large deviations tech-
niques, we show that when the observable channel subsets are
disjoint, Max-Exp yields the best decay rate for the longest-
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queue overflow probability, across all scheduling strategies
which use subset-based CSI to schedule users. To the best
of our knowledge, this is the first work that analyzes queue-
overflow performance for scheduling with the information
structure of partial CSI, and that provides a simple scheduling
algorithm needing no extra statistical information which is
actually rate-function optimal for buffer overflow.

From a technical standpoint, sample-path large deviations
techniques have successfully been used to analyze wireless
scheduling algorithms [5–7, 9]; yet, significant new analytical
challenges emerge when studying the large deviations behavior
of scheduling strategies that cannot access the full state of the
system. A chief difference in this regard arises from the fact
that when scheduling is carried out by observing the complete
state/randomness of the system, large deviations occur depend-
ing on how the scheduler responds to atypical channel state
behavior. In other words, a natural cause-effect relationship
between the channel state process and scheduling actions is
the basis for the analysis of large deviations performance. On
the other hand, when partial channel state is acquired selec-
tively by a scheduling algorithm, this cause-effect sequence is
reversed – it is the algorithm that first decides what part of the
channel state to sample; subsequently, this dynamic portion
of the channel state can respond by behaving atypically.
Viewed differently, the scheduling information structure no
longer falls into an “experts” setting (all channel rates known
in advance), but rather into a “bandit” setting (only chosen
channel rates known), implying a fundamental change in the
large deviations dynamics. Indeed, we are able to show that the
this difference results in a significantly different rate function
than that encountered in the former complete-CSI case.

Also, the standard approach of analyzing queue overflow
probability exponents using continuity of queue-length/delays
as functions of the arrivals and channel processes [10, 11]
becomes cumbersome due to the complex two-stage sampling
and scheduling structure of scheduling with partial CSI. Thus,
we are led to develop new sample-path large deviations results
for processes with dynamically (and predictably) sampled ran-
domness, which help to bound the resulting rate functions via
connections to appropriate variational problems. We believe
that these techniques and results are of independent interest
as tools to analyze the behavior of scheduling policies that
can only sample parts of the system state.

A. Related Work

For scheduling with complete CSI, there is a rich body
of work on throughput-optimal scheduling algorithms, start-
ing from the pioneering approach of Tassiulas et al. [3] to
develop the Backpressure algorithm. A host of scheduling
algorithms such as Max-Weight/Backpressure [3, 4], the Ex-
ponential rule [5, 12, 13] and the Log rule [6] have been
developed for scheduling using full CSI. Many optimality
results are now known for the delay/queue-length performance
of the above full-CSI algorithms. These include expected
queue length/delay bounds via Lyapunov function techniques

[14, 15], tail probability decay rates for queue lengths [5–7,
10, 11, 16, 17], heavy-traffic optimality [18] etc.

Throughput-maximizing scheduling has been studied with
different forms of partial CSI, including infrequent channel
state measurements [19], group/random-access based quan-
tized channel state feedback [20, 21], optimal channel state
probing with costs [22, 23], delayed CSI [24] and subset-
based CSI [8]. However, to date, neither the structure nor
performance results for queue overflow tails under scheduling
with partial CSI are known.

B. Contributions

We describe a new scheduling algorithm – Max-Exp –
for wireless scheduling with Channel State Information (CSI)
restricted to a collection of observable channel subsets. The
Max-Exp algorithm uses a suitable subset-selection strategy
along with the well-known Exponential rule [12] to schedule
users. We show the following:
(a) We derive a lower bound on the rate function for overflow

of the longest queue under the Max-Exp scheduling algo-
rithm, using sample-path large deviations tools and their
connection to variational optimal-control problems. A key
technical contribution here is showing that the sample-
path large deviations rate function, for algorithms that
sample portions of system state, depends crucially on the
sampling frequencies of these portions along with their in-
dividual rate functions. Conversely, we also show univer-
sal upper bounds on the queue overflow rate function of
any scheduling policy that accesses partial, subset-based
CSI. For this purpose, we introduce a novel martingale-
based argument that, together with exponentially-twisted
channel distributions, yields a universal upper bound on
the buffer overflow probability exponent.

(b) In the case where the collection of observable subsets
available to the scheduler is disjoint, we prove that the
lower bound on the large deviations buffer overflow rate
function for Max-Exp matches the uniform upper bound
on the rate function over all algorithms. This not only
characterizes the exact buffer overflow exponent of the
Max-Exp algorithm, but also shows rather surprisingly
that the simple Max-Exp strategy yields the optimal over-
flow exponent across all scheduling rules using partial
CSI. As a side consequence, this shows that for schedul-
ing with singleton subsets of users, merely scheduling the
user with the longest queue at each time slot – a greedy
strategy when no CSI is available beforehand – is large-
deviations rate function-optimal.

II. SYSTEM MODEL

This section describes the wireless system model we use
along with its associated statistical assumptions. We consider
a standard model of a wireless downlink system [4]: a time-
slotted system of N users serviced by a single base station or
server across N communication channels. In each time slot
k ∈ {0, 1, 2, . . .}, the dynamics of the system are governed by
three primary components:
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(a) Arrivals: An integer number of data packets Ai(k)
arrives to user i, i = 1, . . . , N . Packets get queued at their
respective users if they are not immediately transmitted.

(b) Channel states: The set of N channels assumes a random
channel state R(k), i.e. an N -tuple of integer instanta-
neous service rates (r1, . . . , rN ). At time slot k, let the
instantaneous service rates be (R1(k), . . . , RN (k)).

(c) Scheduling: One user U(k) ∈ {1, . . . , N} is picked by a
scheduling algorithm for service, and a number of packets
not exceeding its instantaneous service rate is removed
from its queue. Let Di(k) denote whether user i is
scheduled in time slot k (Di(k) = 1), or not (Di(k) = 0).
Then, user i’s queue length (denoted by Qi(·)) evolves
as Qi(k + 1) = [Qi(k) +Ai(k)−Di(k)Ri(k)]+, where
x+ ≡ max(x, 0).

We assume the following about the stochastics of the arrival
and channel state processes:
Assumption 1 (Arrivals): Each user i’s arrival process
(Ai(k))∞k=0 is deterministic and equal to λi at all time slots.
This is done merely for notational simplicity – any bounded,
iid arrival process (Ai(k))∞k=0 works, with the only modifica-
tion being the large-deviations rate function of Ai(k) added
to all the rate function expressions in the paper.
Assumption 2 (Channel States): The joint channel states
R(k), k = 0, 1, 2, . . . are independent and identically dis-
tributed across time, and take values from a finite set R of in-
teger N -tuples. Note that the channel states can have any joint
distribution and can thus be correlated across channels/users.
Scheduling Model: Under scheduling with partial channel
state information, at each time slot k, the scheduling algorithm
makes two sequential choices to schedule a user:
• Step 1: Pick a subset S(k) of the N channels, from a

given collection O of observable subsets. This choice
can depend on all random variables in time slots up to
and including k except the channel state R(k).

• Step 2: Once the subset S(k) of channels is cho-
sen, the instantaneous service rates (Ri(k))i∈S(k) are
revealed/available to the scheduling algorithm, and it
chooses a user U(k) ∈ S(k) for service, possibly de-
pending on these service rates.

Note that at each time, the channel state information available
to the scheduling algorithm is restricted to the chosen subset
S(k) of channels, as opposed to the full CSI case where all
the service rates (Ri(k))Ni=1 are available. For further detailed
discussion about this scheduling model, we refer the reader to
[8].

III. OBJECTIVE, ALGORITHMS AND MAIN RESULTS

Our focus is to design scheduling algorithms that reduce
the likelihood of large queues in the system. Specifically, we
seek to minimize the stationary probability (when it exists)
that the longest queue in the system ||Q(k)||∞

4
= maxiQi(k)

exceeds a threshold n. Alternatively, our goal is to maximize
the exponent or decay rate of the exceedance probability

I
4
= − lim

n→∞

1

n
logP [||Q(k)||∞ ≥ n]

(when the limit exists), for scheduling algorithms that observe
only partial channel state while scheduling. Note that for large
n, P[||Q(k)||∞ ≥ n] ≈ e−nI , so maximizing the exponent I
gives smaller overflow probabilities. Also, it is well-known
that packet delays are closely related to queue lengths [7],
hence the reason for using I as our performance objective.

With this objective in mind, we introduce a new scheduling
algorithm Max-Exp specified as follows:

Algorithm 1 Max-Exp
At each time slot k, breaking ties arbitrarily,
Step 1: Choose a subset S(k), from the collection O of

observable subsets, such that

∑
i∈S(k)

exp

 Qi(k)

1 +
√
Q(k)


is maximized (here Q(k)

4
= 1

N

∑N
i=1Qi(k)).

Step 2: Schedule a user i ∈ S(k) such that

Ri(k) exp

(
Qi(k)

1+
√
Q(k)

)
is maximized (the

Exponential rule [12]).

By our probabilistic assumptions on the channel state pro-
cess, Max-Exp makes the vector process of queue lengths
at each time a discrete-time Markov chain. Following stan-
dard convention [4, 14, 15], we term the set of arrival rates
λ ≡ (λi)

N
i=1 for which this Markov chain is positive-recurrent

as the throughput region of Max-Exp. To not deviate from
the main focus of this work, we state that when the observ-
able subsets are disjoint, the throughput region of Max-Exp
contains that of any other scheduling algorithm, i.e., Max-Exp
is throughput-optimal. The proof of throughput-optimality is
analogous to that of the Max-Sum-Queue scheduling algorithm
[8]. Our main result states that Max-Exp yields the best
(exponential) rate of decay of the tail of the longest queue
over all strategies that use partial CSI from disjoint subsets:

Theorem 1 (Large Deviations Optimality of Max-Exp). The
following holds when the system’s arrival rates λ lie in the
interior of the throughput region of the Max-Exp scheduling
algorithm:
(a) Let P denote the stationary probability distribution that

the Max-Exp algorithm induces on the vector of queue
lengths. Then, there exists J∗ > 0 such that

− lim sup
n→∞

1

n
logP [||Q(0)||∞ ≥ n] ≥ J∗.

(b) Let π be an arbitrary scheduling rule that induces a
stationary distribution Pπ on the vector of queue lengths.
If the system of observable subsets O is disjoint, then

− lim inf
n→∞

1

n
logPπ [||Q(0)||∞ ≥ n] ≤ J∗.

Thus, Max-Exp has the optimal large-deviations exponent
(equal to J∗) over all stabilizing scheduling policies with
subset-based partial channel state information.
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Theorem 1 highlights the striking property that Max-Exp,
using only current queue length information to sample chan-
nel subsets and the Exponential rule to schedule a sampled
channel, yields the fastest decay of the buffer overflow prob-
ability across the whole spectrum of partial-CSI scheduling
algorithms – including those that potentially use additional
statistical information, traffic characteristics etc. The crucial
scheduling step in Max-Exp is Step 1, which essentially sam-
ples the “right” channel subset depending on queue lengths.
The result shows that queue length feedback is sufficient to
guarantee good delay performance, provided suitable subsets
of channel states are sampled as with the Max-Exp schedul-
ing algorithm. We remark that the optimality of Max-Exp
continues to hold even when all queue lengths are delayed
by any bounded amount. We also remark that the restriction
to disjoint observable subsets is necessary since otherwise,
even throughput-optimality of Max-Exp-style scheduling rules
does not hold [8]. This is briefly because the geometry of the
throughput region is fundamentally different when subsets are
disjoint, and its properties play a key role in the optimality
proof for Max-Exp here.

En route to proving Theorem 1, we develop lower bounds
for the large deviations exponents of partially and determinis-
tically sampled iid processes, that are of independent interest.
This results in a new rate function formulation in terms of
variational optimization, that differs significantly from existing
rate functions [5–7, 10, 11, 17] by explicitly incorporating par-
tial channel state sampling behavior. Standard optimal control
approaches for the full-CSI case cannot be applied to analyze
partial-CSI scheduling algorithms – since only a portion of
the channel state is revealed to the scheduler, the channel state
process can cause large deviations by behaving atypically just
in the revealed portion, and not jointly as a whole.

A related challenge arises in the process of finding universal
upper bounds on the decay rate for arbitrary partial-CSI
scheduling policies. Recent large-deviations work in full-CSI
scheduling [5, 7] accomplishes this by calculating the “cost” of
universal channel-state sample paths that cause buffer overflow
under any scheduling algorithm; however, this procedure fails
for algorithms actively sampling the channel state, since the
cost of such sample paths intimately depends on the subset
sampling behavior. To overcome this, we use a martingale-
based argument in a novel way with the standard exponential
tilting method to prove universal upper bounds on the expo-
nent.

Observe that Max-Exp reduces to the following Max-Queue
scheduling algorithm when the observable subsets are all the
singleton users:

Algorithm 2 Max-Queue
At each time slot k, breaking ties arbitrarily,
Steps 1, 2: Schedule a user i such that Qi(k) is maximized.

Thus, an immediate corollary of Theorem 1 is the following
optimality result for Max-Queue when the observable user sub-

sets are restricted to singletons, i.e., when there is effectively
no CSI to use in scheduling:

Corollary 1 (Large Deviations Optimality of Max-Queue for
singleton observable subsets). If the system’s arrival rates λ
lie in the interior of the throughput region of the Max-Queue
scheduling algorithm, then Max-Queue has the optimal large-
deviations exponent of the queue overflow probability over all
stabilizing scheduling policies that can sample only individual
channel states.

Road map to Theorem 1: Though Theorem 1 for Max-Exp is
our chief result, we prove it by first establishing the optimality
result for Max-Queue (Corollary 1), and then extending the
argument to the setting of general disjoint subsets. This is
mainly because the essence of the optimality lies in the key
subset selection step, and restricting attention to the case of
singleton observable subsets allows us to concentrate on how
subset selection influences the large deviations rate function of
buffer overflow. Technically, another reason for this order of
working is that Max-Queue can naturally be analyzed with the
standard O(n) fluid scaling, whereas showing the optimality
property for Max-Exp requires using a more complex fluid
limit framework at the O(

√
n) “local” fluid time-scale [5, 12].

IV. SAMPLE PATH LARGE DEVIATIONS FRAMEWORK

This section lays down preliminaries for the sample-path
large deviations techniques we use to study overflow probabili-
ties of wireless scheduling algorithms. Much of this framework
is standard in recent large-deviations analyses of wireless
systems [5–7], but we include it for completeness.

Fix an integer T > 0, and consider a sequence of (inde-
pendent) queueing systems indexed by n = 1, 2, . . ., each
with its own arrival and channel state processes, and evolving
as described in Section II. Henceforth, we explicitly refer-
ence by the superscript (n) any quantity associated with the
nth system. For any (possibly vector-valued) random process
X(n)(k), k = 0, 1, 2, . . . in the nth system, let us define its
scaled (by 1/n), shifted and piecewise linear version x(n)(·)
on the interval [−T, 0] as follows: x(n)(t)

4
= X(n)(n(t+T ))

n

whenever n(t+T ) is an integer; x(n)(t) is linearly interpolated
between these values for all other t.

For the nth queueing system, with k a nonnegative integer,
let F (n)

i (k) be the total number of packets to queue i that
arrived by time slot k, and F̂ (n)

i (k) be the number of packets
that were served from queue i by time slot k. For a subset
α of channels, let C(n)

α (k) denote the total number of time
slots before k when subset α was chosen by the scheduling
algorithm. We also define its sub-state R

(n)
α (k) to be the

vector of instantaneous service rates R(n)(k) restricted to the
coordinates of α, i.e., R(n)

α (k) = (R
(n)
i (k))i∈α. Denote by

G
α,(n)
r (k) the total number of time slots before time slot

k when the subset α was picked and its sub-state was r;
and by Ĝ

α,(n)
ri (k) the number of time slots before time k

when subset α was picked, its observed sub-state was r
and queue i ∈ α was ultimately scheduled for service. As
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stated earlier, we denote by Q
(n)
i (k) the length of queue i

at time slot k, whose evolution is specified in Section II.
Finally, we let M (n)(k) denote the vector-valued partial sums
process corresponding to the sampled rates R(n)(k)δS(k), i.e.,

M (n)(k)
4
=
∑k
i=0R

(n)(i)δS(i).
Suppose a sequence of scaled processes f (n)

i (·), f̂ (n)
i (·),

c
(n)
α (·), gα,(n)

r (·), ĝα,(n)
ri (·), q(n)

i (·) and m(n)(·) converges
uniformly (over [−T, 0]) to the corresponding “limit functions”
fi(·), f̂i(·), cα(·), gαr (·), ĝαri(·), qi(·) and m(·) on [−T, 0]. We
call any such collection of joint limit functions, obtained via
appropriately scaled pre-limit sample paths, a Fluid Sample
Path (FSP) (we use the superscript T to emphasize the finite
horizon [−T, 0] if desired). We note that fluid sample paths
inherit Lipschitz continuity (with the same Lipschitz constant)
from their corresponding pre-limit processes indexed by n
(when the pre-limits are Lipschitz-continuous), and are thus
differentiable almost everywhere.

V. ANALYSIS: SINGLETON SUBSETS AND MAX-QUEUE

In this section, we treat the simpler setting where the disjoint
observable subsets are all the singleton users in the system,
i.e., O = {{i} : 1 ≤ i ≤ N}. We use the subscript i to
refer to subsets α. Thus, scheduling algorithms are essentially
sampling algorithms – Step 2 of the algorithm is to schedule
the lone user whose channel state is observed. In what follows,
we describe the three key steps involved in showing that
Max-Queue yields the optimal decay rate of buffer overflow
probability.

A. Lower-bounding Max-Queue’s Decay Rate: Large Devia-
tions for Sampled Processes

Consider the queueing system operating under an arbitrary
nonrandom scheduling algorithm, i.e., the algorithm’s choice
of a singleton user in the current time slot is a deterministic
function of the entire history of observed users’ indices
and channel states, and does not depend on the unobserved
channel states in the past. Max-Queue with deterministic tie-
breaking (e.g., pick the lowest-indexed queue when there are
two or more longest queues) is an example of a nonrandom
scheduling algorithm, since the current user chosen depends
on accumulated queue lengths, which in turn depend directly
on the channel rates obtained as a result of past scheduling
choices.

The sequence of observed users and their channel states
under a nonrandom scheduling algorithm is an outcome of
sampling an iid vector-valued process (i.e., the full channel
state) in a nonrandom and predictable (i.e., with sampling
indices depending only on past observed history) manner. Our
first key result (Proposition 2) essentially furnishes a lower
bound for the deviation probability of the queue-length process
(equivalently the cumulative process of observed channel
states) in time slots 0, . . . , nT , in terms of a novel sample-
path large deviations rate function of the user selection and
channel state paths.

Let us fix T > 0. For q0 ∈ RN , let Pn,T0 be the probability
measure of the n-th queueing system conditioned on starting

the system at Q(n)(0) = nq0 (i.e. q(n)(−T ) = q0). If we
denote by C+

L ([−T, 0]) the space of nonnegative RN -valued
Lipschitz functions on [−T, 0] equipped with the supremum
norm, then we have:

Proposition 2 (Large Deviations for Sampled Processes). Let
Γ be a closed set of trajectories in C+

L ([−T, 0]). Then, under
any nonrandom scheduling policy,

− lim sup
n→∞

1

n
logPn,T0

[
q(n) ∈ Γ

]
≥ inf

(mT ,cT ,qT )

∫ 0

−T

[
N∑
i=1

ċi(t)Λ
∗
i

(
ṁi(t)

ċi(t)

)]
dt (1)

subject to (mT , cT , qT ) an FSP,

qT (−T ) = 0, qT ∈ Γ,

with Λ∗i (·) being the Legendre-Fenchel dual of Λi(λ) =
logE[eλRi(0)], i.e., the Cramér rate function for the empirical
mean of the marginal rate (Ri(k))k.

Proposition 2 states that the “correct” sample-path large
deviations rate function, for algorithms that can sample only
singleton subsets of channels, is a combination of the stan-
dard rate functions Λ∗i for the empirical means of individual
channel rates weighted by the corresponding channel selection
frequencies ċi. Note the crucial dependence of the rate function
on the subset selection process, captured by weighting Λ∗i by
ċi in (1) – a significant departure from the rate function studied
for the standard case of full channel state information where
there is no pre-weighting by the algorithm-dependent factor ċ
[5, 7].

The proof of this result relies on the key fact that the
sample-path trajectory of any nonrandom scheduling/sampling
algorithm is completely determined by only the sampled user’s
index and the observed channel state at all times, instead of
the entire joint channel state process with unobserved channel
states. Also, since only one component of the joint channel
state is used at each instant, there is no loss of generality in
assuming that all the channel state processes are independent
with the original marginals. These two properties, together
with exchangeability of the channel state process, allow us to
derive a large deviations rate function for the random process
of sampled channel states, which is further transformed to the
rate function (1) as a function of empirical channel means
and sampling frequencies. The proof is deferred to [25] due
to space constraints.

Applying Proposition 2 with Γ = {q ∈ C+
L ([−T, 0]) :

||q(0)||∞ ≥ 1} gives a finite-horizon lower bound for the rate
function of longest-queue overflow. For any FSP (mT , cT , qT )
feasible in the RHS of (1), we have

∫ 0

−T

[
N∑
i=1

ċi(t)Λ
∗
i

(
ṁi(t)

ċi(t)

)]
dt ≥ inf

t∈B

∑N
i=1 ċi(t)Λ

∗
i

(
ṁi(t)
ċi(t)

)
d
dt ||q(t)||∞

,

with B denoting the (almost all) points in [−T, 0] at which all
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the relevant derivatives exist. Let us define

J∗∗
4
= inf
T,(mT ,cT ,qT )

0≤t≤T

∑N
i=1 ċi(t)Λ

∗
i

(
ṁi(t)
ċi(t)

)
d
dt ||q(t)||∞

,

with the infimum over all feasible FSPs, all regular points t,
and all finite horizons T . Intuitively, we expect that the finite
horizon probability distribution Pn,Tq0 tends to the stationary
distribution P; this is borne out by the fact that minimizing the
RHS of (1) across FSPs (mT , cT , qT ) over all finite horizons
T > 0 yields the lower bound J∗∗ on the stationary overflow
probability exponent (see [25] for details):

Proposition 3 (Lower bound for Max-Queue’s Decay Rate).

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ J∗∗. (2)

Proposition 3 is thus a “cost per unit max-queue drift” lower
bound on the decay rate of the queue overflow probability
under Max-Queue.

B. Universal Large Deviations Upper Bound

We next derive a uniform upper bound for the stationary
buffer overflow probability decay rate, over all singleton-CSI
scheduling algorithms. A popular approach followed in recent
work [5–7] to do this is by estimating the cost of “straight-line”
joint channel state sample paths that universally cause buffer
overflow. However, when only a dynamically selected portion
of the channel state is visible to the scheduling algorithm, the
cost (1) of such straight-line paths depends explicitly on the
algorithm’s sampling behavior, so the standard approach fails.

For every i, let φ′i ≥ 0 denote a “twisted” mean rate for
channel i, and consider the quantity

∑
i c
′
iΛ
∗
i (φ′i)

[maxi(λi−c′iφ′i)]+
. Here,

we assume that
∑
i c
′
i = 1, and that the fraction is∞ whenever

the denominator is 0. Suppose a scheduling policy samples
each channel i with frequency c′i. Then, (a) the numerator of
the above expression corresponds to the “instantaneous large
deviations cost” of witnessing each channel i’s mean rate be
φ′i (by (1)), while (b) the denominator can be interpreted as
the average rate with which the longest queue grows when
each channel i is sampled with a frequency c′i. Maximizing
the expression over all possible user sampling/scheduling
frequencies {c′i :

∑
i c
′
i = 1, c′i ≥ 0} induced by scheduling

algorithms should thus give the highest possible large devia-
tions cost for buffer overflow. This intuition is formalized in
the following key result:

Proposition 4 (Universal Upper Bound on Decay Rate for any
Algorithm). Let π be a stabilizing scheduling policy for the
arrival rate λ = (λ1, . . . , λN ), and let Pπ be its associated
stationary measure. For any φ′i ∈ R+, i = 1, . . . , N ,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ sup∑

i c
′
i=1

c′i≥0

∑
i c
′
iΛ
∗
i (φ
′
i)

[maxi (λi − c′iφ′i)]+
. (3)

Each choice of the twisted means (φ′i)i above yields such an
upper bound on the decay rate. Thus, the best possible upper
bound is obtained by minimizing (3) over all choices (φ′i)i.

According to Proposition 4, an upper bound on the buffer
overflow rate function when scheduling with partial channel
observability is the largest “weighted-cost per unit increase
of the maximum queue,” over all possible frequencies of sam-
pling subsets of channels. We emphasize that the maximization
over the sampling frequencies c′i, in (3), is a distinct feature
that emerges while considering partial information algorithms,
as opposed to the case where scheduling is performed with full
joint CSI.

At the heart of the proof of Proposition 4 is a twisted
measure construction where each channel’s marginal rate is
φ′i. Observing that the cumulative fluid service process m(·) is
a submartingale under the twisted measure for any scheduling
algorithm, the Doob-Meyer decomposition [26] allows us to
express m(·) as the predictable algorithm-dependent compo-
nent φ′ici(·) plus a martingale noise component m̄(·). This
shows that with high probability, the service provided to each
queue i is approximated by φ′ici(·), i.e., we can effectively
treat each channel i as having a deterministic fluid service rate
of φ′i. Analyzing this deterministic fluid system for overflow
and translating the results back to the original probabilistic
system gives us the result. Due to space limitations, we refer
the reader to [25] for the full proof details.

C. Large Deviations Optimality of the Max-Queue Policy:
Connecting the Upper and Lower Bounds

The final step in the proof of optimality of Max-Queue
(Corollary 1) is carried out by showing that the lower bound
for Max-Queue (2) in fact dominates the uniform upper bound
(3) over all scheduling policies:

Proposition 5 (Matching Large Deviations Bounds,
Max-Queue, Singleton Subsets). There exist nonnegative
φ̂′1, . . . , φ̂

′
N , with λ /∈ C(φ̂′1, . . . , φ̂′N ), such that

sup∑
i c
′
i=1

c′i≥0

∑
i c
′
iΛ
∗
i (φ̂
′
i)[

maxi

(
λi − c′iφ̂′i

)]+ ≤ J∗∗.
The proof of this result involves solving the non-convex

problem for the rate function lower bound given in Proposition
3, and relating the solution to a suitable uniform upper bound
of the type prescribed by Proposition 4. It utilizes the convexity
and lower-semicontinuity of the rate functions Λ∗i , and is
accomplished by considering the properties of the (φ′i)i which
minimize the upper bound (3). Due to space constraints, we
refer the reader to [25] for details.

VI. ANALYSIS: GENERAL SUBSETS AND MAX-EXP

Having shown that Max-Queue yields an optimal queue
overflow exponent for scheduling using only single channel
states, in this section we extend the result to the general setting
of arbitrary disjoint subsets of observable channels and show
that Max-Exp is optimal for the overflow exponent. To do
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this, we follow the same key steps in obtaining the Max-
Queue result – (a) prove lower bounds on the buffer overflow
exponent for Max-Exp, (b) derive universal upper bounds on
the buffer overflow exponent across all scheduling algorithms
using subset channel state information, and (c) demonstrate
that the upper and lower bounds match.

However, the approach to show optimality of the Max-Exp
algorithm warrants more sophisticated analysis as compared
to the case of Max-Queue. This is primarily due to the
fact that the Max-Exp algorithm is not scaling-invariant,
i.e., scaling all queue-lengths by a uniform constant changes
the scheduling behavior. Intrinsically, Max-Exp operates at
the O(

√
n) time-scale, i.e., when all the queue lengths are

O(n), a O(
√
n) change in them causes a shift in Max-Exp’s

scheduling behavior. In other words, examining Max-Exp’s
scheduling over O(n) time slot intervals effectively “washes
out” information about its actions, resulting in crude bounds.
This sets Max-Exp apart from Max-Queue which is naturally
coupled to the timescale of O(n) time slots, and prevents us
from using the standard O(n) fluid scaling to analyze the fluid
sample path behavior of Max-Exp.

Hence, our analysis for Max-Exp proceeds by looking
at sample paths of the system’s processes over intervals of
O(
√
n) time slots. For Step (a) above, analogous to Propo-

sition 2, we establish a “refined” Mogulskii-type theorem for
sample-path large deviations of predictably sampled processes
over a sub-O(n) timescale (a corresponding result for the full-
CSI case was first proved in [5]). Next, we use the framework
of Local Fluid Sample Paths (LFSPs, introduced in [12])
to obtain a lower bound on the decay exponent of Max-
Exp’s overflow probability. LFSPs allow us to “magnify” the
standard O(n) fluid limit processes to examine events on the
O(
√
n) “local fluid” timescale, and this helps us to match the

lower and upper bounds for the decay exponent to establish
the optimality of Max-Exp.

A. Lower Bounding Max-Exp’s Decay Rate: Refined-timescale
Large Deviations for Sampled Processes and Local FSPs

Here, we extend the sampling-based large-deviations bound
from Proposition 2 to hold over a finer-than-O(n) timescale.
The basic idea here is to lower-bound the large deviations cost
from (1) by linearizing sample paths over the finer timescale.
This expresses the intuitive notion that over the finer timescale,
typical large deviations of random processes occur “locally
along straight lines”.

The general approach for studying scheduling behavior on
finer-than-O(n) timescales [5] is to introduce a positive integer
function u(n), such that u(n) → ∞ and u(n)/n → 0 as
n→∞. In our analysis, we will take u(n) = d

√
ne, the rele-

vant timescale for the Max-Exp scheduling rule. For any non-
decreasing, right-continuous-with-left-limits (RCLL) vector-
valued function h on [0,∞), let Unh denote the continuous,
piecewise-linearized version of h obtained from h as follows:
we divide [0,∞) into contiguous subintervals of size u(n)/n
each, and linearize h within each subinterval. For t ≥ 0, let
θ(n)(t) be the largest multiple of u(n)/n not exceeding t.

Finally, for each observable subset α, let Λ∗α be the Sanov
rate function [27] for the empirical marginal distribution of
the state of its channels (Ri(1))i∈α. Thus, the domain of Λ∗α
is the |Rα|-dimensional simplex where Rα is the set of all
possible sub-states for subset α.

In order to track large-deviations costs over the u(n)
timescale, let us expand the definition of a Fluid Sample Path
(FSP) to include the following additional functions:
(a) A pre-limit refined cost function J̄

(n)
· defined over

[−T, 0] as: J̄ (n)
t
4
=∫ θ(n)(t)

−T

[∑
α

(Unc(n)
α )′(u) · Λ∗α

(
(Ungα,(n))′(u)

(Unc
(n)
α )′(u)

)]
du,

where gα,(n) ≡
(
g
α,(n)
r

)
r∈Rα

.

(b) The uniform convergence J̄
(n)
· → J̄· as n → ∞, over

[−T, 0], to a non-negative, non-decreasing, Lipschitz-
continuous limit refined cost function J̄· on [−T, 0].

To simplify notation, for general Lipschitz-continuous func-
tions (cα)α and (gαr )αr of the appropriate vector dimension
on [−T, 0], we denote

Jt ≡ J(c,g)(t)
4
=

∫ t

−T

[∑
α

ċα(u) Λ∗α

(
ġα(u)

ċα(u)

)]
du. (4)

The following key finite-horizon result strengthens Proposi-
tion 2. It states that for any nonrandom scheduling algorithm,
the sample path large deviations rate function for the queue
length process is lower-bounded by the minimum refined cost
over valid fluid sample paths.

Proposition 6 (Refined-time-scale Large Deviations for Sam-
pled Processes). Let Γ be a closed set of trajectories in
C+
L ([−T, 0]). Then, under a nonrandom scheduling policy,

− lim sup
n→∞

1

n
logPn,T0

[
q(n) ∈ Γ

]
≥ inf{J̄0 : (q, J̄) FSP on [−T, 0], q ∈ Γ}. (5)

The proof of this proposition combines ideas from the large
deviations of sampled processes (Proposition 2) and the refined
Mogulskii theorem shown by Stolyar [5] to establish the above
bound. Due to space constraints, we refer the reader to [25]
for the proof.

Similar to extending the result of Proposition 2 to the
stationary queue length distribution, minimizing the RHS of
(5) across FSPs over all finite time horizons T > 0 yields
a lower bound for the large deviations rate of the stationary
queue overflow probability. This uses standard tools (see, for
instance, [5, 7]), and we omit the proof for brevity.

Local Fluid Sample Paths: Analyzing the variational
problem on the right-hand side of (6) (minimized across all
finite horizons T ) demands a close look at the derivatives of
FSPs under the Max-Exp scheduling algorithm. At the same
time, since the Max-Exp rule naturally operates at the O(

√
n)

time-scale, derivative information is typically “washed out” of



8

the standard O(n)-scaled fluid sample paths. This motivates us
to define and use Local Fluid Sample Paths (LFSPs) [5, 12]
with a O(

√
n)-type scaling, under which information about

scheduling choices and drifts can be clearly understood with
regard to the Max-Exp scheduling rule. Our goal is to show, by
“magnifying” such a feasible FSP about some τ ∈ [−T, 0] and
taking “local” fluid limits at τ , that the unit large-deviations
cost of raising the maximum queue in the associated LFSP
is roughly J̄0. Thus, a further lower bound on the Max-Exp
decay rate is the least large-deviations cost per unit increase
of the maximum queue over all feasible LFSPs.

The actual LFSP construction exactly parallels the one fol-
lowed by Stolyar [5], and proceeds by taking the fluid-scaled
functions and magnifying space and time by a factor of

√
n.

For instance, for the function f (n)
i with fixed τ ∈ [−T, 0] and

S > 0, we let �f
(n)
i (s)

4
=
√
n
[
f

(n)
i (τ + s

√
n)− f (n)

i (τ)
]

for
s ∈ [0, S], and take a uniform limit of such rescaled, centered
functions, which is the LFSP �fi(·) over [0, S]. We omit the
details of the LFSP construction and refer the reader to [25]
instead.

With this framework of LFSPs set up, consider a feasible
FSP (q, J̄) on [−T, 0] for the right-hand side of (5), for which
q(−T ) = 0, q(0) ≥ 1 and whose refined cost is J̄0. Fix also
an arbitrary ε > 0. Then, there must exist a time point τ ∈
(−T, 0) such that q∗(τ) > 0, q′∗(τ) > 0, J̄ ′(τ) > 0, and
J̄′(τ)
q′∗(τ)) < J̄0 + ε. Continuing further using techniques similar
to those in [5], we can show that given an arbitrary S > 0
(and ε > 0), we can construct/find an LFSP at τ , together with
a constant ε1 > 0 such that

�q∗(S)− �q∗(0) ≥ ε1S, and (6)
J(�c,�g)(S)− J(�c,�g)(0)

�q∗(S)− �q∗(0)
≤ J̄t + ε, (7)

i.e., we can approximate the cost of the original FSP arbi-
trarily well with the “unit cost of raising �q∗” of a suitably
constructed LFSP.

To complete the lower-bound on the queue overflow ex-
ponent of the Max-Exp rule, consider for a general LFSP
the following potential function of its queue state: Ψ(�q)

4
=

maxα∈O Ψα(�q) ≡ maxα∈O
∑
i∈α e

�qi+bi , together with its

logarithm Φ(�q)
4
= log Ψ(�q) = maxα log Ψα(�q).

We state as a fact that the function Φ(�q) uniformly approx-
imates �q∗ ≡ ||�q||∞, in the sense that ||Φ(�q) − �q∗|| ≤ ∆
for some fixed ∆ > 0. Now, consider the feasible FSP (q, J̄)
on [−T, 0] for the right-hand side of (5) as before. Using
the above approximation fact and (6), (7), an LFSP can be
constructed on some interval [0, S] such that for a suitable
ε1 > 0,

Φ(�q(S))− Φ(�q(0)) ≥ (ε1/2)S, (8)
J(�c,�g)(S)− J(�c,�g)(0)

Φ(�q(S))− Φ(�q(0))
≤ J̄(t) + 2ε. (9)

We now turn to the LHS of (9) – modulo the arbitrarily small
ε > 0, we have seen that it is a lower bound on the original

FSP cost J̄0. We can write

J(�c,�g)(S)− J(�c,�g)(0)

Φ(�q(S))− Φ(�q(0))
=

∫ S
0

d
dsJ(�c,�g)(s)ds∫ S

0
d
dsΦ(�q(s))ds

(10)

≥ inf
s∈[0,S]

d
dsJ(�c,�g)(s)
d
dsΦ(�q(s))

(a)
= inf

s∈[0,S]

∑
α �ċα(s) Λ∗α

(
�ġ
α(s)

�ċα(s)

)
d
dsΦ(�q(s))

= inf
s∈[0,S]

∑
α �ċα(s) Λ∗α (�ġ

α(s)/�ċα(s))
d
dsΦ(�q(s))

,

where (a) follows from the definition (4). As a consequence of
the above inequality, we can finally give the following large-
deviations lower bound:

Proposition 7 (Lower Bound for Max-Exp’s Decay Rate). If
P denotes the stationary measure induced by the Max-Exp
policy, then

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ inf

s∈[0,S]

∑
α �ċα(s) Λ∗α (φ′α(s))

d
dsΦ(�q(s))

(11)

for any valid Local Fluid Sample Path (LFSP).

Letting J∗ denote the infimum on the RHS of (11) over
all valid LFSPs, a further lower bound on the buffer overflow
exponent of Max-Exp is thus J∗.

B. Universal Large Deviations Upper Bound

The next key step in our program to show Max-Exp’s tail
optimality is to exhibit a uniform upper bound on the decay
rate of the stationary queue-overflow probability across all
stabilizing scheduling algorithms. Following a similar route
as for Proposition 4, we accomplish this by using twisted
marginal probability distributions for the subset channel states,
and the local/subset-based throughput regions that they induce.

Recall that for an observable subset α, Rα denotes the
(finite) set of all possible (joint) sub-states that can be observed
channels in α. We use Πα to denote the |Rα|-valued simplex,
i.e., the set of all probability measures on the sub-states of α.
Any distribution φ′α ∈ Πα induces a subset throughput region
Vφ′α , which represents all the long-term average service rates
that can be sustained to users in α when the sub-states are
distributed as φ′α (see also [4, 8]). The uniform large-deviations
upper-bound can now be stated for any stabilizing scheduling
policy π:

Proposition 8 (Universal Upper Bound on Decay Rate for
any Algorithm). Let π be a stabilizing scheduling policy for
arrival rates λ = (λ1, . . . , λn), and let Pπ be the associated
stationary measure. Let distributions φ′α ∈ Πα be fixed for
every α such that λ /∈ CH((Vφ′α)α). Then,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ sup∑

α c
′
α=1

c′α≥0

[ ∑
α c
′
αΛ∗α(φ′α)

maxα,vα∈Vφ′α
maxi∈α(λi − c′αvα,i)

]
. (12)
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The proof of this result uses ideas similar to that of
Proposition 4, but is more sophisticated due to dealing with
subsets of channels and their associated multidimensional rate
regions. It employs a key concentration result for vector-
valued martingales and exploits the convexity of the subset
rate regions. Due to space constraints, we skip the details and
refer the reader to [25].

C. Large Deviations Optimality of the Max-Exp Policy: Con-
necting the Upper and Lower Bounds

The crucial final step in proving tail optimality for Max-Exp
(Theorem 1) is to show that the lower bound J∗ on its decay
exponent in fact matches the uniform upper bound (12) on the
decay exponent of any stabilizing scheduling policy, along the
lines of Proposition 4 for Max-Queue.

Proposition 9 (Matching Large Deviations Bounds, Max-Exp,
Arbitrary Disjoint Subsets). Let π be any stabilizing schedul-
ing policy for arrival rates λ = (λ1, . . . , λn), and let Pπ be
the associated stationary measure. Then,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ J∗,

i.e., Max-Exp has the optimal large-deviations exponent (equal
to J∗) over all stabilizing scheduling policies with subset-
based partial channel state information.

To show this result for an arbitrary collection of disjoint
observable subsets, we use the key idea that each subset α
can be viewed as a fictitious “queue” holding Ψα(s) packets at
each time s. This brings the situation in correspondence with
the singleton queues case of Max-Queue, and together with
convexity and lower-semicontinuity considerations and the
steps followed to prove Proposition 8, the above Proposition
can be established. Due to space limitations, we defer the full
proof to [25].
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