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Abstract We consider a server serving a time-slotted queued system of multi-
ple packet-based flows, where not more than one flow can be serviced in a single
time slot. The flows have exogenous packet arrivals and time-varying service
rates. At each time, the server can observe instantaneous service rates for only
a subset of flows (selected from a fixed collection of observable subsets) before
scheduling a flow in the subset for service. We are interested in queue-length
aware scheduling to keep the queues short. The limited availability of instanta-
neous service rate information requires the scheduler to make a careful choice
of which subset of service rates to sample. We develop scheduling algorithms
that use only partial service rate information from subsets of channels, and
that minimize the likelihood of queue overflow in the system. Specifically, we
present a new joint subset-sampling and scheduling algorithm called Max-Exp
that uses only the current queue lengths to pick a subset of flows, and sub-
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sequently schedules a flow using the Exponential rule. When the collection of
observable subsets is disjoint, we show that Max-Exp achieves the best expo-
nential decay rate, among all scheduling algorithms that base their decision on
the current (or any finite past history of) system state, of the tail of the longest
queue. To accomplish this, we employ novel analytical techniques for studying
the performance of scheduling algorithms using partial state, which may be of
independent interest. These include new sample-path large deviations results
for processes obtained by non-random, predictable sampling of sequences of
independent and identically distributed random variables. A consequence of
these results is that scheduling with partial state information yields a rate
function significantly different from scheduling with full channel information.
In the special case when the observable subsets are singleton flows, i.e., when
there is effectively no a priori channel-state information, Max-Exp reduces to
simply serving the flow with the longest queue; thus, our results show that to
always serve the longest queue in the absence of any channel-state information
is large-deviations optimal.

Keywords Wireless scheduling · Large deviations

1 Introduction

Next-generation wireless cellular systems such as LTE-Advanced [15] and Wi
MAX [1] promise high-speed packet-switched data services for a variety of
applications, including file transfer, peer-to-peer sharing and real-time au-
dio/video streaming. This demands effective scheduling in typical wireless envi-
ronments with time-varying channels and limited resources, to guarantee high
data rates to the users. Together with maximizing data rates or throughput,
the scheduling algorithm at the cellular base station must keep packet delays
in the system low, in order to support highly delay-sensitive applications like
real-time video streaming.

There has been much recent work to develop wireless scheduling algorithms
with optimal throughput and/or delay performance [28,2,25,17,30]. Such op-
portunistic scheduling algorithms utilize instantaneous wireless Channel State
Information (CSI) from all users to make good scheduling decisions. However,
in a practical situation with a large number of users in the network, channel
state feedback resources could potentially be limited, i.e., it might be infeasible
to acquire complete instantaneous CSI from all channels due to bandwidth and
latency limitations. Instead, it might be possible to request CSI feedback from
only a subset of users each time. Thus, it is important to develop algorithms
that can schedule using only partial CSI rather than complete CSI, and at the
same time afford the best possible delay performance.

Using partial CSI – from subsets of channels – entails a new dimension of
opportunism in wireless scheduling. The scheduling algorithm needs to make a
careful choice of which subsets to sample, together with how to use the sampled
CSI for scheduling. Recently, natural extensions of complete-CSI scheduling
algorithms to the partial-CSI setting have shown to have throughput-optimal
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properties [10], yet it is not clear how they perform in the sense of packet
delays. The general structure of low-delay, partial-CSI scheduling algorithms
remains unknown, i.e., how an algorithm should choose “good” subsets of
channels, whether any additional backlog or statistical information is needed
for picking subsets, and if so, how much, how users should be scheduled in the
observed subset etc.

In this work, we develop algorithms for wireless scheduling that use only
partial CSI, i.e., from subsets of channels, and that also enjoy high performance
guarantees. We consider a wireless downlink where a base station schedules
users using partial CSI from subsets of channels. Viewing the system queue
lengths as a surrogate for packet delays, we seek scheduling strategies that
can keep the longest queue in the system as short as possible, i.e., minimize
the likelihood of overflow of the longest queue. We design a new scheduling
algorithm, that we term Max-Exp, that obtains partial CSI relying on just
current queue lengths and no other auxiliary information. Employing sample-
path large deviations techniques, we show that when the observable channel
subsets are disjoint, Max-Exp yields the best decay rate for the longest-queue
overflow probability, across all scheduling strategies which use subset-based
CSI to schedule users. To the best of our knowledge, this is the first work
that analyzes queue-overflow performance for scheduling with the information
structure of partial CSI, and that provides a simple scheduling algorithm need-
ing no extra statistical information which is actually rate-function optimal for
buffer overflow.

From a technical standpoint, sample-path large deviations techniques have
successfully been used to analyze wireless scheduling algorithms [3,25,17,30];
yet, significant new analytical challenges emerge when studying the large de-
viations behavior of scheduling strategies that cannot access the full state of
the system. A chief difference in this regard arises from the fact that when
scheduling is carried out by observing the complete state/randomness of the
system, large deviations occur depending on how the scheduler responds to
atypical channel state behavior. In other words, a natural cause-effect rela-
tionship between the channel state process and scheduling actions is the basis
for the analysis of large deviations performance. On the other hand, when
partial channel state is acquired selectively by a scheduling algorithm, this
cause-effect sequence is reversed – it is the algorithm that first decides what
part of the channel state to sample; subsequently, this dynamic portion of
the channel state can respond by behaving atypically. Viewed differently, the
scheduling information structure no longer falls into an “experts” setting (all
channel rates known in advance) but rather into a “bandit” setting (only cho-
sen channel rates known) [12], implying a fundamental change in the large
deviations dynamics. Indeed, we are able to show that the this difference re-
sults in a significantly different rate function than that encountered in the
former complete-CSI case.

Also, the standard approach of analyzing queue overflow probability expo-
nents using continuity of queue-length/delays as functions of the arrivals and
channel processes [18,31] becomes cumbersome due to the complex two-stage
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sampling and scheduling structure of scheduling with partial CSI. Thus, we
are led to develop new sample-path large deviations results for processes with
dynamically (and predictably) sampled randomness, which help to bound the
resulting rate functions via connections to appropriate variational problems.
We believe that these techniques and results are of independent interest as
tools to analyze the behavior of scheduling policies that can only sample parts
of the system state.

1.1 Related Work

For scheduling with complete CSI, there is a rich body of work on throughput-
optimal scheduling algorithms, starting from the pioneering approach of Tas-
siulas et al. [28] to develop the Backpressure algorithm. A host of schedul-
ing algorithms such as Max-Weight/Backpressure [28,2], the Exponential rule
[21,20,25] and the Log rule [17] have been developed for scheduling using
full CSI. Many optimality results are now known for the delay/queue-length
performance of the above full-CSI algorithms. These include expected queue
length/delay bounds via Lyapunov function techniques [14,8], tail probability
decay rates for queue lengths [26,29,17,18,30,25,31], heavy-traffic optimality
[24] etc.

Throughput-maximizing scheduling has been studied with different forms
of partial CSI, including infrequent channel state measurements [11], group/
random-access based quantized channel state feedback [16,27], optimal channel
state probing with costs [5,4], delayed CSI [32] and subset-based CSI [10].
However, to date, neither the structure nor performance results for queue
overflow tails under scheduling with partial CSI are known.

1.2 Contributions

We describe a new scheduling algorithm – Max-Exp – for scheduling over a
wireless downlink when Channel State Information (CSI) is restricted to a
collection of observable channel subsets. Max-Exp picks a subset of channels
to observe their states, depending on an appropriate exponentiated sum of
the subset queue lengths. Having done that, it uses the well-known Expo-
nential rule [21] to schedule a user from the subset using the obtained CSI.
Thus, Max-Exp does not need any additional information (e.g. traffic/channel
statistics) other than queue lengths to dynamically pick subsets, and only the
instantaneous subset channel states to schedule users.

Our main contributions can be summarized as follows:

1. We derive a lower bound on the rate function for overflow of the longest
queue under the Max-Exp scheduling algorithm, using sample-path large
deviations tools and their connection to variational optimal-control prob-
lems. A key technical contribution here is developing large deviations prop-
erties for processes obtained by predictably sampling independent and
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identically distributed (iid) sequences. These results help to show that
the sample-path large deviations rate function, for algorithms that sample
portions of the channel state, not only depends on the standard Cramér
empirical rate functions of the sampled portions, but also relies crucially
on the sampling frequencies of the portions.
Conversely, we also show universal (i.e., over all scheduling algorithms
that use partial, subset-based CSI) upper bounds on the rate function of
queue overflow. Here again, a technical challenge arises due to the fact
that for an arbitrary1 scheduling algorithm, the large-deviations “cost” of
buffer overflow depends crucially on its subset sampling behavior – different
scheduling algorithms could sample subsets with vastly differing frequencies
resulting in potentially different costs to twist channel state distributions of
subsets, and hence different rate functions. We develop a novel martingale-
based technique to quantify this effect and derive a universal upper bound
on the buffer overflow exponent.

2. In the case where the collection of observable subsets available to the sched-
uler is disjoint, we prove that the lower bound on the large deviations buffer
overflow rate function for Max-Exp matches the uniform upper bound on
the rate function over all algorithms. This not only characterizes the exact
buffer overflow exponent of the Max-Exp algorithm, but also shows rather
surprisingly that the simple Max-Exp strategy yields the optimal overflow
exponent across all scheduling rules using partial CSI 2. As a side con-
sequence, this shows that for scheduling with singleton subsets of users,
merely scheduling the user with the longest queue at each time slot – a
greedy strategy when no CSI is available beforehand – is large-deviations
rate function-optimal.
Technically, showing that the lower and upper bounds for the queue over-
flow rate function match involves solving a complex and non-convex vari-
ational problem arising from the rate function for predictably sampled
random processes, and is another contribution of this work.

2 System Model

This section describes the wireless system model we use along with its as-
sociated statistical assumptions. We consider a standard model of a wireless
downlink system [2]: a time-slotted system of N users serviced by a single
base station or server across N communication channels. In each time slot
k ∈ {0, 1, 2, . . .}, the dynamics of the system are governed by three primary
components:

1 In the context of this work, an arbitrary scheduling algorithm is to be understood as
any map that is based on the current (or any finite past history) of system state.

2 By optimal, we mean optimal among all scheduling algorithms that base their decision
on the current (or any finite past history of) system state.
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1. Arrivals: An integer number of data packets Ai(k) arrives to user i,
i = 1, . . . , N . Packets get queued at their respective users if they are not
immediately transmitted.

2. Channel states: The set of N channels assumes a random channel state
R(k), i.e. an N -tuple of integer instantaneous service rates. At time slot k,
we denote the instantaneous service rates by (R1(k), . . . , RN (k)).

3. Scheduling: One user U(k) ∈ {1, . . . , N} is picked for service, and a num-
ber of packets not exceeding its instantaneous service rate is removed from
its queue. Let Di(k) denote whether user i is scheduled in time slot k
(Di(k) = 1), or not (Di(k) = 0). Then, user i’s queue length (denoted
by Qi(·)) evolves as Qi(k + 1) = [Qi(k) + Ai(k) − Di(k)Ri(k)]+, where
x+ ≡ max(x, 0).

We assume the following about the stochastics of the arrival and channel state
processes:
Assumption 1 (Arrivals): Each user i’s arrival process (Ai(k))∞k=0 is deter-
ministic and equal to λi at all time slots. This is done merely for notational
simplicity – any bounded, iid arrival process (Ai(k))∞k=0 works, with the only
modification being the large-deviations rate function of Ai(k) added to all the
rate function expressions in the paper.
Assumption 2 (Channel States): The joint channel states R(k), k =
0, 1, 2, . . . are independent and identically distributed across time, and take
values from a finite set R of integer N -tuples. Note that the channel states can
have any joint distribution and can thus be correlated across channels/users.

Scheduling Model: Under scheduling with partial channel state information,
a scheduling algorithm is defined to be a rule that, at each time slot k, makes
two sequential choices to schedule a user:

– Step 1: Pick a subset S(k) of the N channels, from a given collection O
of observable subsets3. This choice can depend on all random variables in
time slots up to and including k except the channel state R(k).

– Step 2: Once the subset S(k) of channels is chosen, the instantaneous ser-
vice rates (Ri(k))i∈S(k) are revealed/available to the scheduling algorithm,
and it chooses a user U(k) ∈ S(k) for service, possibly depending on these
service rates.

Note that at each time, the channel state information available to the schedul-
ing algorithm is restricted to the chosen subset S(k) of channels, as opposed
to the full CSI case where all the service rates (Ri(k))Ni=1 are available. For
further detailed discussion about this scheduling model and how it abstracts
limited channel state information at the wireless physical layer, etc., we refer
the reader to [10].

3 The collection of observable subsets models the collection of subsets of channels for which
the wireless scheduler can obtain instantaneous channel state information, as described in
the Introduction (1).
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3 Objective, Algorithms and Main Results

Our focus is to design scheduling algorithms that reduce the likelihood of
large queues in the system. Specifically, we seek to minimize the stationary

probability (when it exists) that the longest queue in the system ||Q(k)||∞
4
=

maxiQi(k) exceeds a threshold n. Alternatively, our goal is to maximize the
exponent or decay rate of the exceedance probability

I
4
= − lim

n→∞

1

n
logP [||Q(k)||∞ ≥ n]

(when the limit exists), for scheduling algorithms that observe only partial
channel state while scheduling. Note that for large n, P[||Q(k)||∞ ≥ n] ≈ e−nI ,
so maximizing the exponent I gives smaller overflow probabilities. Also, it is
well-known that packet delays are closely related to queue lengths [30], which
justifies using I as our performance objective.

With this objective in mind, we introduce a new scheduling algorithm Max-
Exp (Algorithm 1). The algorithm may be interpreted as locally (in Step 2)
using the Exponential scheduling rule [19,22,20,21], and globally (in Step 1)
using the Exponential rule metric without the (observed) instantaneous rate
to pick a subset of channels.

It is well-known that in case the entire set of channels is observable (i.e., the
full-information setting), the Exponential rule maximizes the exponent of the
queue overflow probability [25], hence it is a natural candidate for the in-subset
scheduling rule in Step 2 of the Max-Exp algorithm. The rule used to choose
subsets in Step 1 is chosen so as to match the in-subset Exponential rule, and
guarantees properties that are required in the fluid limit scaled description of
the dynamics in order to show our main result.

Algorithm 1 Max-Exp
At each time slot k, breaking ties arbitrarily,

1. Choose a subset S(k), from the collection O of observable subsets, such that

∑
i∈S(k)

exp

 Qi(k)

1 +
√
Q(k)


is maximized (here Q(k)

4
= 1

N

∑N
i=1Qi(k) is the length of the average queue at time

slot k).

2. Schedule a user i ∈ S(k) such that Ri(k) exp

(
Qi(k)

1+
√
Q(k)

)
is maximized (the Exponential

rule [21]).

By our probabilistic assumptions on the channel state process, Max-Exp
makes the vector process of queue lengths at each time a discrete-time Markov
chain. Following standard convention [2,14,8], we term the set of arrival rates
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λ ≡ (λi)
N
i=1 for which this Markov chain is positive-recurrent as the throughput

region of Max-Exp. To not deviate from the main focus of this work, we
state that when the observable subsets are disjoint, the throughput region of
Max-Exp contains that of any other scheduling algorithm, i.e., Max-Exp is
throughput-optimal4. The proof of throughput-optimality is analogous to that
of the Max-Sum-Queue scheduling algorithm [10]. Our main result states that
Max-Exp yields the best (exponential) rate of decay of the tail of the longest
queue over all strategies that use partial CSI from disjoint subsets:

Theorem 1 (Large Deviations Optimality of Max-Exp) Let the sys-
tem’s arrival rates λ lie in the interior of the throughput region of the Max-Exp
scheduling algorithm. There exists J∗ > 0 such that the following holds.

1. Let P denote the stationary probability distribution that the Max-Exp algo-
rithm induces on the vector of queue lengths. Then,

− lim sup
n→∞

1

n
logP [||Q(0)||∞ ≥ n] ≥ J∗.

2. Let π be an arbitrary scheduling rule5 that induces a stationary distribution
Pπ on the vector of queue lengths. If the system of observable subsets O is
disjoint, then

− lim inf
n→∞

1

n
logPπ [||Q(0)||∞ ≥ n] ≤ J∗.

Thus, Max-Exp has the optimal large-deviations exponent (equal to J∗)
over all stabilizing scheduling policies with subset-based partial channel state
information.

Theorem 1 highlights the striking property that Max-Exp, using only cur-
rent queue length information to sample channel subsets and the Exponen-
tial rule to schedule a sampled channel, yields the fastest decay of the buffer
overflow probability across the whole spectrum of partial-CSI scheduling al-
gorithms – including those that potentially use additional statistical informa-
tion, traffic characteristics etc. The crucial scheduling step in Max-Exp is Step
1, which essentially samples the “right” channel subset depending on queue
lengths. The result shows that queue length feedback is sufficient to guaran-
tee good delay performance, provided suitable subsets of channel states are
sampled as with the Max-Exp scheduling algorithm. We remark that the opti-
mality of Max-Exp continues to hold even when all queue lengths are delayed
by any bounded amount. We also remark that the restriction to disjoint ob-
servable subsets is necessary since otherwise, even throughput-optimality of
Max-Exp-style scheduling rules does not hold [10]. This is briefly because the
geometry of the throughput region is fundamentally different when subsets are

4 We mean throughput-optimal among all scheduling algorithms that base their decision
on the current (or any finite past history of) system state.

5 An arbitrary scheduling rule is any map that is based on the current (or any finite past
history) of system state.
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disjoint, and its properties play a key role in the optimality proof for Max-Exp
here.

En route to proving Theorem 1, we develop lower bounds for the large
deviations exponents of partially and deterministically sampled iid processes,
that are of independent interest. This results in a new rate function formulation
in terms of variational optimization, that differs significantly from existing rate
functions [29,17,18,30,25,31] by explicitly incorporating partial channel state
sampling behavior. Standard optimal control approaches for the full-CSI case
cannot be applied to analyze partial-CSI scheduling algorithms – since only
a portion of the channel state is revealed to the scheduler, the channel state
process can cause large deviations by behaving atypically just in the revealed
portion, and not jointly as a whole.

A related challenge arises in the process of finding universal upper bounds
on the decay rate for arbitrary partial-CSI scheduling policies6. Recent large-
deviations work in full-CSI scheduling [30,25] accomplishes this by calculating
the “cost” of universal channel-state sample paths that cause buffer overflow
under any scheduling algorithm; however, this procedure fails for algorithms
actively sampling the channel state, since the cost of such sample paths in-
timately depends on the subset sampling behavior. To overcome this, we use
a martingale-based argument in a novel way with the standard exponential
tilting method to prove universal upper bounds on the exponent.

Observe that Max-Exp reduces to the following Max-Queue scheduling
algorithm when the observable subsets are all the singleton users:

Algorithm 2 Max-Queue
At each time slot k, breaking ties arbitrarily,

1. Schedule a user i such that Qi(k) is maximized.

Thus, an immediate corollary of Theorem 1 is the following optimality
result for Max-Queue when the observable user subsets are restricted to sin-
gletons, i.e., when there is effectively no CSI to use in scheduling:

Corollary 1 (Large Deviations Optimality of Max-Queue for single-
ton observable subsets) If the system’s arrival rates λ lie in the interior
of the throughput region of the Max-Queue scheduling algorithm, then Max-
Queue has the optimal7 large-deviations exponent of the queue overflow prob-
ability over all stabilizing scheduling policies that can sample only individual
channel states.

Road map to prove Theorem 1: Though Theorem 1 for Max-Exp is our chief
result, we prove it by first establishing the optimality result for Max-Queue

6 In the context of this work, an arbitrary scheduling policy is to be understood as any
map that is based on the current (or any finite past history) of system state.

7 By optimal, we mean optimal among all scheduling algorithms that base their decision
on the current (or any finite past history of) system state.



10 Aditya Gopalan et al.

(Corollary 1), and then extending the argument to the setting of general dis-
joint subsets. This is mainly because the essence of the optimality lies in the
key subset selection step, and restricting attention to the case of singleton ob-
servable subsets allows us to concentrate on how subset selection influences the
large deviations rate function of buffer overflow. Technically, another reason
for this order of working is that Max-Queue can naturally be analyzed with
the standard O(n) fluid scaling, whereas showing the optimality property for
Max-Exp requires using a more delicate fluid limit framework at the O(

√
n)

“local” fluid time-scale [21,25].

4 Preliminaries and Sample Path Large Deviations Framework

This section lays down preliminaries for the sample-path large deviations tech-
niques we use to study overflow probabilities of wireless scheduling algorithms.
Much of this framework is standard in large deviations analyses of wireless sys-
tems [30,25,17], but we include it for completeness.

Throughout this work, we denote by (Ω,F ,P) a common probability space
that supports all defined random variables and processes. Fix an integer T > 0,
and consider a sequence of (independent) queueing systems indexed by n =
1, 2, . . ., each with its own arrival and channel state processes, and evolving as
described in Section 2. Henceforth, we explicitly reference by the superscript
(n) any quantity associated with the nth system. For any (possibly vector-
valued) random process X(n)(k), k = 0, 1, 2, . . . in the nth system, let us
define its scaled (by 1/n), shifted and piecewise linear version x(n)(·) on the
interval [0, T ] as follows:

x(n)(t) =


X(n)(nt)

n , nt an integer;
X(n)(bntc)

n + X(n)(dnte)−X(n)(bntc)
n(nt−bntc) ,

otherwise.

In other words, we transform the discrete-time processX(n)(·) on 0, 1, 2, . . . , nT
to the piecewise linear and continuous process x(n)(·) on [0, T ] by (a) com-
pressing time by a factor of n, (b) scaling space by 1

n and (c) finally linearly
interpolating between the discrete points.

For the nth queueing system, with k a nonnegative integer, we define the
following random processes central to our study of the evolution of the system:

– F
(n)
i (k): The total number of packets to queue i that arrived by time slot
k,

– F̂
(n)
i (k): The total number of packets that were served from queue i by

time slot k,

– C
(n)
α (k): The total number of time slots before k when the observable subset

α was chosen by the scheduling algorithm,

– (Sub-state) R
(n)
α (k): The vector of instantaneous service rates R(n)(k)

restricted to the coordinates of α, i.e., R
(n)
α (k) = (R

(n)
i (k))i∈α,
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– G
α,(n)
r (k): The total number of time slots before time slot k when the subset

α was picked and its sub-state was r,

– Ĝ
α,(n)
ri (k): The number of time slots before time k when subset α was

picked, its observed sub-state was r and queue i ∈ α was ultimately sched-
uled for service,

– Q
(n)
i (k): The length of queue i at time slot k, whose evolution is specified

in Section 2,
– M (n)(k): The (vector-valued) partial sums process corresponding to the

sampled rates R(n)(k)δS(k), i.e., M (n)(k)
4
=
∑k
j=0R

(n)(j)δS(j). (Here, δS
denotes the indicator vector of the subset S.)

For right-continuous, non-decreasing functions u : R → R and v : R → R,
we overload notation and denote by u and v their respective induced Stieltjes
measures on R, whenever the context is understood. Furthermore, when v � u
(i.e., when dv is absolutely continuous wrt du), we denote by dv

du the Radon-
Nikodym derivative8 of v wrt u.

Suppose a sequence of scaled processes f
(n)
i (·), f̂ (n)i (·), c(n)α (·), gα,(n)r (·),

ĝ
α,(n)
ri (·), q(n)i (·) and m(n)(·) converges uniformly (over [0, T ]) to the corre-

sponding “limit functions” fi(·), f̂i(·), cα(·), gαr (·), ĝαri(·), qi(·) and m(·) on
[0, T ]. We call any such collection of joint limit functions, obtained via appro-
priately scaled pre-limit sample paths, a Fluid Sample Path (FSP) (we use
the superscript T to emphasize the finite horizon [0, T ] if desired). We note
that fluid sample paths inherit Lipschitz continuity (with the same Lipschitz
constant) from their corresponding pre-limit processes indexed by n (when the
pre-limits are Lipschitz-continuous), and are thus differentiable almost every-
where.

Note 1. Wherever a scheduling algorithm is being explicitly considered, we
will use the term valid FSP to denote an FSP that occurs with positive prob-
ability under the scheduling algorithm.

Note 2. We use ḟ and f ′ interchangeably, in the paper, to denote the deriva-
tive of a (differentiable) function f .

5 Analysis: Singleton Subsets and Max-Queue

We first treat the simpler setting where the disjoint observable subsets are
all the singleton users in the system, i.e., O = {{i} : 1 ≤ i ≤ N}. We use
the subscript i to refer to subsets α. Thus, scheduling algorithms essentially
become sampling algorithms – Step 2 of the algorithm is to schedule the lone
user whose channel state is observed. In what follows, we describe the three
key steps involved in showing that Max-Queue yields the optimal decay rate
of buffer overflow probability.

8 The Radon-Nikodym derivative dv
du

is uniquely defined du-a.e.
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5.1 Lower-bound for Max-Queue’s Decay Rate

Consider the queueing system operating under an arbitrary nonrandom schedul-
ing algorithm, i.e., the algorithm’s choice of a singleton user in the current time
slot is a deterministic function of the entire history of observed users’ indices
and channel states, and does not depend on the unobserved channel states in
the past9. Max-Queue with deterministic tie-breaking (e.g., pick the lowest-
indexed queue when there are two or more longest queues) is an example of
a nonrandom scheduling algorithm, since the current user chosen depends on
accumulated queue lengths, which in turn depend directly on the channel rates
obtained as a result of past scheduling choices.

The sequence of observed users and their channel states under a nonrandom
scheduling algorithm is an outcome of sampling an iid vector-valued process
(i.e., the full channel state) in a nonrandom and predictable (i.e., with sam-
pling indices depending only on past observed history) manner. Our first key
result (Proposition 1) essentially furnishes an upper bound for the deviation
probability of the queue-length process (equivalently the cumulative process
of observed channel states) in time slots 0, . . . , nT , in terms of a novel sample-
path large deviations rate function of the user selection and channel state
paths.

Let us fix T > 0. For q0 ∈ RN , let Pn,Tq0 be the probability measure of the

n-th queueing system conditioned on starting the system at Q(n)(0) = nq0 (i.e.
q(n)(0) = q0). If we denote by C+L ([0, T ]) the space of nonnegative RN -valued
Lipschitz functions on [0, T ] equipped with the supremum norm, then we have:

Proposition 1 (Large Deviation Bound for a Finite Horizon) Let Γ be
a closed set of trajectories in C+L ([0, T ]). Then, under any nonrandom schedul-
ing policy,

− lim sup
n→∞

1

n
logPn,T0

[
q(n) ∈ Γ

]
≥ inf

(mT ,cT ,qT )

∫ T

0

[
N∑
i=1

ċi(t)Λ
∗
i

(
dmi

dci
(t)

)]
dt (1)

subject to (mT , cT , qT ) a valid FSP,

qT (0) = 0, qT ∈ Γ,

with Λ∗i (·) being the Legendre-Fenchel dual of Λi(λ) = logE[eλRi(0)], i.e., the
Cramér rate function for the empirical mean of the marginal rate (Ri(k))k.

Proposition 1 states that the “correct” sample-path large deviations rate func-
tion, for algorithms that can sample only singleton subsets of channels, is a
combination of the standard rate functions Λ∗i for the empirical means of

9 In formal terms, an arbitrary scheduling algorithm is to be understood as any map that
is based on the current (or any finite past history) of system state.
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individual channel rates weighted by the corresponding channel selection fre-
quencies ċi. Note the crucial dependence of the rate function on the subset
selection process, captured by weighting Λ∗i by ċi in (1) – a significant de-
parture from the rate function studied for the standard case of full channel
state information where there is no pre-weighting by the algorithm-dependent
factor ċ [30,25].

The proof of the proposition, presented in Appendix A, relies on the key
fact that the sample-path trajectory of any nonrandom scheduling/sampling
algorithm is completely determined by only the sampled user’s index and the
observed channel state at all times, instead of the entire joint channel state
process with unobserved channel states. Also, since only one component of
the joint channel state is used at each instant, there is no loss of generality
in assuming that all the channel state processes are independent with the
original marginals. These two properties, together with exchangeability of the
channel state process, allow us to derive a large deviations rate function for
the random process of sampled channel states, which is further transformed to
the rate function (1) as a function of empirical channel means and sampling
frequencies.

Having established a lower bound for the large deviations rate function
for the probability of queue overflow for a finite horizon T conditioned on a
fixed starting state (Proposition 1), we now proceed to extend this result to
the queue overflow rate function for the stationary distribution under Max-
Queue. Recall that a unique stationary distribution exists since Max-Queue
makes the irreducible and aperiodic system state Markov chain positive recur-
rent [10]. Intuitively, we expect that the finite horizon probability distribution
Pn,Tq0 somehow “tends” to the stationary distribution P. Thus, we show that
minimizing the right hand side of (1) over all finite horizons T > 0 yields a
lower bound on this stationary overflow probability.

Such a procedure to extend finite horizon bounds to bounds on the station-
ary probabilities has been developed earlier, using techniques from Friedlin-
Wentzell large-deviations theory [30,25]. A similar approach works in our case,
and for the sake of clarity we show only the crucial properties for our model
that are needed to obtain the result.

Proposition 2 (Large Deviation Bound for the Stationary Distribu-
tion) Let P denote the stationary probability distribution of the system state
under the Max-Queue scheduling algorithm. Then,

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ inf
T,(mT ,cT ,qT )

∫ T

0

[
N∑
i=1

ċi(t)Λ
∗
i

(
dmi

dci
(t)

)]
dt

subject to (mT , cT , qT ) a valid FSP in [0, T ],

qT (0) = 0, ||qT (T )||∞ ≥ 1,

T ≥ 0. (2)
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The reader is referred to Appendix B for the proof details.
Applying Proposition 1 with Γ = {q ∈ C+L ([0, T ]) : ||q(T )||∞ ≥ 1} gives a

finite-horizon lower bound for the rate function of longest-queue overflow. For
any FSP (mT , cT , qT ) feasible in the RHS of (2), we have

∫ T

0

[
N∑
i=1

ċi(t)Λ
∗
i

(
dmi

dci
(t)

)]
dt ≥ inf

t∈B

∑N
i=1 ċi(t)Λ

∗
i

(
dmi
dci

(t)
)

d
dt ||q(t)||∞

,

with B denoting the (almost all) points in [0, T ] at which all the relevant
derivatives exist. Let us define

J∗∗
4
= inf

T≥0,
(mT ,cT ,qT ),

0≤t≤T

∑N
i=1 ċi(t)Λ

∗
i

(
dmi
dci

(t)
)

d
dt ||q(t)||∞

,

with the infimum over all FSPs (mT , cT , qT ) feasible for (2), all regular points
t, and all finite horizons T . This results in the following (weaker) lower bound
on the rate function of Max-Queue’s stationary queue overflow probability:

Proposition 3 (Lower bound for Max-Queue’s Queue Overflow Rate
Function)

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ J∗∗. (3)

Proposition 3 is thus a “cost per unit max-queue drift” lower bound on the
decay rate of the queue overflow probability under Max-Queue.

5.2 Universal Large Deviations Upper Bound

We next derive a uniform upper bound for the stationary buffer overflow
probability decay rate, over all singleton-CSI scheduling algorithms. A popular
approach followed in recent work [25,30,17] to do this is by estimating the cost
of “straight-line” joint channel state sample paths that universally cause buffer
overflow. However, when only a dynamically selected portion of the channel
state is visible to the scheduling algorithm, the cost (1) of such straight-line
paths depends explicitly on the algorithm’s sampling behavior, so the standard
approach fails.

For every i, let φi ≥ 0 denote a “twisted” mean rate for channel i, and

consider the quantity
∑
i c
′
iΛ
∗
i (φi)

[maxi(λi−c′iφi)]+
. Here, we assume that

∑
i c
′
i = 1, and

that the fraction is ∞ whenever the denominator is 0. Suppose a scheduling
policy samples each channel i with frequency c′i. Then, (a) the numerator of the
above expression corresponds to the “instantaneous large deviations cost” of
witnessing each channel i’s mean rate be φi (by (1)), while (b) the denominator
can be interpreted as the average rate with which the longest queue grows when
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each channel i is sampled with a frequency c′i. Maximizing the expression over
all possible user sampling/scheduling frequencies {c′i :

∑
i c
′
i = 1, c′i ≥ 0}

induced by scheduling algorithms should thus give the highest possible large
deviations cost for buffer overflow. This intuition is formalized in the following
key result:

Proposition 4 (Universal Upper Bound on Decay Rate for any Al-
gorithm) Let π be a stabilizing scheduling policy10 for the arrival rate λ =
(λ1, . . . , λN ), and let Pπ be its associated stationary measure. For any φi ∈ R+,
i = 1, . . . , N ,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ sup∑

i c
′
i=1

c′i≥0

∑
i c
′
iΛ
∗
i (φi)

[maxi (λi − c′iφi)]+
. (4)

Note: Each choice of the twisted means (φi)i above yields such an upper
bound on the decay rate. Thus, the best possible upper bound is obtained by
minimizing (4) over all choices (φi)i.

According to Proposition 4, an upper bound on the buffer overflow rate
function when scheduling with partial channel observability is the largest
“weighted-cost per unit increase of the maximum queue,” over all possible
frequencies of sampling subsets of channels. We emphasize that the maximiza-
tion over the sampling frequencies c′i, in (4), is a distinct feature that emerges
while considering partial information algorithms, as opposed to the case where
scheduling is performed with full joint CSI.

We refer the reader to Appendix C for the proof of Proposition 4. At the
heart of the proof of Proposition 4 is a twisted measure construction where
each channel’s marginal rate is φi. Observing that the cumulative fluid service
process m(·) is a submartingale under the twisted measure for any scheduling
algorithm, the Doob-Meyer decomposition [7] allows us to express m(·) as the
predictable algorithm-dependent component φici(·) plus a martingale noise
component m̄(·). This shows that with high probability, the service provided
to each queue i is approximated by φici(·), i.e., we can effectively treat each
channel i as having a deterministic fluid service rate of φi. Analyzing this
deterministic fluid system for overflow and translating the results back to the
original probabilistic system gives us the result.

5.3 Large Deviations Optimality of the Max-Queue Policy: Connecting the
Upper and Lower Bounds

The final step in the proof of optimality of Max-Queue (Corollary 1) is carried
out by showing that the lower bound for Max-Queue (3) in fact dominates the
uniform upper bound (4) over all scheduling policies:

10 By a stabilizing scheduling policy π, we mean a scheduling rule that operates under the
scheduling model described in Section 2, and which makes the discrete time Markov chain
of queue lengths aperiodic, irreducible and positive recurrent.
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Proposition 5 (Matching Large Deviations Bounds, Max-Queue, Sin-

gleton Subsets) There exist nonnegative φ̂1, . . . , φ̂N , with λ /∈ C(φ̂1, . . . , φ̂N ),
such that

sup∑
i c
′
i=1

c′i≥0

∑
i c
′
iΛ
∗
i (φ̂i)[

maxi

(
λi − c′iφ̂i

)]+ ≤ J∗∗.
The proof of this result involves solving the non-convex problem for the

rate function lower bound given in Proposition 3, and relating the solution to
a suitable uniform upper bound of the type prescribed by Proposition 4. It
utilizes the convexity and lower-semicontinuity of the rate functions Λ∗i , and
is accomplished by considering the properties of the (φi)i which minimize the
upper bound (4). The full proof appears in Appendix D.

6 Analysis: General Subsets and Max-Exp

In this section, we extend the queue overflow optimality result for Max-Queue
to the general setting of arbitrary disjoint subsets of observable channels and
the Max-Exp scheduling algorithm. For this, we follow the same key steps in
obtaining the Max-Queue result – (a) prove lower bounds on the buffer over-
flow exponent for Max-Exp, (b) derive universal upper bounds on the buffer
overflow exponent across all scheduling algorithms using subset channel state
information, and (c) demonstrate that the upper and lower bounds match.

However, the approach to show optimality of the Max-Exp algorithm war-
rants a more sophisticated analysis as compared to that of Max-Queue. This
is primarily due to the fact that the Max-Exp algorithm is not a scaling-
invariant scheduling algorithm, i.e., scaling all queue-lengths by a uniform
constant changes the scheduling behavior. Intrinsically, Max-Exp operates at
the O(

√
n) time-scale, i.e., when all the queue lengths are O(n), a O(

√
n)

change in them causes a shift in Max-Exp’s scheduling behavior. In other
words, examining Max-Exp’s scheduling over O(n) time slot intervals effec-
tively “washes out” information about its actions, resulting in crude bounds.
This sets Max-Exp apart from Max-Queue which is naturally coupled to the
timescale of O(n) time slots, and prevents us from using the standard O(n)
fluid scaling to analyze the fluid sample path behavior of Max-Exp.

Hence, our analysis for Max-Exp proceeds by looking at sample paths of
the system’s processes over intervals of O(

√
n) time slots. For Step (a) above,

analogous to Proposition 1, we establish a “refined” Mogulskii-type theorem
for sample-path large deviations of predictably sampled processes over a sub-
O(n) timescale (a corresponding result for the full-CSI case was first proved
in [25]). Next, we use the framework of Local Fluid Sample Paths (LFSPs,
introduced in [21]) to obtain a lower bound on the decay exponent of Max-
Exp’s overflow probability. LFSPs allow us to “magnify” the standard O(n)
fluid limit processes to examine events on the O(

√
n) “local fluid” timescale,
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and this helps us match the lower and upper bounds for the decay exponent
to establish the optimality of Max-Exp.

6.1 Lower Bounding Max-Exp’s Decay Rate: Refined-timescale Large
Deviations for Sampled Processes and Local FSPs

Here, we extend the sampling-based large-deviations bound from Proposition
1 to hold over a finer-than-O(n) timescale. The basic idea here is to lower-
bound the large deviations cost from (1) by linearizing sample paths over
the finer timescale. This expresses the intuitive notion that over the finer
timescale, typical large deviations of random processes occur “locally along
straight lines”.

The general approach for studying scheduling behavior on finer-than-O(n)
timescales is to introduce a positive integer function u(n), such that u(n)→∞
and u(n)/n→ 0 as n→∞ (see Stolyar [25]). We take u(n) = d

√
ne, which is

the relevant timescale for the dynamics of the Max-Exp scheduling rule (1).
For our analysis of the queue overflow rate function, we will need to

use this idea, along with the following variable time discretization for each
observable subset. For any non-decreasing, right-continuous-with-left-limits
(RCLL) scalar function h on [0,∞), and any non-decreasing continuous func-
tion χ : [0,∞) → [0,∞), let Unχh denote the continuous and piecewise-
linearized (according to χ) version of h constructed as follows: we divide
[0,∞) into the contiguous subintervals [0, χ(u(n)/n)], [χ(u(n)/n), χ(2u(n)/n)],
[χ(2u(n)/n), χ(3u(n)/n)], . . ., and linearize h between its endpoints in each
subinterval. For t ≥ 0, let θ(n)(t) be the largest right-endpoint of a sub-interval
that does not exceed t. When the functions h and χ are vector-valued of (the
same) finite dimension, we employ the same notation Unχh to mean the above
linearization performed for each of the individual scalar component functions
in h and its counterpart function in χ. In this case, the definition of θ(n)(t) is
similarly extended in a component-wise fashion.

For each observable subset α, let Λ∗α be the Sanov rate function [6] for
the empirical marginal distribution of the state of its channels (Ri(1))i∈α.
The domain of Λ∗α is the |Rα|-dimensional simplex where Rα is the set of all
possible sub-states for subset α.

Sampled Trace of the Queueing System: We define here a random object
crucial to the analysis of Max-Exp. Consider the evolution of the n-th queueing
system in the time slots 1, 2, . . . , nT , and suppose that subset α is picked by the
scheduling algorithm precisely at time slots Kα(1),Kα(2), . . . ,Kα(Cα(nT )) ∈
{1, 2, . . . , nT} . Recall that Rα is the set of all possible sub-states wrt subset
α. For each such sub-state r ∈ Rα, we will find it convenient to associate it
with the unit vector er which is simply the |Rα|-dimensional vector with 1 in
the r-th position (according to a fixed ordering) and zeros everywhere else.

For each subset α, set

V α,(n) ≡ V α 4= (eRα(Kα(1)), eRα(Kα(2)), eRα(Kα(3)), . . . , eRα(Kα(Cα(nT ))))
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i.e., the j-th element of V α simply records what sub-state was sampled when
α was picked for the j-th time Kα(j).

We call V (n) ≡ V
4
= (V α)α∈O the sampled trace of the queueing system.

The sampled trace represents, in words, the sequence of sub-state observa-
tions seen by the scheduling algorithm, organized according to the subsets
sampled during the operation of the scheduling algorithm. Note also that for
any deterministic scheduling algorithm, the sampled trace completely specifies
the entire sample path of the queue lengths (in conjunction with the arrival
sequence which is assumed to be deterministic).

Corresponding to each possible sampled trace V , we define its partial sums
process

Wα,(n)(k) ≡Wα =

k∑
j=1

V α(j), 1 ≤ k ≤ Cα(nT )

for each observable subset α ∈ O. We then define W (n) ≡ W
4
= (Wα)α∈O.

Note that each sampled trace V corresponds bijectively to its partial-sums
process W . Also, as per convention, we use w ≡ w(n) and v ≡ v(n) to denote
the rescaled (by n) versions of W and V respectively.

Let us define the candidate sample-path large deviations rate function for
our queueing system as follows:

Ĵt(z, s)
4
=

∫ zα(t)

0

∑
α∈O

Λ∗α (s′α(u)) du,

sα ∈ A
(

[0, T ]→ R|Rα|
)
,

zα ∈ A ([0, T ]→ R) , t ∈ [0, T ].

Here, A is used to denote the set of absolutely continuous functions.
In order to track large deviations costs over the refined u(n) timescale, let

us introduce the notion of a Generalized Fluid Sample Path (GFSP) [25], built
upon the framework of standard FSPs.

Definition 1 (Generalized Fluid Sample Path (GFSP)) Suppose that
there exists an increasing subsequence {n} of the sequence of positive integers
such that

1. For each n, there is a valid realization (f (n), f̂ (n), c(n), g(n), ĝ(n), q(n),m(n), w(n)).
2. As n→∞, we have the u.o.c. convergence

(f (n), f̂ (n), c(n), g(n), ĝ(n), q(n),m(n), w(n))→ (f, f̂ , c, g, ĝ, q,m,w)

for a set of limiting, Lipschitz continuous functions (f, f̂ , c, g, ĝ, q,m,w),
and the u.o.c. convergence

J̄ (n) ≡ (J̄
(n)
t , t ∈ [0, T ])

4
=
(
Ĵt

(
c(n), Unc(n)w

(n)
)
, t ∈ [0, T ]

)
→ J̄ = (J̄t, t ∈ [0, T ])

for a non-negative non-decreasing Lipschitz-continuous function J̄ .
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Then, the entire construction

[{n}; (f (n), f̂ (n), c(n), g(n), ĝ(n), q(n),m(n), w(n)), J̄ (n); (f, f̂ , c, g, ĝ, q,m,w), J̄ ]

is called a generalized fluid sample path (GFSP). The non-decreasing func-
tion J̄ will be called the refined cost function of the GFSP.

We note that for any 0 ≤ t1 < t2 <∞,

J̄t2 − J̄t1 ≥ Ĵt2(c, w)− Ĵt1(c, w), (5)

as a result of convexity of the Λ∗α, α ∈ O, and Jensen’s inequality.

The following finite-horizon result strengthens Proposition 1. It states that
for any nonrandom scheduling algorithm, the sample path large deviations
rate function for the queue length process is lower-bounded by the minimum
refined cost over valid GFSPs.

Proposition 6 (Refined-time-scale Lower Bound on Large Deviation
Rate Function) Let Γ be a closed set of trajectories in C+L ([0, T ]). Then,
under a nonrandom scheduling policy,

− lim sup
n→∞

1

n
logPn,T0

[
q(n) ∈ Γ

]
≥

inf
{
J̄0 : ∃GFSP ψ on [0, T ], J̄ ∈ ψ, q ∈ ψ, q ∈ Γ

}
. (6)

The proof appears below. The proof uses ideas from the large deviations
of sampling (in the manner of Proposition 1), the crucial concept of sampled
traces, and a variable discretization-version of a refined Mogulskii theorem first
shown by Stolyar [25], in order to establish the rate function bound (6).

Proof For an observable subset α, let P̃α be the probability measure on {er :
r ∈ Rα} such that P̃α[er] = P [Rα(1) = r] ∀r ∈ Rα. Form the “marginal” prod-

uct distribution for subset α as P̂α
4
= P̃α × P̃α × · · · (i.e., extend P̃α to count-

ably infinite sequences in an iid fashion), and finally take the product of these

marginal measures, across observable subsets, to get P̂ 4=
∏
α∈O P̂α. For any

candidate sampled trace v = (vα)α∈O, we understand P̂[v] as
∏
α∈O P̂α[vα] =∏

α∈O
∏
j P̃α[vα(j)].

The lemma below states that for any deterministic scheduling algorithm,
the probability distribution of the sampled trace of the queueing system is
identical under both the original measure PnTq0 and the product-of-marginals

measure P̂ defined above. This will subsequently allow us to apply sample-path
large-deviations results on the iid measure P̂ instead of the more complex,
correlated measure PnTq0 .

Lemma 1 For every sampled trace v = (vα)α∈O, PnTq0 [V = v] = P̂[v].
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Continuing with the proof of the proposition, let Γ (n) (resp. C(n)) be the
set of all valid rescaled sampled traces (resp. all valid rescaled subset-sampling
trajectories c(n)) in the n-th queueing system11 that, starting with initial queue
lengths q0, result in queue length sample paths belonging to Γ . We also let

ΓC(n) 4= {(w(n), c(n)) : w(n) ∈ Γ (n)} denote the set of valid (sampled trace,
sampling frequency) pairs corresponding to sampled trace trajectories belong-
ing to Γ (n). We have, due to Lemma 1,

PnTq0
[
w(n) ∈ Γ (n)

]
=

∑
w∈Γ (n)

PnTq0
[
W (n) = w

]
=

∑
w∈Γ (n)

P̂[w]

= P̂
[{
w : w ∈ Γ (n)

}]
,

where the final step is due to the fact that the sampled trace uniquely spec-
ifies the queueing system’s complete trajectory, and so sampled traces corre-
sponding to different sample paths of the system must necessarily be different.
Passing in this fashion to the iid measure P̂ allows us to use a refinement
of Mogulskii’s theorem [6] first established by Stolyar [25, Theorem 7.1], to
estimate the large deviations rate function. As a consequence, we can write12

− lim sup
n→∞

1

n
log P̂

[{
w(n) : w(n) ∈ Γ (n)

}]
≥ lim inf

n→∞
inf
{
ĴT (c, Unc w) : (w, c) ∈ ΓC(n)

}
.

(7)

Let the limit inferior on the right-hand side of (7) above be denoted by ζ. It
follows that we can find for each n a wn ∈ Γ (n) and cn = (cn,α)α∈O ∈ R|O|,
such that (wn, cn) ∈ ΓC(n) and Ĵ0(cn, U

n
cnwn) → ζ. Using uniform Lipschitz

continuity of the {wn} and {cn}, we can extract a subsequence of trajectories
(wn, cn) which converges and forms a GFSP with refined cost ζ, and which
satisfies, by construction, the conditions on the right-hand side of (6). Thus,
we get

ζ ≥ inf
{
J̄0 : ∃ GFSP ψ on [0, T ], J̄ ∈ ψ, q ∈ ψ, q ∈ Γ

}
,

completing the proof.

11 Since sampled traces and their partial sums processes are in one-to-one correspondence,
we take the liberty of referring to them interchangeably.
12 [25, Theorem 7.1] derives the rate function bound under a fixed discretization of the

time axis where the discretization rate is always unity, i.e., χ(x) = x ∀x ≥ 0. When the
discretization rate is variable and depends on the subset selection frequency c(n), it is not
hard to see that the result of [25, Theorem 7.1] extends with Unh replaced by Un

c(n)h – the

key property that affords us this extension is that the size of each subinterval (u(n)/n in [25]
and χ((k + 1)u(n)/n) − χ(ku(n)/n) here) does not matter; it is the number of discretized
intervals (Tu(n)/n both in [25] and here) that is the crucial ingredient in the bound in [25,
Theorem 7.1].
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Similar to extending the result of Proposition 1 to the stationary queue
length distribution, minimizing the RHS of (6) across FSPs over all finite
time horizons T > 0 yields a lower bound for the large deviations rate of
the stationary queue overflow probability. This uses standard tools (see, for
instance, [25,30]), and we omit the proof for brevity.

6.2 Extending The Lower Bound to The Stationary Queue Distribution

As with the approach followed to extend the result of Proposition 1 to the sta-
tionary measure under Max-Queue (i.e., to Proposition 2), we can use standard
Friedlin-Wentzell-type techniques to extend Proposition 6 to a large-deviations
lower bound [30,25] for the stationary measure under the Max-Exp scheduling
policy. Note that this requires showing that Max-Exp is throughput-optimal13

– a fact whose proof we omit for brevity, but which results from a fairly
straightforward modification of the proof of throughput-optimality of the Max-
Sum Queue algorithm (see [10] for details).

Theorem 2 Let P denote the stationary measure induced by the Max-Exp
policy. Then,

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ inf

T≥0
inf
{
J̄t : ∃ GFSP ψ on [0, T ], J̄ ∈ ψ, q ∈ ψ, t ∈ [0, T ], q(0) = 0, ||q(t)||∞ ≥ 1

}
.

(8)

6.3 Straight-line Uniform LD Upper Bounds over all policies

In this section, we establish a crucial upper bound on decay rate of the station-
ary queue-overflow probability uniformly for any stabilizing scheduling policy,
along the lines of Proposition 4. This is stated and carried out in terms of
“twisted” marginal probability distributions for the subset channel states, and
the local/subset-based throughput regions that they induce.

Recall that for an observable subset α, Rα denotes the (finite) set of all
possible (joint) sub-states that can be observed channels in α. We use Πα to
denote the |Rα|-valued simplex, i.e., the set of all probability measures on
the sub-states of α. Any distribution φα ∈ Πα induces a subset throughput
region Vφα , which represents all the long-term average service rates that can
be sustained to users in α when the sub-states are distributed as φα (see also
[2,10]). The uniform large-deviations upper-bound can now be stated for any
stabilizing scheduling policy π:

13 Again, the throughput-optimality holds among all scheduling algorithms that base their
decision on the current (or any finite past history of) system state.
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Theorem 3 Let π be a stabilizing scheduling policy for arrival rates λ =
(λ1, . . . , λn), and let Pπ be the associated stationary measure. Let distributions
φα ∈ Πα be fixed, for every α, such that λ /∈ CH((Vφα)α). Then,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ sup∑

α c
′
α=1

c′α≥0

[ ∑
α c
′
αΛ
∗
α(φ′α)

maxα,vα∈Vφα maxi∈α(λi − c′αvα,i)

]
.

(9)

6.4 Showing Max-Exp’s Overflow Exponent is Optimal

Finally, in this section, we establish that the large-deviations buffer overflow
exponent for the Max-Exp scheduling algorithm is in fact optimal over all
stabilizing scheduling rules14. For this, we leverage the large-deviations lower
bound for the Max-Exp scheduling algorithm (Theorem 2) and show that it
is actually a uniform upper bound over all scheduling rules as prescribed by
Theorem 3.

Our approach at the high level is comprised of the following steps:

1. Consider a feasible FSP (q, J̄) on [0, T ] for Theorem 2, i.e., q(0) = 0,
q(t) = 1 for some t ∈ [0, T ]. We show, by “magnifying” the FSP about some
τ ∈ [0, T ] and taking “local” fluid limits, that the “unit large-deviations
cost” of raising the longest queue in the associated Local Fluid Sample
Path (LFSP) [21,25] at τ is close to the total FSP cost J̄T .

2. Thus, a further lower bound on the Max-Exp rate function is the least
“large-deviations cost per unit increase of longest queue” over all feasible
local fluid sample paths – call it J∗.

3. In the context of Theorem 3, we exhibit suitable twisted subset distribu-
tions φα ∈ Πα ∀α such that the RHS of (9) is at most J∗, proving the
claimed result.

6.4.1 From Low Cost FSPs to Low Cost Local FSPs

The variational problem on the right-hand side of (8) necessitates a closer
look at the derivatives of fluid sample paths under the Max-Exp scheduling
algorithm. At the same time, since the Max-Exp rule naturally operates at
the O(

√
n) timescale, derivative information typically is “washed out” of the

standard O(n)-scaled fluid sample paths. This motivates us to define and use
Local Fluid Sample Paths (LFSPs) with a O(

√
n)-type scaling, in which in-

formation about scheduling choices and drifts can be clearly understood with
regard to the Max-Exp scheduling rule.

14 By optimal, we mean optimal among all stabilizing scheduling algorithms that base their
decision on the current (or any finite past history of) system state.
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The formal LFSP construction is along the lines of that used in [21,25],
and is as follows. Consider a standard fluid sample path on [0, T ] (along with
its prelimit functions) and call it ψ. Let us introduce the “recentered” queue
lengths

Q̃
(n)
i (t)

4
= Q

(n)
i (t)− bi

√
Q̄(n)(t),

where bi, i = 1, . . . , N are such that for each observable subset α, the vector
(ebi)i∈α is an outer normal to the subset rate region Vα (under the natural
marginal distribution of the sub-state Rα(1)) at some point v∗α ∈ Vα such that

v∗α > λ|α. The fluid-scaled version of Q̃
(n)
i is

q̃
(n)
i (t) = q

(n)
i (t)− bi√

n

√
q̄(n)(t),

so we have the uniform convergence

q̃
(n)
i → qi,

and

q̃
(n)
∗
4
= max

i
q̃
(n)
i → q∗

4
= max

i
qi.

Let τ ∈ [0, T ] be fixed, such that q∗(τ) > 0. Also, fix S > 0 and set σn
4
=

1√
n

√
q̄(n)(τ). Suppose we pick a sequence of time intervals [t

(n)
1 , t

(n)
2 ] ⊆ [0, T ],

indexed by n, such that t
(n)
2 − t(n)1 = Sσn and t

(n)
1 → τ as n → ∞. Then,

for each n and s ∈ [0, S], consider the following “centered” and “rescaled”
functions:

�q
(n)
i (s)

4
=

1

σn
[q̃

(n)
i (t

(n)
1 + σns)− q̃(n)∗ (t

(n)
1 )], i = 1, . . . , N,

�q
(n)
∗ (s)

4
= max

i
�q

(n)
i (s) =

1

σn
[q̃

(n)
∗ (t

(n)
1 + σns)− q̃(n)∗ (t

(n)
1 )],

�f
(n)
i (s)

4
=

1

σn
[f

(n)
i (t

(n)
1 + σns)− f (n)i (t

(n)
1 )], i = 1, . . . , N,

�f̂
(n)
i (s)

4
=

1

σn
[f̂

(n)
i (t

(n)
1 + σns)− f̂ (n)i (t

(n)
1 )], i = 1, . . . , N,

�c
(n)
α (s)

4
=

1

σn
[c(n)α (t

(n)
1 + σns)− c(n)α (t

(n)
1 )], α ∈ O,

�g
α,(n)
r (s)

4
=

1

σn
[gα,(n)r (t

(n)
1 + σns)− gα,(n)r (t

(n)
1 )], α ∈ O, r ∈ Rα,

�ĝ
α,(n)
ri (s)

4
=

1

σn
[ĝ
α,(n)
ri (t

(n)
1 + σns)− ĝα,(n)ri (t

(n)
1 )], α ∈ O, r ∈ Rα, i = 1, . . . , N,

�m
(n)(s)

4
=

1

σn
[m(n)(t

(n)
1 + σns)−m(n)(t

(n)
1 )].
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It follows that we can choose a subsequence of n along which the following
uniform convergence to Lipschitz functions holds on [0, S] [25]:

(
�q

(n), �q
(n)
∗ , �f

(n), �f̂
(n), (�c

(n)
α )α, (�g

α,(n)
r )αr, (�ĝ

α,(n)
ri )αr,i, �m

(n)
)
→(

�q, �q∗, �f, �f̂ , (�g
α
r )αr, (�ĝ

α
ri)αr,i, �m

)
. (10)

Note that each �qi can be either finite Lipschitz or −∞; we appropriately
extend the definition of uniform convergence in the latter case. We call the
tuple on the right-hand side of (10) above a Local Fluid Sample Path at (scaled)
time τ .

We also have the following consequence of the (marginal) convexity of Ĵ ,
in close analogy with (5):

lim inf
n→∞

1

σn
[J̄

(n)

t
(n)
2

− J̄ (n)

t
(n)
1

] ≥ ĴS
(
�c,

d�g

d�c

)
. (11)

The following key lemma, along the lines of Lemma 9.1 in [25], is crucial to
understand the local timescale dynamics of the Max-Exp scheduling algorithm:

Lemma 2 For any LFSP over an interval [0, S],

1. The following derivatives exist Lebesgue-a.e.15 and are finite:

�q̇, �q̇∗, �ċα, �ḟ , v
4
= �

˙̂
f, �ġ

α
r , � ˙̂gαri, �ṁ.

2. For every α ∈ O and r ∈ Rα, �g
α
r � �cα (wrt the corresponding Lebesgue-

Stieltjes induced measures). Thus, there exists (cα-a.e.) a version of the

Radon-Nikodym derivative φαr
4
=

d�g
α
r

d�cα
.

15 As convention, we take d
dt

(∞) = 0.
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3. The following relations hold, whenever the relevant derivatives exist, for
s ∈ [0, S]:

�ḟ(s) = λ, (12)

�q̇(s) = �ḟ(s)− v(s), (13)

�q∗(s) = max
i
�qi(s), (14)

�q̇∗(s) = �q̇i(s) for each i such that �qi(s) = �q∗(s),
(15)

vi(s) =
∑
r∈Rα

� ˙̂gαri(s)µ
α
ri for each i ∈ α, α ∈ O, (16)

∑
i∈α
� ˙̂gαri(s) = �ġ

α
r (s), (17)∑

r∈Rα
�ġ
α
r (s) = �ċα(s), (18)

∑
r∈Rα

�φαr(s) = 1, (19)

∑
α∈O

�ċα(s) = 1, (20)

∀α ∈ O vα(s) = �ċα(s)× arg max
η∈Vφα (s)

〈e�q(s)+b, η〉α,

(21)∑
i∈β

e�qi(s)+bi < max
α∈O

∑
i∈α

e�qi(s)+bi ⇒ �ċβ(s) = 0 for each β ∈ O, (22)

d

du

∑
i∈β

e�qi(u)+bi

∣∣∣∣∣∣
u=s

=
d

du

∑
i∈γ

e�qi(u)+bi

∣∣∣∣∣∣
u=s

whenever β, γ ∈ arg max
α∈O

∑
i∈α

e�qi(s)+bi , and

s is a regular point of
∑
i∈β

e�qi(s)+bi ,
∑
i∈γ

e�qi(s)+bi and max
α∈{β,γ}

∑
i∈α

e�qi(s)+bi .

(23)

Proof The first assertion of the lemma follows due to the absolute continuity
of the LFSP functions being considered, which, in turn, is a consequence of
the corresponding Lipschitz-continuous prelimit functions.

The second assertion of the lemma is due to the fact that �g
α,(n)
r � �c

(n)
α

for the prelimit functions – a queue belonging to a subset cannot be scheduled
without first choosing the subset.

As regards the third assertion, properties (12)-(20) follow due to the cor-
responding properties of their prelimit LFSP functions, together with the
(Lebesgue-a.e.) derivatives.
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Property (21) is a key property of the Exponential scheduling rule, and
has been established previously in the work of Shakkottai and Stolyar [21]. It
is a consequence of the ratios of the exp(·) terms (for different queues i) in the
definition of the intra-subset Exponential rule (i.e., Step (2) in Algorithm 1)
converging to the ratios e�qi(s)+bi on the LFSP time scale.

Property (22) follows from Max-Exp’s subset selection criterion (i.e., Step
(1) in Algorithm 1) applied to the prelimit LFSP functions, along with the
convergence of the exp(·) terms to the ratios e�qi(s)+bi as noted above.

To show (23), we argue by contradiction. If s is a regular point of the subset

functions Lβ(·) 4=
∑
i∈β e

�qi(·)+bi and Lγ(·) 4=
∑
i∈γ e

�qi(·)+bi , and Lβ(s) =
Lγ(s) holds, but

d

du
Lβ(s)

∣∣∣∣
u=s

6= d

du
Lγ(s)

∣∣∣∣
u=s

,

then a simple argument shows that the function max(Lβ(·), Lγ(·)) cannot be
differentiable at s, yielding a contradiction.

With this framework of LFSPs set up, we can resume the main development
from Theorem 2. Consider a feasible GFSP ψ on [0, T ] for the right-hand side
of (8) (i.e., for which q(0) = 0 and ||q(t)||∞ = 1 for some t ∈ [0, T ]), and whose
refined cost is J̄t. Fix an arbitrary ε > 0. Then, there must exist a time point
τ ∈ (0, t) such that q∗(τ) > 0, q′∗(τ) > 0, J̄ ′τ > 0, and

J̄ ′τ
q′∗(τ)

< J̄t + ε.

Continuing using a technique similar to that in [25, Section 11], we can
show that for an arbitrary S > 0 and sufficiently large n, we can find intervals

[t
(n)
1 , t

(n)
2 ] and [t1, t2] such that τ ∈ [t

(n)
1 , t

(n)
2 ] ⊂ [t1, t2], and with

t
(n)
2 − t(n)1 =

S√
n

√
q̄(n)

(
t
(n)
1

)
,

q̃
(n)
∗ (t

(n)
2 )− q̃(n)∗ (t

(n)
1 ) > 0, (24)

J̄
(n)

t
(n)
2

− J̄ (n)

t
(n)
1

q̃
(n)
∗ (t

(n)
2 )− q̃(n)∗ (t

(n)
1 )

< J̄t + 3ε. (25)

We can choose a subsequence of {n} above so that, for some τ1 ∈ [t1, t2],

we have the left endpoints t
(n)
1 → τ1 (so that t

(n)
2 → τ1 as well). Then, let us

choose a further subsequence such that(
�q

(n), �q
(n)
∗ , �f

(n), �f̂
(n), (�c

(n)
α )α, (�g

α,(n)
r )αr, (�ĝ

α,(n)
ri )αr,i, �m

(n)
)

converges to an LFSP
(
�q, �q∗, �f, �f̂ , (�g

α
r )αr, (�ĝ

α
ri)αr,i, �m

)
on the local time

interval [0, S].



Wireless Scheduling with Partial Channel State Information 27

We claim that there must exist ε1 > 0 such that

ĴS(�c, φ)− Ĵ0(�c, φ) ≥ ε1S

(recall that φ = d�g
d�c

as defined in Lemma 2). If not, then ĴS(�c, φ) = Ĵ0(�c, φ),
which means that all observed channel state distributions over subsets are
exactly typical. Since, by hypothesis, the arrival rate vector λ lies in the interior
of the throughput region, this contradicts the fact that the longest queue in
the system does not decrease (24).

The inequality above, together with the lower bound (11) and the relation
(25), gives us that there exists ε2 > 0 such that

�q∗(S)− �q∗(0) ≥ ε2S. (26)

We thus arrive at the inequality

ĴS(�c, φ)− Ĵ0(�c, φ)

�q∗(S)− �q∗(0)
≤ J̄t + 3ε. (27)

In other words, we are able to approximate the cost of FSPs arbitrarily well
with the “unit cost” of raising �q∗ in suitably constructed LFSPs.

6.4.2 A Relaxed Lower Bound on Rate Function in Terms of LFSP Costs

We use the techniques of the previous section to further lower-bound the queue
overflow exponent of the Max-Exp rule. For a general LFSP, we introduce the
following “potential function” of its queue state:

Ψ(�q)
4
= max

α∈O
Ψα(�q) ≡ max

α∈O

∑
i∈α

e�qi+bi ,

together with its logarithm

Φ(�q)
4
= logΨ(�q) = max

α
logΨα(�q).

Fact: The function Φ(�q) uniformly approximates �q∗ ≡ ||�q||∞, in the
sense that ||Φ(�q)− �q∗|| ≤ ∆ for some fixed ∆ > 0.

Now, consider an FSP feasible for the infimum16 (8) in Theorem 2. By
combining the above fact with the conclusions of the previous section (i.e.
properties (26) and (27)), we have that for an arbitrarily small ε > 0, an
LFSP can be constructed on [0, S], with S > 0 suitably large, so that the
following properties hold with ε2 > 0:

Φ(�q(S))− Φ(�q(0)) ≥ (ε2/2)S, (28)

ĴS(�c, φ)− Ĵ0(�c, φ)

Φ(�q(S))− Φ(�q(0))
≤ J̄t + 2ε. (29)

16 If the infimum is not attainable, it suffices to consider an FSP ε′-close to the infimum,
with ε′ > 0.
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In the sequel, we will concentrate on the LHS of (29) – modulo an arbitrarily
small ε > 0, it is a lower bound on the original FSP cost J̄t. We have

ĴS(�c, φ)− Ĵ0(�c, φ)

Φ(�q(S))− Φ(�q(0))
=

∫ S
0

d
ds Ĵs(�c, φ)ds∫ S

0
d
dsΦ(�q(s))ds

≥ inf
s∈[0,S]

d
ds Ĵs(�c, φ)
d
dsΦ(�q(s))

= inf
s∈[0,S]

∑
α �ċα(s) Λ∗α (φα(s))

d
dsΦ(�q(s))

(Lemma 2).

As a consequence of the above inequality17, we can record the following result:

Proposition 7 If P denotes the stationary measure induced by the Max-Exp
policy, then

− lim sup
n→∞

1

n
logP

[
||q(n)(0)||∞ ≥ 1

]
≥ inf

s∈[0,S]

∑
α �ċα(s) Λ∗α (φα(s))

d
dsΦ(�q(s))

, (30)

for any valid Local Fluid Sample Path (LFSP) as specified by (10).

Letting J∗ denote the infimum on the RHS of (30) over all valid LFSPs, a
further lower bound on the buffer overflow exponent of Max-Exp is thus J∗.

6.4.3 Connecting the relaxed Lower Bound to the uniform Upper Bound

The crucial final step in establishing the large-deviations optimality of the
Max-Exp algorithm is to show that the lower bound on its decay exponent J∗
is, in fact, a uniform upper bound on the decay exponent of any stabilizing
scheduling policy, on the lines of Theorem 3. The proof may be found in
Appendix E, and uses the disjointness of the collection of observable subsets
O in a key way.

Theorem 4 (Optimality of Max-Exp) Let π be any stabilizing scheduling
policy (i.e., a stabilizing policy that bases its decision on the current (or any
finite past history of) system state) for arrival rates λ = (λ1, . . . , λn), and let
Pπ be the associated stationary measure. Then,

− lim inf
n→∞

1

n
logPπ

[
||q(n)(0)||∞ ≥ 1

]
≤ J∗,

i.e., Max-Exp has the optimal large-deviations exponent (equal to J∗) over all
stabilizing scheduling policies with subset-based partial channel state informa-
tion.

17 We have abused notation to indicate that the infimum above is, in fact, over the
(Lebesgue-a.e.) regular points s ∈ [0, S].
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7 Conclusion

For scheduling with only partial wireless Channel State Information (CSI), we
developed the Max-Exp and Max-Queue scheduling algorithms yielding opti-
mal queue overflow tails. This work shows that structurally simple scheduling
algorithms which use partial CSI can guarantee high performance. Moreover,
to control queue backlogs in such cases, no additional statistical or extraneous
information is explicitly required by the scheduling algorithms.

We hope that this work lays the keystone for further investigations of
the performance of wireless scheduling under different types of partial infor-
mation structures. Future directions for research include studying scheduling
with information from general user subsets, temporally varying constraints
on available CSI, and performance under delayed CSI with time-correlated
channels.
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A Proof of Proposition 1

In the nth system, consider the joint channel states for the first nT time slots, i.e.,
(
R(n)(1),

R(n)(k), . . . , R(n)(nT )
)
, with each R(n)(k) ∈ RN ⊂ RN . Since our sampling/scheduling rule

is deterministic, the exact time slots in {1, . . . , nT} at which user i is sampled depend entirely
on these joint channel states. To avoid heavy notation, we will suppress the superscript (n)
as all quantities we deal with refer to the nth queueing system. Let V = (V1, . . . , VN )
be the (random) sampled trace for the system upto time nT . By this, we mean that each
Vi is a vector with elements from R that represents all the successively observed/sampled
rates for user i, i.e. Vi = (Ri(Ki1 ), Ri(Ki2 ), . . .) where user i is chosen precisely at time
slots Ki1 ,Ki2 , . . . In other words, Vi is the ordered row of channel state values sampled
by the scheduling policy, so the sum of the lengths of the Vi is exactly nT . In the sequel,
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we frequently identify each Vi bijectively with its corresponding partial sums process Wi ≡
W (Vi).

We have the following lemma, due to the crucial fact that for any deterministic sampling
rule, the sampled trace uniquely specifies at what times each user was sampled and its
sampled channel states at those instants. By a valid sampled trace, we mean a (finite)
sampled trace occurring with nonzero probability. For a valid sampled trace w in the n-th
system, let E(w) be the set of all extended combinations of w, i.e. the set of all (e1, . . . , eN )
where each ei is a vector in RnT such that wi is a prefix of ei.

Lemma 3 Let Zij , i = 1, . . . , N , j = 1, 2, . . . , nT be independent random variables with

Zij ∼ Ri(0) for all i and j. Let P̂(nT ) be the probability measure induced by (Zij)i,j . If w
is a valid trace in the n-th system, then for any nq0 ∈ (Z+)N ,

Pn,Tq0 [W (n) = w] = P̂(nT ) [E(w)] .

Proof Let w = (w1, . . . , wN ) with
∑N
i=1 |wi| = nT , and let v = (v1, . . . , vN ) be the cor-

responding sampled trace for w, i.e., each wi is the vector of partial sums for the vector
vi. Associated to w and v are the time slots ki1 , ki2 , . . . when user i is sampled, for all i.
Furthermore, a key fact is that all the time slots ki1 , ki2 , . . . when user i is sampled, for all
i, are completely specified by v due to the sampling rule being nonrandom.

Recall, from our notation, that the random variable S(k) records which user is sampled
at time slot k. We have

Pn,Tq0 [W (n) = w] = Pn,Tq0 [V (n) = v]

(a)
= Pn,Tq0 [V (n) = v,∀i S(ki1 ) = i, S(ki2 ) = i, . . .]

= Pn,Tq0 [∀i Ri(ki1 ) = vi1, Ri(ki2 ) = vi2, . . .]

(b)
=
∏
i,j

Pn,Tq0
[
Ri(kij ) = vij

]
(c)
= P̂(nT ) [E(w)] ,

which completes the proof. Here, (a) is by using the key fact in the preceding paragraph;
(b) is because channel states are independent across time and the fact that the kij i,j are

all distinct and partition {1, 2, . . . , nT}; (c) is due to exchangeability of the (independent
across time) channel state process.

Proceeding with the proof of the proposition, we have

Pn,Tq0
[
q(n) ∈ Γ

]
≤ Pn,Tq0

[
w(n) ∈ Γ (n)

]
,

where Γ (n) is the set of all valid sampled traces w(n) that result in queue length paths
q(n) ∈ Γ under the scheduling algorithm. For an arbitrary integer n̂, we can write

Pn,Tq0
[
w(n) ∈ Γ (n)

]
=

∑
w∈Γ (n)

Pn,Tq0
[
w(n) = w

]
=

∑
w∈Γ (n)

P̂(nT ) [E(w)] (by Lemma 3)

= P̂(nT )

 ⋃
w∈Γ (n)

E(w)

 (unique prefixes ⇒ disjointness)

≤ P̂(nT )

[ ∞⋃
n′=n̂

E
(
Γ (n′)

)]
.
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∴ − lim sup
n→∞

n−1 log Pn,Tq0
[
w(n) ∈ Γ (n)

]
≥ − lim sup

n→∞
n−1 log P̂(nT )

[ ∞⋃
n′=n̂

E
(
Γ (n′)

)]

≥ inf


∫ T

0

N∑
i=1

Λ∗i (ẇi(z))dz : w ∈
∞⋃

n′=n̂

E
(
Γ (n′)

)
(by Mogulskii’s theorem [6])

⇒ − lim sup
n→∞

n−1 log Pn,Tq0
[
w(n) ∈ Γ (n)

]
≥ lim
n̂→∞

inf


∫ T

0

N∑
i=1

Λ∗i (ẇi(z))dz : w ∈
∞⋃

n′=n̂

E
(
Γ (n′)

) .

(31)

Let the right hand side of (31) be denoted by ζ. For every n̂ = 1, 2, . . ., we can choose wn̂
such that

wn̂ ∈
∞⋃

n′=n̂

E
(
Γ (n′)

)
, and

lim
n̂→∞

∫ T

0

N∑
i=1

Λ∗i (ẇn̂,i(z))dz = ζ.

Since the wn̂ are all uniformly Lipschitz continuous and bounded, by the Arzelà-Ascoli theo-
rem, the sequence (wn̂)n̂ contains a subsequence converging uniformly over the time interval
[0, T ]. Without loss of generality, let the subsequence be {n̂} itself, and let limn̂→∞ wn̂ = w.

The map f 7→
∫ T
0

∑N
i=1 Λ

∗
i (ḟ(z))dz is lower-semicontinuous [6], thus

∫ T

0

N∑
i=1

Λ∗i (ẇ(z))dz ≤ lim
n̂→∞

∫ T

0

N∑
i=1

Λ∗i (ẇn̂,i(z))dz = ζ.

We can pick, for each n̂, an m̂n̂ and a wm̂n̂ ∈
⋃∞
n′=n̂ E

(
Γ (n′)

)
such that ||wm̂n̂ −wn̂||∞ <

1/n̂. Since wm̂n̂ ∈
⋃∞
n′=n̂ E

(
Γ (n′)

)
, let wm̂n̂ ∈ E

(
Γ (m̂′n̂)

)
for some m̂′n̂ ≥ n̂. It follows

that there exists a corresponding valid queue length path qm̂n̂ such that wm̂n̂ induces qm̂n̂ ,
and moreover, qm̂n̂ ∈ Γ . We can pick a subsequence of {m̂n̂}n̂ (let it be m̂n̂ without loss

of generality) along which the sequence qm̂n̂ converges to a q ∈ Γ = Γ . We now have
limn̂→∞ wm̂n̂ = w and limn̂→∞ qm̂n̂ = q, thus (q, w) is a valid fluid sample path with
q ∈ Γ . This yields

− lim sup
n→∞

n−1 logPn,Tq0
[
w(n) ∈ Γ (n)

]
≥

inf

{∫ T

0

N∑
i=1

Λ∗i (ẇi(z))dz : (w, q) an FSP, q ∈ Γ
}

⇒ − lim sup
n→∞

1

n
logPn,Tq0

[
q(n) ∈ Γ

]
≥

inf

{∫ T

0

N∑
i=1

Λ∗i (ẇi(z))dz : (w, q) an FSP, q ∈ Γ
}
. (32)

Note: By (w, q) being an FSP, in addition to there existing prelimit sequences w(n) → w
and q(n) → q (uniformly over [0, T ]), we mean that there exist points zi ∈ [0, T ] for all

i = 1, . . . , N such that z
(n)
i → ti as n→∞, where z

(n)
i is the (scaled by 1/n) index in the

sampled trace w
(n)
i beyond which user i is never sampled (i.e. it is the last index at which
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user i is sampled by the scheduling algorithm if user i’s samples are stacked successively
and contiguously).

From the observation preceding Lemma 3, each sampled trace w(n) completely specifies
the exact instants at which each user was scheduled/sampled and the channel states observed
at those instants, i.e. w(n) completely specifies the pair (m(n), c(n)) in [0, T ]. The next lemma
relates the large deviations “costs” of the fluid limits of sampled traces to those of the fluid
limits of their associated (m(n), c(n)) processes.

Lemma 4 Let (w, q) be a fluid sample path with w(n) → w and q(n) → q. For each
integer n ≥ 1, let (m(n), c(n)) be the scaled sampled rate and selection processes, which are
completely specified by w(n). Then, for every subsequential limit (m, c) of (m(n), c(n))n (in
the || · ||∞ topology on [0, T ]),

N∑
i=1

∫ zi

0
Λ∗i (ẇi(z))dz =

∫ T

0

[
N∑
i=1

ċi(t)Λ
∗
i

(
ṁi(t)

ċi(t)

)]
dt.

Proof Assume without loss of generality that m(n) → m and c(n) → c uniformly in [0, T ].

Let 0 ≤ t1 ≤ t2 ≤ T . For all n, by the definition of the sampled traces w
(n)
i , we have

w
(n)
i

(
c
(n)
i (t2)

)
− w(n)

i

(
c
(n)
i (t1)

)
= m

(n)
i (t2)−m(n)

i (t1) +O(1/n). (33)

By the (uniform) convergence hypotheses, for j ∈ {1, 2}, c(n)i (tj)→ ci(tj), thus w
(n)
i

(
c
(n)
i (tj)

)
→

wi(ci(tj)). Letting n→∞ in (33),

wi (ci(t2))− wi (ci(t1)) = mi(t2)−mi(t1). (34)

Since ci and mi are nondecreasing Lipschitz-continuous functions, they induces Stieltjes
measures dci and dmi respectively on [0, T ] with dmi << dci. In a similar fashion, wi
induces a Stieltjes measure dwi << dz on [0, zi] where dz denotes Lebesgue measure. Let
dwi/dz be the Radon-Nikodym derivative of dwi with respect to Lebesgue measure, and
consider∫ t2

t1

dwi

dz
◦ ci(t)dci(t) =

∫ ci(t2)

ci(t1)

dwi

dz
(z)
(
dci ◦ c−1

)
(change of variables formula)

=

∫ ci(t2)

ci(t1)

dwi

dz
(z)dz (dci ◦ c−1 ≡ Lebesgue[0, zi])

= wi (ci(t2))− wi (ci(t1))

= mi(t2)−mi(t1) (thanks to (34))

=

∫ t2

t1

dmi(t)

⇒
dwi

dz
◦ ci(·) =

dmi

dci
(·) dci-a.e. on [0, T ].

With this, we can finally compute∫ T

0
ċi(t)Λ

∗
i

(
ṁi(t)

ċi(t)

)
=

∫ T

0

(
Λ∗ ◦

dmi

dci

)
(t)dci(t)

=

∫ T

0

(
Λ∗ ◦

dwi

dz
◦ ci
)

(t)dci(t) =

∫ ci(T )

ci(0)

(
Λ∗ ◦

dwi

dz

)
(z)
(
dci ◦ c−1

)
=

∫ zi

0

(
Λ∗ ◦

dwi

dz

)
(z)dz =

∫ zi

0
Λ∗ (ẇi(z)) dz.

This proves the lemma.

Applying the result of Lemma 4 to (32) concludes the proof of Proposition 1.
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B Proof of Proposition 2

With reference to the proof of a similar result [25, Theorem 8.4], we can establish the fol-
lowing properties in a completely analogous fashion to complete the proof of the proposition
(the proofs are omitted to avoid repetition):

Lemma 5 Let δ > 0 and c > 0 be given, and let the stopping time β(n) 4= inf{t ≥ 0 :
||q(n)(t)||∞ ≤ δ}. Then, there exists ∆ > 0 such that

lim sup
n→∞

sup
y:||q(y)||∞≤c

Eyβ(n) ≤ ∆c.

Lemma 6 For fixed constants c > δ > 0 and T > 0, let

K(c, δ, T )
4
= inf

(mT ,cT ,qT )

∫ T

0

[
N∑
i=1

ċi(t)Λ
∗
i

(
ṁi(t)

ċi(t)

)]
dt

subject to (mT , cT , qT ) an FSP,

||q(0)||∞ ≤ c, ||q(t)||∞ ≥ δ for all 0 ≤ t ≤ T.

Then, uniformly over δ, K(c, δ, T )→∞ as T →∞.

C Proof of Proposition 4

Denote by C(φ1, . . . , φN ) the convex hull of the points (0, . . . , 0), (φ1, . . . , 0), (0, φ2, . . . , 0),
. . . , (0, . . . , φN ). The right-hand side of (4) is trivially ∞ if either (a) λ ∈ C(φ1, . . . , φN ), or
(b) any of the φi is not in the effective domain of its corresponding Λ∗i ; we exclude such φi
and λ in the remainder of the proof.

For each n = 1, 2, . . ., let tn ≥ 0 be a nonrandom time, to be specified later (to avoid
complications, we assume ntn is an integer). Consider

Pπ
[
||q(n)(0)||∞ ≥ 1

]
= Pπ

[
||q(n)(tn)||∞ ≥ 1

]
≥ Pπ

[
||q(n)(tn)||∞ ≥ 1 | ||q(n)(0)||∞ = 0

]
Pπ
[
||q(n)(0)||∞ = 0

]
= π((0, 0, . . . , 0)) Pπ0

[
||q(n)(tn)||∞ ≥ 1

]
.

Here, π(·) is used to denote the stationary distribution that the policy π induces, and Pπ0
represents the stationary distribution conditioned on the starting state being the origin (all
zeroes).

The non-negativity of queues forces the relation U(n)(k)
4
= λn −M(n)(k) ≤ Q(n)(k),

where U(n)(k) =
∑k
l=1(λ− R(n)(l)δS(l)) represents the “unreflected queue lengths” in the

n-th queueing system at time k. By suitably rescaling in time and space, we can continue
this chain of inequalities as

Pπ
[
||q(n)(0)||∞ ≥ 1

]
≥ π((0, 0, . . . , 0)) Pπ0

[
max
i
u
(n)
i (tn) ≥ 1

]
. (35)

For each i = 1, . . . , N , since φi is in the effective domain of its Cramér rate function Λ∗i ,
it follows that there exists η′i ∈ R such that Λ∗i (φi) = η′iφi − Λi(η′i). Define for each i an

exponentially tilted measure P̂i (with respect to the marginal measure Pi of the i-th channel
state Ri(0)) on R as follows:

P̂i(dx)
4
= exp[η′ix− Λi(η′i)] Pi(dx) = exp[η′i(x− φi) + Λ∗i (φi)] Pi(dx).
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A standard computation under the tilted measure yields Êi[Ri(0)] = φi. As with the ap-

proach followed in [23], let P̂π0 be the measure defined similarly to Pπ0 except that the twisted

measures {P̂i} replace {Pi} as the conditional marginal distributions of the sampled channel

states/rates, with {Êi} being the corresponding expectations.
Let us define

t−1
min

4
= max

i
λi,

t−1
max

4
= min
µ∈C(φ1,...,φN )

max
i

(λi − µi).

Since by hypothesis the arrival rate λ is outside the closed set C(φ1, . . . , φN ), it follows that
0 < tmin ≤ tmax < ∞. The times tmin and tmax represent the earliest and latest time
that the maximum queue length can take to overflow to level 1 in a system of queues with
“fluid” inputs at rates λi that can be drained with instantaneous rates in the convex hull
C(φ1, . . . , φN ).

The remainder of the proof is organized into four steps:

1. Showing that for n large enough, under the twisted measure P̂, the service m
(n)
i (t)

provided to the queue i is approximated with high probability by φici(t), i.e. we can
treat the channel as being deterministic with a service rate of φi,

2. Under the conditions of the previous step, overflow of the unreflected max-queue d(n)(·)
is inevitable by time roughly tmax, so with a significant probability the first hitting time
of d(n)(·) to level 1 is at most tmax. Thus, we can find a time not exceeding tmax at
which overflow occurs with a significant probability (i.e. not decaying to 0 exponentially
in n)

3. Overflow occurring at the time in the previous step, under the conditions of step 1,
forces the scheduling “choice fractions” c(n)(t)/t to be “consistent” with overflow of
d(n)(·) occurring at that time

4. Using all the steps to develop the right-hand side of (35) and derive the stated result.

C.0.4 Step 1 of 4

Let us record the following definition. For each i = 1, . . . , N , we can write

m
(n)
i (t) ≡ mi(t) =

1

n
Mi(nt) =

1

n

nt∑
l=0

Ri(l)Xi(l) =
M i(nt)

n
+
φi

n

nt∑
l=0

Xi(l)

=
M i(nt)

n
+
φi

n
Ci(nt),

= mi(t) + φici(t),

where Xi(l) is the indicator of the event that user i was scheduled at time slot l, and

M i(k)
4
=
∑k
l=0(Ri(l) − φi)Xi(l) is the (unscaled) “centered” service provided to queue i

upto time slot k.

Lemma 7 Let times t1 and t2, such that 0 < t1 ≤ t2, and δ > 0 be fixed. Then,

lim
n→∞

P̂π0
[
|m(n)

i (t)| < δt ∀t ∈ [t1, t2]
]

= 1.

Proof Observe that for each i, {M i(k)}k is a martingale (with respect to the measure P̂π0 )

null at 0 and with differences bounded by D
4
= (Rmax + maxi φi), where Rmax is the

maximum channel rate across all channels in the system. An application of the Azuma-
Hoeffding martingale inequality [13] thus gives

P̂π0

[∣∣∣∣∣M i(k)

k

∣∣∣∣∣ ≥ γ
]
≤ 2e

− kγ
2

2D2 (36)
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for all k = 1, 2, . . .. Hence, a union bound gives

1−P̂π0 [|mi(t)| < δt ∀t ∈ [t1, t2]] = P̂π0 [∃t ∈ [t1, t2] |mi(t)| ≥ δt]

≤
nt2∑
k=nt1

P̂π0

[∣∣∣∣∣M i(k)

k

∣∣∣∣∣ ≥ δ
]

≤
nt2∑
k=nt1

2e
− kδ2

2D2

≤ 2n(t2 − t1)e
−nt1δ

2

2D2 n→∞−→ 0 (∵ t1 > 0),

which is the stated result.

C.0.5 Step 2 of 4

Let us fix δ > 0 small enough, and let ε > 0 be such that

(tmax + ε)−1 = min
µ∈C(φ1,...,φN )

max
i

(λi − δ − µi).

Additionally, fix a time t0 > 0 small enough, and let A ≡ An denote the event whose
(twisted) probability is estimated in Lemma 7, i.e.

An ≡ An(δ) ≡ An(δ, t0, tmax)
4
=
{
|m(n)

i (t)| < δt ∀t ∈ [t0, tmax]
}
.

Denote the (unreflected and fluid-scaled) maximum queue length process by d(·) ≡
d(n)(·) 4= maxi u

(n)
i (·). It follows that in the event An, d(·) must overflow (i.e. hit level 1)

at least once by time (tmax + ε). In other words, if we let

τ ≡ τn
4
= inf

{
t = 0,

1

n
,

2

n
, . . . : d(t) ≥ 1

}
,

then An ⊆ {τn ≤ tmax + ε}. For each n = 1, 2, . . ., define the (deterministic) time

tn
4
= arg max

t=0, 1
n
,...,tmax+ε

P̂π0 [τn = t]

with ties broken in an arbitrary fashion. Observe that tn does not depend upon δ, t0 or An.
Also, note that

P̂π0 [An] ≤ P̂π0 [τn ≤ tmax + ε] ≤
∑

t=0, 1
n
,...,tmax+ε

P̂π0 [τn = t]

≤ n(tmax + ε)

(
max

t=0, 1
n
,...,tmax+ε

P̂π0 [τn = t]

)
≤ n(tmax + ε)P̂π0 [τn = tn]

⇒ P̂π0 [τn = tn] ≥
P̂π0 [An]

n(tmax + ε)

Since the rate of change of d(n)(·) is bounded by D, we can write

⇒ P̂π0
[
d(tn) ∈

[
1, 1 +

D

n

]]
≥ P̂π0 [τn = tn] ≥

P̂π0 [An]

n(tmax + ε)
. (37)
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C.0.6 Step 3 of 4

This step involves showing that when the queues overflow at time tn then the scheduling
choice fractions c(n)(tn)/tn at that time are very likely to be the ones that cause “straight-
line” overflow at time tn from the all-empty queue state.

Recall that δ > 0 is a sufficiently small number. We denote by Γn the set of δ-compatible
scheduling fractions for overflow at time tn as follows:

Γn ≡ Γn(δ, tn)
4
=

{
(f ′1, . . . , f

′
N ) :

∑
i

f ′i = 1, f ′i ≥ 0,max
i

(
λitn − φif ′itn

)
∈ [1− δtn, 1 + δtn]

}
.

Lemma 8 For all n large enough and δ > 0,

P̂π0
[
d(tn) ∈

[
1−

D

n
, 1 +

D

n

]
,
c(tn)

tn
/∈ Γn

]
≤ 2Ne

−nt0δ
2

8D2 .

Proof For n sufficiently large,

d(tn) ∈
[
1−

D

n
, 1 +

D

n

]
⇒ d(tn) ∈

[
1−

δ

2
tn, 1 +

δ

2
tn

]
.

Also,

d(tn) ∈
[
1−

δ

2
tn, 1 +

δ

2
tn

]
,
c(tn)

tn
/∈ Γn ⇒ ∃i |mi(tn)| >

δ

2
tn.

Thus,

P̂π0
[
d(tn) ∈

[
1−

D

n
, 1 +

D

n

]
,
c(tn)

tn
/∈ Γn

]
≤ P̂π0

[
∃i |mi(tn)| >

δ

2
tn

]
≤
∑
i

P̂π0
[
|mi(tn)| >

δ

2
tn

]
≤
∑
i

2e
−ntnδ

2

8D2 (by the Azuma-Hoeffding inequality (36))

≤ 2Ne
−nt0δ

2

8D2 .

Step 4 of 4

We can now finally develop the right-hand side of (35) using the results from the previous
steps:

Pπ0
[
max
i
u
(n)
i (tn) ≥ 1

]
= Pπ0

[
d(n)(tn) ≥ 1

]
≥ Pπ0

[
d(n)(tn) ≥ 1, c(n)(tn)/tn ∈ Γn

]
= Eπ0

[
1{d(tn)≥1,c(tn)/tn∈Γn}

]
= Êπ0

[
1{d(tn)≥1,c(tn)/tn∈Γn}

ntn∏
l=0

exp
[
−Λ∗U(l)(φ

′
U(l))− η

′
U(l)

(
RU(l)(l)− φ′U(l)

)]]

= Êπ0

[
1{d(tn)≥1,c(tn)/tn∈Γn} exp

[
−ntn

(∑
i

ci(tn)

tn
Λ∗i (φi)

)]
exp [−nw(tn)]

]
(

with w(tn) ≡ w(n)(tn)
4
=

1

n
W (ntn)

4
=

1

n

ntn∑
l=0

η′U(l)

(
RU(l)(l)− φ′U(l)

))

= Êπ0

[
1{d(tn)≥1,c(tn)/tn∈Γn} exp

[
−ntn

(
sup
f ′∈Γn

∑
i

f ′iΛ
∗
i (φi)

)]
exp [−nw(tn)]

]

= exp

[
−ntn

(
sup
f ′∈Γn

∑
i

f ′iΛ
∗
i (φi)

)]
Êπ0
[
1{d(tn)≥1,c(tn)/tn∈Γn}e

−nw(tn)
]
. (38)
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The second term in the product above can be bounded from below for any ζ > 0 as follows:

Êπ0
[
1{d(tn)≥1,c(tn)/tn∈Γn}e

−nw(tn)
]
≥ Êπ0

[
1{d(tn)≥1,c(tn)/tn∈Γn,|w(tn)|<ζ}e

−nζ
]

= e−nζ P̂π0
[
d(tn) ≥ 1,

c(tn)

tn
∈ Γn, |w(tn)| < ζ

]
≥ e−nζ P̂π0

[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
∈ Γn, |w(tn)| < ζ

]
. (39)

We have

P̂π0
[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
∈ Γn, |w(tn)| < ζ

]
≥ P̂π0

[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
∈ Γn

]
− P̂π0 [|w(tn)| ≥ ζ]

≥ P̂π0
[
d(tn) ∈

[
1, 1 +

D

n

]]
− P̂π0

[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
/∈ Γn

]
− P̂π0 [|w(tn)| ≥ ζ] .

(40)

By definition and the properties of the twisted distribution P̂, it can be seen that {W (k)}k=0,1,...

is again a martingale null at 0 and with bounded increments (bounded by, say, D2
4
=

maxi η
′
i(Rmax + φi)). Hence, the Azuma-Hoeffding inequality applied to it yields

P̂π0 [|w(tn)| ≥ ζ] ≤ 2e
− nζ2

2tnD
2
2 ≤ 2e

− nζ2

2tmaxD
2
2 .

Using this and the results of Steps 2 and 3, (40) becomes

P̂π0
[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
∈ Γn, |w(tn)| < ζ

]

≥
P̂π0 [An]

n(tmax + ε)
− 2Ne

−nt0δ
2

8D2 − 2e
− nζ2

2tmaxD
2
2

≥
1/2

n(tmax + ε)
− 2Ne

−nt0δ
2

8D2 − 2e
− nζ2

2tmaxD
2
2 (for n large enough, by Step 1).

The first term above decays as n−1 while the second and third terms decay exponentially
in n, thus

− lim inf
n→∞

1

n
log P̂π0

[
d(tn) ∈

[
1, 1 +

D

n

]
,
c(tn)

tn
∈ Γn, |w(tn)| < ζ

]
≤ 0. (41)

What remains is to bound the first term in the product in (38). By definition, for every
f ′ ∈ Γn, we have

max
i

(λi − φif ′i) ≤
1

tn
+ δ

⇒ tn sup
f ′∈Γn

∑
i

f ′iΛ
∗
i (φi) ≤ sup

f ′∈Γn

∑
i f
′
iΛ
∗
i (φi)

maxi(λi − φif ′i)− δ

≤ sup∑
i f
′
i=1

f ′i≥0

∑
i f
′
iΛ
∗
i (φi)

maxi(λi − φif ′i)− δ
. (42)

Applying the conclusions of (39), (41) and (42) to (38), we get

− lim inf
n→∞

1

n
log Pπ0

[
max
i
u
(n)
i (tn) ≥ 1

]
≤ ζ + sup∑

i f
′
i=1

f ′i≥0

∑
i f
′
iΛ
∗
i (φi)

maxi(λi − φif ′i)− δ
.
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The arbitrary choice of ζ > 0 and δ > 0 implies that

− lim inf
n→∞

1

n
log Pπ0

[
max
i
u
(n)
i (tn) ≥ 1

]
≤ sup∑

i f
′
i=1

f ′i≥0

∑
i f
′
iΛ
∗
i (φi)

maxi(λi − φif ′i)
.

The stationary distribution Pπ induced by the (stabilizing) scheduling policy π forces π((0, 0, . . . , 0)) >
0, so (35) finally implies

− lim inf
n→∞

1

n
log Pπ

[
||q(n)(0)||∞ ≥ 1

]
≤ sup∑

i f
′
i=1

f ′i≥0

∑
i f
′
iΛ
∗
i (φi)

maxi(λi − φif ′i)
,

which completes the proof of the proposition.

D Proof of Proposition 5

Recall that J∗ is the infimum

J∗
4
= inf
T,(mT ,cT ,qT )

0≤t≤T

∑N
i=1 ċi(t)Λ

∗
i

(
ṁi(t)
ċi(t)

)
d
dt
||q(t)||∞

(43)

over all feasible Fluid Sample Paths at regular points t. There is nothing to be done if the
right hand side above is ∞, so we exclude this case. We have the following characterization
of regular points under the Max-Queue scheduling algorithm.

Lemma 9 Under the Max-Queue policy, let s(t)
4
= arg maxi=1,...,N qi(t) ⊆ {1, . . . , N}. If

t is a regular point, then

1. c′i(t) = 0 ∀i /∈ s(t), i.e., the non-maximum fluid queues do not receive service,

2. d
dt
||q(t)||∞ = λi −m′i(t) ∀i ∈ s(t), i.e., all the maximum fluid queues grow at the same

rate.

Thus, by Lemma 9,

J∗ ≥ inf
S⊆{1,...,N}

∑
i∈S c

′
iΛ
∗
i (φi)

w′
, (44)

for all non-negative {c′i}i∈S , {φi}i∈S satisfying
∑
i∈S c

′
i = 1, and w′ = λi − c′iφi ∀i ∈ S.

Note that the denominator w′ is strictly positive if and only if λ /∈ C(φ1, . . . , φN ), and that
each φi can be restricted to be at most E[Ri] (since if φi > E[Ri], reducing φi to E[Ri] only
gives a lesser fraction above).

For a subset S ⊆ {1, . . . , N}, let

DS
4
=

(φi)i∈S : Rmin,i ≤ φi ≤ E[Ri], ∃c′i ≥ 0 with
∑
i∈S

c′i = 1, ∀i, j ∈ S λi − c′iφi = λj − c′jφj = w′ > 0

 .

It follows that for each such tuple φ ∈ DS , there is a unique corresponding tuple c′ and
hence a unique w′. Thus, if we define a map fS : DS → R+ by

fS(φ)
4
=

∑
i∈S c

′
iΛ
∗
i (φi)

w′
, (45)

then (44) is just

J∗ ≥ min
S

inf
φS∈DS

fS(φS). (46)

The next lemma contains the key result needed to prove Proposition 5:
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Lemma 10 Let S ⊆ {1, . . . , N} be such that DS 6= ∅. Then,

1. fS attains its infimum over DS at a point φ̂S ∈ DS .

2. For every {c′i}i∈S with c′i ≥ 0,
∑
i∈S c

′
i = 1, we have

fS(φ̂S) ≥
∑
i∈S c

′
iΛ
∗
i (φ̂i)

maxi∈S(λi − c′iφ̂i)
.

Proof Without loss of generality, we will assume S = {1, . . . , N}. Denote µi
4
= E[Ri]. λ is a

stabilizable vector of arrival rates, so λ ∈ C(µ1, . . . , µN ) (here µi is overloaded to denote the
N -tuple with the i-th coordinate being µi and the remaining coordinates being 0). Hence,

there exists δ > 0 such that
∑N
i=1

λi
µi

= 1− δ.

For any φ ∈ DS , we have
∑N
i=1

λi
φi

> 1 by definition. Thus,
∑N
i=1

λi
φi

>
(

1
1−δ

)∑N
i=1

λi
µi

,

so φj < (1 − δ)µj for at least one j. It follows from the properties of the Cramér rate
function for finite alphabets [6] that for each i, Λ∗i (·) is strictly decreasing on [Rmin,i, µi],
with Λ∗i (µi) = 0. Denote by γ the positive number mini Λ

∗
i ((1 − δ)µi). Fix ε > 0 small

enough. If additionally (for φ ∈ DS) w′ < ε, then

fS(φ) =

∑
i c
′
iΛ
∗
i (φi)

w′
≥
c′jΛ
∗
j (φj)

w′
=

(
λj − w′

φjw′

)
Λ∗j (φj) >

(
λj − ε
µjε

)
γ.

This means that for every B > 0, there exists εB > 0 such that {φ ∈ DS : w′ < εB} ⊆ {φ ∈
DS : fS(φ) > B}. Thus,

inf
φ∈DS

fS(φ) = inf
φ∈DS :

w′≥εB

fS(φ).

Observe that {φ ∈ DS : w′ ≥ εB} is a compact set, and that the lower-semicontinuity of
Λ∗i (·) [6] forces fS to be lower-semicontinous on this compact set. It follows that fS achieves
its infimum on this set and thus on DS . This proves the first part of the lemma.

Turning to the second part, let φ̂S ∈ DS infimize fS(·) over DS , with Rmin,i ≤ φ̂i ≤ µi
∀i ∈ S. Fix any i ∈ S. Since φ̂S is a minimizer, increasing φi = φ̂i by a small amount
(keeping the other coordinates unchanged and φS within DS) cannot decrease fS(φS), i.e.,
∂
∂φi

fS(φS)
∣∣∣
φ̂S
≥ 0. From the definition of fS (45), we can write ∂

∂φi
fS(φS) = ∂

∂φi

N
D

,

where N ≡ N(φS) =
∑
i∈S c

′
iΛ
∗
i (φi), and D ≡ D(φS) = w′ ≡ w′(φS). Thus,

0 ≤
∂

∂φi
fS(φS)

∣∣∣∣
φ̂S

=
1

D2(φ̂S)

(
D(φ̂S)

∂

∂φi
N(φS)−N(φ̂S)

∂

∂φi
D(φS)

)∣∣∣∣
φ̂S

. (47)

Define, for each i, η′i
4
=

Λ∗i (φi)
φi

(and η̂′i
4
=

Λ∗i (φ̂i)

φ̂i
). Noticing that ∂

∂φi
D(φS) = ∂

∂φi
(λj −

c′jφj) = − ∂
∂φi

(c′jφj) for all j ∈ S, we can write

∂

∂φi
N(φS) =

∂

∂φi

∑
j∈S

c′jφjη
′
j = −

∂D(φS)

∂φi
·
∑
j∈S

η′j + c′iφi ·
∂η′i
∂φi

.
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Along with (47), this implies (evaluated at φS = φ̂S)

0 ≤ −D(φS) ·
∂D(φS)

∂φi
·
∑
j∈S

η′j +D(φS) · c′iφi ·
∂η′i
∂φi
−N(φS)

∂D(φS)

∂φi

= −
∂D(φS)

∂φi

D(φS) ·
∑
j∈S

η′j +N(φS)

+D(φS) · c′iφi ·
∂η′i
∂φi

= −
∂D(φS)

∂φi

D(φS) ·
∑
j∈S

η′j +N(φS)

+D(φS) · c′iφi ·
φi
∂Λ∗i (φi)
∂φi

− Λ∗i (φi)

φ2i

= −
∂D(φS)

∂φi

D(φS) ·
∑
j∈S

η′j +N(φS)

−D(φS)c′iη
′
i +D(φS) · c′i ·

∂Λ∗i (φi)

∂φi︸ ︷︷ ︸
≤0

≤ −
∂D(φS)

∂φi︸ ︷︷ ︸
≤0

D(φS) ·
∑
j∈S

η′j +N(φS)

−D(φS)c′iη
′
i

⇒
N

D
≥ −

c′iη
′
i(

∂D
∂φi

) −∑
j∈S

η′j . (48)

Since D = λj − c′jφj and
∑
j∈S c

′
j = 1, we have

∑
j∈S

λj −D
φj

= 1 ⇒ D =

∑
j∈S

λj
φj
− 1∑

j∈S
1
φj

.

Using this, some calculus yields

−
c′i(
∂D
∂φi

) = φi ·
∑
j∈S

1

φj

⇒
N

D
≥ η′iφi ·

∑
j∈S

1

φj
−
∑
j∈S

η′j (by (48))

⇒ fS(φ̂S) =
N

D
≥
(

max
i∈S

η̂′iφ̂i

)
·
∑
j∈S

1

φ̂j
−
∑
j∈S

η̂′j . (49)

Now consider any tuple {d′i}i∈S with d′i ≥ 0 and
∑
i∈S d

′
i = 1. Let ĉ′ be the (unique) tuple

corresponding to φ̂S such that 0 < λi − ĉ′iφ̂i = λj − ĉ′j φ̂j ∀i, j ∈ S. Let δ′i
4
= d′i − ĉ′i for all

i ∈ S, so that
∑
i∈S δ

′
i = 0, and for t ∈ [0, 1], define

g(t)
4
=

∑
i∈S(ĉ′i + tδ′i)Λ

∗
i (φ̂i)

maxi∈S(λi − (ĉ′i + tδ′i)φ̂i)
,

so that g(0) = fS(φ̂S). To prove the second part of the lemma, we proceed to show that

g(0) ≥ g(1). First, note that since (for t = 0) λi − ĉ′iφ̂i is equal for all i ∈ S, we can assume
without loss of generality that 1 ∈ S and that the denominator in the definition of g(t)

above is equal to λ1 − ĉ′1φ̂1 − tδ′1φ̂1 = D(φ̂S) − tδ′1φ̂1, with δ′1φ̂1 ≤ δ′iφ̂i for each i ∈ S.
This makes g(·) a quotient of affine functions on [0, 1], and thus monotone. It just remains
to show that g′(t) ≤ 0 for all t.
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Consider

d

dt
g(t) =

d

dt

(
N + t

∑
i∈S δ

′
iΛ
∗(φ̂i)

D − tδ′1φ̂1

)
≤ 0

⇔ D ·
∑
i∈S

δ′iΛ
∗(φ̂i) +N · δ′1φ̂1 ≤ 0

⇔
∑
i∈S δ

′
iΛ
∗(φ̂i)

−δ′1φ̂1︸ ︷︷ ︸
>0

≤
N

D

⇔
∑
i∈S

(
δ′iφ̂i

−δ′1φ̂1

)
η̂′i ≤

N

D
.

By (49), we will be done if we can show that(
max
j∈S

η̂′j φ̂j

)
·
∑
j∈S

1

φ̂j
−
∑
j∈S

η̂′j ≥
∑
j∈S

(
δ′j φ̂j

−δ′1φ̂1

)
η̂′j .

But notice that

∑
j∈S

(
δ′j φ̂j

−δ′1φ̂1

)
η̂′j +

∑
j∈S

η̂′j =
∑
j∈S

η̂′j

[
1 +

δ′j φ̂j

−δ′1φ̂1

]

≤
(

max
j∈S

η̂′j φ̂j

)∑
j∈S

1

φ̂j

[
1 +

δ′j φ̂j

−δ′1φ̂1

]

=

(
max
j∈S

η̂′j φ̂j

)∑
j∈S

1

φ̂j
+

(
max
j∈S

η̂′j φ̂j

)∑
j∈S

δ′j

−δ′1φ̂1︸ ︷︷ ︸
=0

=

(
max
j∈S

η̂′j φ̂j

)∑
j∈S

1

φ̂j
.

This completes the proof of the lemma.

Using this lemma, we can finish the proof of the proposition. Let S be a subset of
channels that achieves the minimum in (46); according to the lemma there exists φ̂S that

infimizes fS over DS . Extend φ̂S ∈ R|S| to an N -tuple φ̂′ ∈ RN by setting coordinates i /∈ S
to their respective mean channel rates E[Ri]. This means that Λ∗i (φ̂i) = 0 for i /∈ S, so for
any N -tuple e′ on the simplex, because

∑
i∈S e

′
i ≤ 1, the lemma gives∑N

i=1 e
′
iΛ
∗
i (φ̂i)

max1≤i≤N (λi − e′iφ̂i)
=

∑
i∈S e

′
iΛ
∗
i (φ̂i)

max1≤i≤N (λi − e′iφ̂i)
≤

∑
i∈S e

′
iΛ
∗
i (φ̂i)

maxi∈S(λi − e′iφ̂i)
≤ fS(φ̂S) ≤ J∗,

completing the proof.

E Proof of Theorem 4

Consider an LFSP, specifically the component functions (�q, �c, �g), over time [0, S] under
the Max-Exp scheduling algorithm. Fix a regular point s ∈ [0, S]. Let

O∗ 4= arg max
α∈O

Φα(�q(s)) ⊆ O
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be the subcollection of “active” observable subsets at time s, i.e., the subsets picked by
Max-Exp at s. The regularity of point s and the dynamics of the Max-Exp rule (Lemma 2)

implies that the derivatives d
du
Ψα(u)

∣∣∣
u=s

across all α ∈ O∗, and d
du
Ψ(u)

∣∣∣
u=s

, are equal to

w′, say. For each such α,

w′ =
∑
i∈α

e�qi(s)+bi (λi(s)︸ ︷︷ ︸
=λi

−vi(s))

= 〈e�q(s)+b, λ〉α − 〈e�q(s)+b, v(s)〉α

= 〈e�q(s)+b, λ〉α − �ċα(s)〈e�q(s)+b,
v(s)

�ċα(s)
〉α

= 〈e�q(s)+b, λ〉α − �ċα(s)

[
max

ηα∈Vφα(s)

〈e�q(s)+b, ηα〉α

]
. (50)

For notational convenience, let us denote, for each α,

ρα
4
= 〈e�q(s)+b, λ〉α,

ξα ≡ ξα (φα(s))
4
= max
ηα∈Vφα(s)

〈e�q(s)+b, ηα〉α =
∑
r∈Rα

φαr(s)

[
max
i∈α

µαri · e�qi(s)+bi
]
.

With this, (50) becomes

w′ ≡ w′(φα(s)) = ρα − �ċα(s) · ξα (φα(s)) .

For fixed �q(s) = q, the map ξα : Πα → R+ is linear and hence continuous. Thus, ξα induces
a good rate function Λ̃∗α on R+ [6], given by

Λ̃∗α(ν′α)
4
= inf

{
Λ∗α(φα) : φα ∈ Πα, ξα(φα) = ν′α

}
.

We have, with O∗ ⊆ O∗ fixed,∑
α∈O∗ �ċα(s)Λ∗α(φα(s))

Ψ̇(s)
=

∑
α∈O∗ �ċα(s)Λ∗α(φα(s))

ρα − �ċα(s) · ξα(φα(s))

≥ inf


∑
α∈O∗ c

′
αΛ̃
∗
α(ν′α)

w′

∣∣∣∣∣w′ > 0, ν′α ≥ 0, c′α ≥ 0,
∑
α∈O∗

c′α = 1, ρα − c′αν′α = w′ ∀α ∈ O∗
 .

(51)

This exactly corresponds to infimizing the function fS , given in (45), over the corresponding
domain DS for the case of singleton observable subsets/individual channels. The correspon-
dence becomes clear when, keeping �q fixed, we identify each observable subset α with a
hypothetical queue having an arrival rate of ρα and a “twisted” service rate of ν′α. Under
this correspondence, and due to the fact that Λ̃∗ is a (good) rate function, we can employ
the same arguments as those in the proof of Lemma 10 to get that

1. There exist ν̂′α ≥ 0, α ∈ O∗, determining unique ŵ′ > 0 and ĉ′α ≥ 0 feasible for (51),
such that the infimum (51) is attained at (ν′α)α∈O∗ .

2. For every (d′α)α∈O∗ ≥ 0 with
∑
α∈O∗ d

′
α = 1, we have

∑
α∈O∗ ĉ

′
αΛ̃
∗
α(ν̂′α)

ŵ′
≥

∑
α∈O∗ d

′
αΛ̃
∗
α(ν̂′α)

maxα∈O∗ (ρα − d′αν̂′α)
. (52)
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For each of the optimizing ν̂′α above, by the lower-semicontinuity of Λ∗α, we can find φ̂′α ∈ Πα
such that ξα(φ̂′α) = ν̂′α and Λ̃∗α(ν̂′α) = Λ∗α(φ̂′α). Consider an arbitrary vector (d′α)α∈O∗ ≥ 0
with

∑
α∈O∗ d

′
α = 1. Returning to our original LFSP (�q, �c, �g), from (51), (52) and the

previous remark, we can write∑
α∈O∗ �ċα(s)Λ∗α(φα(s))

Ψ̇(�q(s))
≥

∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗ (ρα − d′α · ξα(φ̂′α))
. (53)

Considering any α ∈ O∗, we have

ρα − d′α · ξα(φ̂′α) = 〈e�q(s)+b, λ〉α − d′α · max
ηα∈Vφ̂′α

〈e�q(s)+b, ηα〉α

= 〈e�q(s)+b, λ〉α − max
υα∈d′αVφ̂′α

〈e�q(s)+b, υα〉α

= min
υα∈d′αVφ̂′α

∑
i∈α

e�qi(s)+bi [λi − υαi]. (54)

Thanks to the key Lemma 12.2 in [25], we have that there exist

lα > 0, �q
∗
αi ∈ [−∞,∞), i ∈ α, and

υ∗α ∈ arg max
υα∈d′αVφ̂′α

〈e�q
∗
α+b, υα〉α

such that

∀i ∈ α λi − υ∗αi = lα, if e�q
∗
αi > 0,

λi − υ∗αi ≤ lα, if e�q
∗
αi = 0, and

min
υα∈d′αVφ̂′α

∑
i∈α

e�qi(s)+bi [λi − υαi] ≤ Ψα(�q(s)) lα ≤ Ψ(�q(s)) lα

⇒ max
α∈O∗

min
υα∈d′αVφ̂′α

∑
i∈α

e�qi(s)+bi [λi − υαi] ≤ Ψ(�q(s)) · max
α∈O∗

lα.

Using this with (53) and (54) yields

∑
α∈O∗ �ċα(s)Λ∗α(φ̂′α(s))

Ψ̇(�q(s))
≥

∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

Ψ(�q(s)) ·maxα∈O∗ lα

⇒
∑
α∈O∗ �ċα(s)Λ∗α(φ̂′α(s))[

Ψ̇(�q(s))
Ψ(�q(s))

] ≥
∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗ lα

⇒
∑
α∈O∗ �ċα(s)Λ∗α(φ̂′α(s))

Φ̇(�q(s))
≥
∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗ lα

≥
∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗ maxi∈α(λi − υ∗αi)

≥
∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗ maxυα∈d′αVφ̂′α
maxi∈α(λi − υαi)

≥
∑
α∈O∗ d

′
αΛ
∗
α(φ̂′α)

maxα∈O∗,vα∈Vφ̂′α
maxi∈α(λi − d′αvαi)

. (55)
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The above relation holds for any (d′α)α∈O∗ ≥ 0 with
∑
α∈O∗ d

′
α = 1. Let (c′α)α∈O ≥ 0

be such that
∑
α∈O c

′
α = 1. For each α ∈ O \ O∗, define φ̂′α to be the natural probability
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4
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. (56)

Putting (55) and (56) together, we have, for our original LFSP, that

∑
α �ċα(s)Λ∗α(φ̂′α(s))

Φ̇(�q(s))
≥ sup∑

α c
′
α=1

c′α≥0
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≥ − lim inf

n→∞

1

n
log Pπ

[
||q(n)(0)||∞ ≥ 1

]
, (57)

for the stationary measure Pπ of any stabilizing scheduling policy, by Theorem 3. Infimizing
(57) over all valid LFSPs and using Proposition 7 yields

J∗ ≥ − lim inf
n→∞

1

n
log Pπ

[
||q(n)(0)||∞ ≥ 1

]
,

which finishes the proof.


