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Abstract—Sub-carrier grouping is a popular feedback reduc-
tion approach for orthogonal-frequency-division multiple-access
(OFDMA) systems that has been adopted into fourth-generation
standards such as 3GPP Long Term Evolution (LTE). Feedback
reduction is motivated by the fact that the bandwidth expenditure
in acquiring full information in a downlink OFDMA system scales
as the product of the number of users and the number of OFDMA
bands. As this is infeasible in most systems, sub-carrier grouping
calls for users to report a single channel state value per pre-
designated group of OFDM bands. Such an approach would
reduce the amount of feedback by a factor that is equal to the
size of the group, albeit at a loss in throughput. In this paper, we
propose a throughput-optimal joint sub-carrier grouping and data
scheduling policy that makes decisions based on queue-lengths
and channel states in each time slot. The feedback allocation or
sub-carrier grouping policy, inspired by the current approach in
LTE, operates under a total feedback budget and must periodically
decide a sub-carrier grouping size for each user that obeys this
resource constraint. However, as we show, the optimal allocation
algorithm has complexity that, in general, scales exponentially in
the number of users. Thus, we turn our attention to the important
issue of computational efficiency and propose a greedy algorithm
that allocates full feedback bandwidth to a constant-sized subset
of users based on the network state. We evaluate the performance
of this simple approach through extensive numerical experiments.
We show that under asymmetric arrival rate settings, our greedy
algorithm is within 10% of the optimal (throughput-wise) when
consuming only 25% of the full feedback bandwidth while paying
only a logarithmic (in the number of users) price in control
overhead.

I. INTRODUCTION

Over the last decade, there has been an ever-increasing
demand for data-rate in wireless systems coupled with a
growing scarcity for spectrum. To support these throughput
demands, network service providers are on the constant search
for new transmission technologies to utilize available spectrum
in as efficient a manner as possible. At the physical layer, a
key fundamental enabler of these new technologies such as
multiple antennas is the presence of feedback channels. Feed-
back channels provide channel state information (CSI) to the
transmitter thereby allowing it to adapt its transmission strategy
to the fluctuating channel and realize the gains promised by
the new methods. That said, feedback channels do consume
valuable bandwidth and hence, it is important to ensure that
the net gains post feedback remain justifiable. To understand
the typical feedback requirements of an orthogonal-frequency-
division multiple-access (OFDMA) system, let us consider an
LTE-inspired example recently provided by Ouyang et al. [1].

In LTE, the smallest unit of bandwidth that can be assigned to
a user for data transmission is called a resource block, which
is essentially a group of OFDM sub-carriers. If we consider
a 10MHz LTE system bandwidth and set L = 50 to be the
number of resource blocks shared by K = 50 users equipped
with standard 4-bit modulation/coding tables at the mobiles, we
have a total feedback bandwidth of 4KL = 4×50×50 = 10kb
per sub-frame [3]. Given a typical uplink data rate of 48kb per
sub-frame, this consumes 20% of the uplink capacity, which
is clearly quite significant. Furthermore, it is foreseeable that
future multiple-antenna systems will allow for more resolution,
potentially as small as one sub-carrier per resource block,
i.e., L = 1024 for a 10MHz system with 1024 OFDM sub-
carriers. Thus, the feedback bandwidth could be as large as
4rKL = 4 × 2 × 50 × 1024 ≈ 200kb, where r = 2 accounts
for 2×2 multiple-input-multiple-output (MIMO) transmissions
that are already part of the LTE standard. In this situation, if
the corresponding uplink capacity does not exhibit super-linear
scaling in the feedback resolution, then feedback bandwidth
consumption remains an important bottleneck.

A. Prior work on feedback design

To alleviate this feedback requirement, various feedback
reduction schemes have been proposed in the literature of which
one simple, yet effective, scheme is to group together multiple
sub-carriers (or resource blocks) and provide a single CSI report
to the base station for the entire group. This is called sub-band-
level feedback in LTE. The other methods considered in LTE
are UE selected sub-band feedback where the mobile selects its
best few sub-bands and reports the average CSI value on these
channels and wideband feedback where the mobile reports one
value for the entire bandwidth. We focus on the first method
through the remainder of this paper. The merits of sub-band
feedback and variants of it have been studied in detail over
recent years [4]–[8]. Donthi and Mehta [4] derive in closed-
form the throughput of the sub-carrier grouping technique under
various schedulers such as round robin, proportional fairness
and max-sum-rate. Hybrid schemes have been considered that
combine sub-carrier grouping and channel thresholing. Here,
the CSI is reported for the group if its quality exceeds a pre-
specified threshold [6]–[8]. Jorsweick et al. [10] consider an
uplink MIMO-OFDM system and propose a scheme that reports
a single covariance matrix for a chunk of carriers.

The aforementioned literature focuses on metrics such as
ergodic sum-rate that are more applicable to full-buffer (sat-



urated) systems. In contrast, there has been relatively little
research on the impact of limited feedback on queueing (unsat-
urated) systems [1], [11], [14] where feedback allocations are
made as a function of the queue sizes in addition to the channel
strengths. The feedback allocations typically respect a total
budget constraint in each scheduling slot that has been modelled
in a variety of ways. Our earlier work [14] introduces a limited
feedback model for uplink systems where the base station is
constrained in the number of bits that form the feedback packet
that it broadcasts to the users. Computationally-efficient algo-
rithms are presented that compute the optimal (or near-optimal)
feedback partitioning across users as a function of the channel
and queue state as well as other network parameters. A key
assumption that is made here [14] is that the data scheduling
decisions are made on a slower time-scale, as is the case in
(semi-)persistent scheduling that is part of the LTE standard.
As a result, user assignments are assumed fixed through the
course of feedback optimization. Ouyang et al. [1] consider
the downlink of an OFDMA network with a limited feedback
model where the base station is able to acquire channel state
information on a restricted number of frequency bands. In
particular, each user is instructed to report CSI for at most
Fi bands such that

∑
i Fi does not exceed the total feedback

budget. Following CSI acquisition, MaxWeight scheduling [12]
is performed. The authors develop an order-wise throughput-
optimal feedback allocation policy, which essentially selects a
feedback partition {Fi} in each time slot as a function of the
queue lengths and channel strengths.

B. Joint feedback allocation and data scheduling

In this paper, we propose a protocol that jointly allo-
cates feedback and data transmission resources in a downlink
OFDMA system with L sub-bands/sub-carriers and K users.
The protocol operates on two time-scales: MaxWeight data
scheduling occurs on the faster time-scale (e.g., 1ms in LTE).
Feedback allocation is done less often on the time scale of
large-scale fading so that the additional overhead required to
enable such an optimization is justifiable from the perspective
of a network provider. The feedback allocation process is
inspired by the approach in LTE [20] and determines the
optimal sub-carrier grouping factor for each user based on
queues and channels such that the total feedback bandwidth
across all users does not exceed B bits where B ≤ KL log2 M ;
M is the size of the standard modulation/coding scheme (MCS)
table that resides at each mobile. Note that a grouping factor
of L would result in a feedback bandwidth of K log2 M bits
while a factor of one would correspond to the full feedback
bandwidth of KL log2 M bits.

Our work clearly differs from Ouyang et al. [1] in that
we consider an alternate feedback reduction policy that is
motivated by the standards. In a broad sense, we build on
our previous work by considering data scheduling on the
faster time-scale. We continue to pursue the two time-scale
resource allocation approach that we introduced earlier [14]
in the context of limited feedback and queueing systems. We
re-iterate that in the absence of such a feature, the optimization
of the feedback resource might introduce unacceptable control
overhead over-on-top the feedback bandwidth, which in itself
might be perceived as control overhead.

C. Main contributions
The main contributions of this paper are as follows:
1) We propose a throughput-optimal joint sub-carrier group-

ing and data scheduling policy that operates on two time-
scales.

Once we identify the correct feedback allocation problem to
solve on the slower-time scale, we turn our attention to the
issue of computational complexity.

2) As we will see, the complexity of determining the optimal
allocation grows exponentially in the number of users.
However, we identify simple CSI reporting mechanisms,
which induce specific structure that allow us to bound
and hence optimize the objective function.

3) We propose a simple linear-time greedy heuristic that
essentially chooses the “best-expected” subset of users
and allocates feedback resources only to these users.
When the number of OFDMA sub-carriers is L = 1, and
the total feedback budget is set to B = cL log2 M, c ∈
{1, 2, . . . ,K}, our greedy algorithm essentially selects
the best-expected c users for full feedback prior to
MaxWeight scheduling, an idea that was first proposed
by Gopalan et al. [11]. Thus, our work can be seen as a
generalization of their work towards wideband systems.

4) Through extensive numerical experiments, we show that
the greedy algorithm performs close to the full CSI
algorithm (and hence the optimal grouping algorithm)
while consuming considerably less feedback bandwidth.
In particular, we identify asymmetric load settings where
the algorithm achieves within 10% of the maximum
throughput with a feedback bandwidth of only 25%,
parameterized by c = 8 and K = 32 users in the
system. In addition, a favourable property of the proposed
algorithm is that the amount of control overhead scales
only logarithmically in the number of users.

The rest of this paper is organized as follows. In Section II,
we introduce the network model with emphasis on the role
of the feedback. In Section III, we discuss throughput-optimal
online scheduling policies with sub-carrier grouping. We study
the structure of the optimal feedback allocation policy under
specific CSI reporting mechanisms in Section IV. A fast greedy
feedback allocation scheme is proposed in Section V. The
performance of the algorithm is evaluated through numerical
experiments in Section VI. We conclude the paper with some
remarks in Section VII.

II. SYSTEM MODEL

We consider the downlink of a frequency-division-duplex
(FDD), OFDMA system with L sub-carriers/sub-bands and
K users that operates in slotted-time. The network model is
described below:

Channel State: The maximum supportable rate for user i on
sub-band j at time t is given by Xij(t). We assume that Xij(t)
is ergodic and comes from a finite set M = {r1, . . . , rM} that
essentially models an MCS table, now a regular feature at the
mobile end. The cumulative distribution function for rate Xij(t)
is given by

Pr (Xij(t) = rm) = ρmi (αi (t)) (1)



where αi (t) denotes a large-scale fading gain that is dependent
on user position. Users change positions once every TLS slots
where TLS ∈ {1, 2, 3, . . .} denotes the large-scale fading
coherence time. For ease of notation, we introduce a counter
t̄ = ⌊ t

TLS
⌋TLS to keep track of the slower large-scale

fading time-scale, i.e., ρmi (αi(t)) = ρmi (αi(t̄)) , ∀t. For
convenience, we also set ρmi = ρmi (αi(t̄)) making implicit the
dependence on t and TLS . Note that the large-scale coefficient
is typically only distance-dependent and independent of
frequency allowing us to omit the index j when representing
it. We assume that the base station has perfect knowledge of
{αi(t̄)} and all distribution information {ρmi}.

Traffic model and network state: Each user
k, k = 1, 2, . . . ,K, has a queue of untransmitted packets
with queue-length qk(t) that is maintained at the base
station with associated arrival rate λk. The network state
at time t is given by M⃗(t) =

(
{Xij(t)}, Q⃗(t)

)
where

Q⃗(t) = [q1(t) q2(t) . . . qK(t)]
T .

Feedback model: Let the sub-carriers in our OFDMA system
be indexed by S = {1, 2, . . . , L}. As OFDM transmissions
employ Fast Fourier Transforms to place user data on each
sub-band, we assume that L is a power of two. We now
define a partitioning or grouping scheme for these sub-carriers
that creates a uniform partition of set S for a given user.
The partition can potentially be different across users. More
formally, given gi ∈ {0, 1, . . . , log2 L}, we create L2−gi

groups or partitions Pi =
{
S1i,S2i, . . . ,S L

2gi
i

}
,
∪ L

2gi

p=1 Spi =

S, Spi ∩ Sqi = ∅, ∀i, p ̸= q, such that

Spi = {(p−1)2gi+1, (p−1)2gi+2, . . . , p2gi}, p = 1, . . . ,
L

2gi
.

(2)
For example, for L = 8 and gi = 1, we have S1i = {1, 2},
S2i = {3, 4}, S3i = {5, 6} and S4i = {7, 8} . In general,
different grouping factors for each user are permitted. Let
g⃗ = [g1 g2 . . . gK ]

T parameterize a system-wide partitioning
{P1,P2, . . . ,PK}. At the beginning of each large-scale fading
instant, the base station decides g⃗∗(t̄) based on M(t̄) and some
suitable cost criterion. We refer to this process as feedback allo-
cation. The total feedback bandwidth consumed by allocation g⃗
is (
∑K

k=1 2
−gk)L log2 M . We assume that the feedback channel

has a total bandwidth of B bits, which means any allocation
must respect the constraint

L logM

(
K∑

k=1

2−gk

)
≤ B.

Once the allocation decision is made at the beginning of each
large-scale fading instant, the decision is then communicated to
the mobiles incurring an overhead of at most K log2 log2 L bits
per large-scale coherence time. Mobile i adopts the allocation
decision g⃗∗ until the next large-scale fading instant (i.e., through
slots t̄ ≤ t < t̄ + 1) and in turn reports L

2g
∗
i

“effective” CSI

values, one for each group in P∗
i =

{
S1i,S2i, . . . ,S L

2
g∗
i
i

}

according to the following rule

Xeff
ip (t) = f

(
{Xij}j∈Spi

)
, p = 1, . . . ,

L

2g
∗
i
. (3)

Herein, we refer to f(·) as the quantization function. Candidate
functions that are of interest and have been studied in the past
include f(x1, . . . , xn) = mini xi, f(x1, . . . , xn) = 1

n

∑
i xi

and f(x1, . . . , xn) = maxx∈M x
∑n

i=1 I(x > xi). These
three functions basically correspond to reporting the minimum
supportable rate if the user is scheduled on any sub-band in
the group, the average rate across the group, and the maximum
supportable rate (or “goodput” as it is sometimes called) if
the user were to be scheduled on all the sub-bands in the
group. Later in the paper, we analyse the first quantization
function in detail. Note that the case gi = 0, ∀i, represents
the case with full feedback where each user reports CSI on
all sub-bands (i.e., Xeff

ip (t) = Xip(t), p = 1, 2, . . . , L) and
the total feedback bandwidth is KL log2 M . In what follows,
we set B = cL logM, c ∈ (0,K] for convenience allowing
us to express the feedback budget constraint concisely as∑K

k=1 2
−gk ≤ c.

In the next section, we develop a two time-scale throughput-
optimal sub-carrier grouping and data allocation policy.

III. SCHEDULING POLICIES UNDER LIMITED FEEDBACK

In this section, we develop a sub-carrier grouping protocol
that when operated in conjunction with the MaxWeight data
scheduling policy [12] guarantees throughput-optimality. This
means that given an arrival rate vector λ⃗, if there exists any
scheduling policy that can guarantee bounded expected queue
sizes, then so can the proposed policy.

The policy operates in two-stages: feedback allocations are
made on the slower time-scale, namely every TLS slots as
a function of the queue-state Q⃗(t̄) and channel statistics.
This is followed by MaxWeight scheduling during instants
t = t̄, . . . , t̄ + 1 until the next feedback allocation cycle. We
now describe the policy more formally followed by a discussion
of the key features of the same.

Algorithm 1 Joint feedback allocation and data scheduling
1: for t = t̄ . . . t̄+ TLS − 1 do
2: (Feedback allocation): The sub-carrier grouping is given

as the solution to

g⃗∗(t̄) = argmax E
[∑

j maxi Qi(t̄)X
eff
ij (t)

∣∣∣ Q⃗(t̄)
]

s.t.
∑K

k=1 2
−gk ≤ c

gk ∈ {0, 1, . . . , log2 L,∞},
(4)

where the expectation is computed over the channel.
3: (MaxWeight data scheduling): Given g⃗∗(t̄), the users are

scheduled according to

{WLF
ij (t)} = argmax

∑
i,j Qi(t̄TLS)X

eff
ij (t)Wij(t)

s.t. Wij(t) ∈ {0, 1},∑
i Wij(t) ≤ 1, ∀j.

(5)
4: end for

An allocation gk = ∞ in (4) means that user k is assigned
no feedback bandwidth. Note that Xeff

ij (t) in (5) is a function



of g⃗∗(t̄). A subtle technical point in (4) is that since we are
making decisions before viewing the exact realizations of the
channel, we appeal to the ergodicity of the channel process
in computing the expectation in (4). The proposed algorithm
is also applicable to some uplink settings while recognizing a
mere philosophical difference in that on the uplink, we have
access to perfect information at the base station but are unable
to communicate this information to the user due to feedback
constraints. The scenario considered by Jorsweick et al. [10]
is illustrative. Here, the optimization problem in (4) would
essentially decide the group of sub-bands that use the same
MIMO precoder.

There is an important difference between the rule in (5) and
the more traditional form of MaxWeight given by

maxWij(t)∈{0,1},
∑

i Wij(t)≤1,∀j
∑
i,j

Qi(t)X
eff
ij (t)Wij(t)

in that we update the queue states on a slower time scale. From
past works on throughput optimality in queuing systems [16],
we know that queue information acquired on a slower time
scale does not affect the throughput region of the system. This
model is suitable for networks where the base station does not
have access to the entire queue state in every scheduling slot
such as when the queues reside at the radio network controller,
or on the uplink. In scenarios where the queue state is indeed
available to the base station in every scheduling slot, we choose
to study the above policy for analytical tractability.

This brings us to our first result. The following theorem es-
tablishes the throughput-optimality of our proposed algorithm.
The proof is straightforward and relies on the notion of Static
Service Split feedback allocation policies that are introduced in
earlier papers [14], [19] and are well-understood.

Theorem 1. The two-stage feedback allocation and data
scheduling protocol given by (4) and (5) is throughput-optimal.

The quantity

dF

(
Q⃗, α⃗, g⃗

)
= E

∑
j

max
i

QiX
eff
ij

∣∣∣ Q⃗


in (4) is henceforth referred to as expected queue-weighted
drain and plays an important role in most resource allocation
problems (e.g. [1], [11]) that involve making decisions before
we can view the channel realizations.

At the start of each large-scale fading instant t̄, we are inter-
ested in choosing a feedback allocation vector g⃗(t̄) that maxi-
mizes the expected queue-weight drain dF

(
Q⃗(t̄), α⃗(t̄), g⃗(t̄)

)
subject to the total feedback budget constraint. There are
two immediate challenges in finding a solution to the above
problem. Firstly, given an allocation, the computation of an ex-
pectation over the channel might be computationally-prohibitive
for large input (number of users, sub-bands, size of channel
space, etc.) sizes. Secondly, any brute-force approach to the
computation of the optimal solution will require searching
through an exponential number of possibilities, specifically
O
(
(log2 L+ 1)K

)
.

The remainder of this paper is devoted to addressing these
two main challenges. We proceed by assuming a specific
form for the quantization function f(·). This enables us to

derive a closed-form lower bound on dF

(
Q⃗(t̄), α⃗(t̄), g⃗(t̄)

)
,

that is “seldom loose”, thereby addressing the first issue. This
development, in turn, allows us to propose a linear-time greedy
heuristic in Section V that optimizes the lower bound and thus
addresses the second issue. We evaluate the performance of the
heuristic in Section VI by comparing it against the case with
full feedback bandwidth.

IV. LOWER BOUND ON EXPECTED QUEUE-WEIGHTED
DRAIN

In this section, we consider a particular quantizer function
that allows us to bound the expected queue-weighted drain
dF

(
Q⃗(t̄), α⃗(t̄), g⃗(t̄)

)
in closed-form. In particular, we consider

f(x1, x2, . . . , xn) = min
s∈{1,2,...,n}

xs, (6)

which means that if a user is scheduled on a sub-band, then
the base station transmits at the lowest rate that is supported
across the group that the sub-band belongs to. We note that this
is a conservative choice for transmission rate that essentially
guarantees zero outage making it suitable for delay-intolerant
applications.

To aid in the analysis, we let Fi(j) ∈
{
1, 2, . . . , L

2gi

}
denote

the partition that sub-band j ∈ S belongs to under feedback
allocation gi. For notational convenience with the queue-length
vector, we drop mention of their dependence on t. Ergodicity
allows us to do the same with the channel state variables
as well. We proceed by re-writing dF

(
Q⃗(t̄), α⃗(t̄), g⃗(t̄)

)
as

follows:

dF
(
Q⃗, α⃗, g⃗

)
=E

[
max

∑
i,j QiX

eff
ij (t)Wij(t)

∣∣∣ Q⃗]
=
∑

j E
[
max

∑
i QiX

eff
ij (t)Wij(t)

∣∣∣ Q⃗]
=
∑

j E
[∑

i QiX
eff
ij (t)WLF

ij (t)
∣∣∣ Q⃗]

=
∑

j

∑
i Pr
(
WLF

ij (t) = 1
∣∣∣ Q⃗)E [QiX

eff
ij (t)

∣∣∣ Q⃗,WLF
ij (t) = 1

]
=L

∑
i Pr
(
WLF

i (t) = 1
∣∣∣ Q⃗)E [QiX

eff
ij (t)

∣∣∣ Q⃗,WLF
i (t) = 1

]
.

(7)
The last step follows from the fact that for a given user, all
OFDMA bands have statistically equivalent channels, which
allows us to drop the dependence on j from our notation, when
appropriate. We also drop mention of the conditioning on Q⃗
through most of the section as this is understood by now. Finally
in (7), we assumed all users are active, i.e., Qk > 0, ∀k, to
simplify notation.

To proceed with the analysis, we now observe that the event
{QiX

eff
ij > maxk ̸=i QkX

eff
kj } implies that user i is scheduled.

Thus, we can bound the queue-weighted drain in (7) as follows

dF
(
Q⃗, α⃗, g⃗

)
≥ L

∑
i Pr
(
QiX

eff
ij > maxk ̸=i QkX

eff
kj

)
E
[
QiX

eff
ij∣∣∣ QiX

eff
ij > maxk ̸=i QkX

eff
kj

]
= L

∑
i R

LF
i

(
Q⃗, α⃗, g⃗

)
,

(8)

where

RF
i

(
Q⃗, α⃗, g⃗

)
=Pr

(
QiX

eff
ij > maxk ̸=i QkX

eff
kj

)
×

E
[
QiX

eff
ij (t)

∣∣∣ QiX
eff
ij > maxk ̸=i QkX

eff
kj

]



is essentially a lower bound on the queue-weighted drain for
user i in particular. The bound is tight, i.e., dF (Q⃗, α⃗, g⃗) =
L
∑

i R
F
i (Q⃗, α⃗, g⃗) if T (Q⃗) = ∅ where

T (Q⃗) =
{
(x1, . . . , xK) ∈ MK : Qixm = Qjxn, i ̸= j

}
represents the (sub)set of all channel states that leads to ties
during data scheduling for the given queue sizes in Q⃗. For
any sufficiently random arrival process with large packets and
a sufficiently small channel space |M|, we note that ties are
unlikely, which means T (Q⃗) ≈ ∅. Thus, for all practical
purposes, if we can compute RF

i (Q⃗, α⃗, g⃗) exactly for all i, we
have a good estimate of the queue-weighted drain dF (Q⃗, α⃗, g⃗).

To proceed with the exact computation of RF
i (Q⃗, α⃗, g⃗), we

condition on the maximum weighted-channel amongst the other
K − 1 users as follows

RF
i

(
Q⃗, α⃗, g⃗

)
=
∑M+1

m=1 Pr
(
Xeff

ij > Yi

∣∣∣ Yi ∈ Am

)
E
[
QiX

eff
ij∣∣∣ Xeff

ij > Yi, Yi ∈ Am

]
Pr (Yi ∈ Am) ,

(9)
where Yi = maxk ̸=i σkiX

eff
kj , σki =

Qk

Qi
and

An =

 [0, r1), n = 1
[ rn−1, rn ) , n = 2, 3, . . . ,M
[ rn,∞ ) , n = M + 1.

(10)

Now since Xeff ∈ M by definition, we have that

Pr
(
Xeff

ij > Yi

∣∣∣ Yi ∈ Am

)
= Pr

(
Xeff

ij ≥ rm

∣∣∣ Yi ∈ Am

)
for m = 1, 2, . . . ,M, and Pr (Xeff

ij > Yi|Yi ∈ AM+1) = 0.
Hence, we can ignore the last term and re-write (9) as

RF
i

(
Q⃗, α⃗, g⃗

)
=
∑M

m=1 Pr
(
Xeff

ij ≥ rm

∣∣∣ Yi ∈ Am

)
E
[
QiX

eff
ij∣∣∣ Xeff

ij ≥ rm, Yi ∈ Am

]
Pr (Yi ∈ Am) .

(11)
It also follows from the boundedness of the channel space that
Pr
(
Xeff

ij ≥ r1

∣∣∣ Yi ∈ A1

)
= 1 and

E
[
QiX

eff
ij

∣∣∣ Xeff
ij ≥ r1, Yi ∈ A1

]
= QiE

[
Xeff

ij

]
.

.
In Lemma 1, we compute in closed-form the three quantities

Pr (Xeff
ij ≥ rm|Yi ∈ Am), E[QiX

eff
ij |Xeff

ij ≥ rm, Yi ∈
Am] and Pr (Yi ∈ Am) of interest in (11). These results
are combined to yield an exact closed-form expression for
RF

i

(
Q⃗, α⃗, g⃗

)
in Theorem 2. All quantities are expressed as a

function of the complementary cumulative distribution function
(CCDF) of the users’ channels; PXij (r) = Pr (Xij ≥ r) =∑

{n:rn≥r} ρni denotes the CCDF of user i’s channel, assumed
available to the base station in closed-form.

Lemma 1. (a) The conditional probability
Pr
(
Xeff

ij ≥ rm

∣∣∣ Yi ∈ Am

)
is given by

Pr
(
Xeff

ij ≥ rm

∣∣∣ Yi ∈ Am

)
=
[
PXij (rm)

]2gi
. (12)

(b) The probability Pr (Yi ∈ Am) is given by

Pr (Yi ∈ Am) =
∏

k ̸=i

[
1−

(
PXk1

(
rm
σki

))2gk ]
+
∏

k ̸=i

[
1−

(
PXk1

(
rm−1

σki

))2gk ]
.

(13)

(c) The conditional expectation
E
[
QiX

eff
ij

∣∣∣ Xeff
ij ≥ rm, Yi ∈ Am

]
is given by

E
[
QiX

eff
ij

∣∣∣ Xeff
ij ≥ rm, Yi ∈ Am

]
=

Qi∑m−1
p=1 χp

M∑
n=m

rnχin

(14)
where χin = (PXi1 (rn))

2gi − (PXi1 (rn+1))
2gi

, n =
1, 2, . . . ,M, and rM+1 = ∞.

Proof: Refer to Appendix A.
Consolidating the results in Lemma 1, we can obtain the

desired closed-form bound on the expected queue-weighted
drain for user i and hence the expected queue-weighted drain
for the system.

Theorem 2. The expected queue-weighted drain of user i
can be bounded below as shown in (15) where χin =
(PXi1 (rn))

2gi − (PXi1 (rn+1))
2gi

, n = 1, 2, . . . ,M and
rM+1 = ∞. Equality is achieved if T (Q⃗(t̄)) = ∅.

Proof: Follows from (9) and Lemma 1.
Having derived a closed-form bound that we believe is tight

for most practical settings, the feedback allocation problem in
(4) now takes the form

g⃗(t̄)∗ = argmax
∑

i R
F
i

(
Q⃗(t̄), α⃗(t̄), g⃗

)
s.t.

∑K
k=1 2

−gk ≤ c
gk ∈ {0, 1, . . . , log2 L,∞}

(15)

where RF
i

(
Q⃗(t̄), α⃗(t̄), g⃗

)
is given in Theorem 2. With the new

formulation in (15), we have successfully addressed the issue of
objective-function-computation raised at the end of the previous
section. The objective function in (15) can be calculated using
O(KM(K+M)) operations, which is O(K2) for most realistic
settings, where M does not scale.

Next, we turn our attention to the second issue raised
at the end of the previous section and this is the topic of
computational-efficiency. In the developments that follow, we
refer to RF

i

(
Q⃗(t̄), α⃗(t̄), g⃗

)
as the expected queue-weighted

drain for user i thereby accepting it as an accurate proxy for
the same.

V. COMPUTATIONALLY-EFFICIENT ALGORITHMS

In this section, we propose a greedy algorithm that approxi-
mately solves (15). The accuracy of the algorithm and the new
objective function is quantified through numerical experiments
in the next section by comparing against the case with full
feedback bandwidth.

In general, it is imperative that any feedback optimization
be performed while paying only a reasonable price in terms
of control overhead for otherwise, the purpose of throughput
enhancement through intelligent allocation is defeated. For
this reason, we consider the class of c-sparse algorithms that
allocate full feedback bandwidth to ⌊c⌋ carefully-chosen users
and the remaining bandwidth to a ⌈c⌉-th chosen user. Note that
the control overhead for such a class is exactly log2

(
K
⌈c⌉
)
=

O(log2 K) bits, when c is a constant, thus scaling gracefully
in the number of users. Recall that c ∈ (0,K] parameterizes the
total feedback budget given by B = cL log2 M . Through the
remainder of this paper, we restrict our attention to allocating



RF
i

(
Q⃗, α⃗, g⃗

)
=

Qi(t̄)∑m−1
p=1 χp

∑
m

[
PXij

(rm)
]2gi [∑M

n=m rnχin

] [∏
k ̸=i

[
1−

(
PXk1

(
rm
σki

))2gk
]
+

∏
k ̸=i

[
1−

(
PXk1

(
rm−1

σki

))2gk
]]

(15)

feedback bandwidths of the form c ∈ {1, 2, . . . ,K}. In the
context of c-sparse algorithms, this has a natural interpretation
of allowing the “best” c users to transmit full feedback infor-
mation back to the base station. Mathematically speaking, the
best c-sparse algorithm is one that solves the c-sparse version
of (4) given by

g⃗(t̄)∗ = argmax dF

(
Q⃗(t̄), α⃗(t̄), g⃗

)
s.t.

∑K
k=1 2

−gk ≤ c
gk ∈ {0,∞}.

(16)

The naı̈ve brute-force approach to solving (16) incurs com-
plexity

(
K
c

)
operations, which might be too large. For a system

with K = 32 and c = 8 (25% of the full CSI bandwidth), this
corresponds to ten million operations. Thus, the question now
becomes can we efficiently determine which users deserve the
pie, possibly c users that maximize some metric.

To address the user-selection issue, we begin with the simple
observation the solution to the c-sparse feedback allocation
problem in (16) involves finding the subset of users S ⊆
{1, 2, . . . ,K} that maximizes

∑
k∈S RF

k

(
Q⃗S(t̄), α⃗S(t̄), c⃗1S

)
where 1⃗ is an all-ones vector of length K and x⃗S denotes a
restriction of vector x⃗ to the elements in set S. A useful inter-
pretation of the above process is that we essentially reduce the
amount of competition by eliminating users {1, 2, . . . ,K} \ S
and then re-evaluate the performance of the c chosen users in
this new setting. We then proceed with the intuitive argument
that if user k∗ ranks best amongst the full field of competition,
i.e., RF

k∗

(
Q⃗(t̄), α⃗(t̄), 0⃗

)
> maxj ̸=k∗ RF

j

(
Q⃗(t̄), α⃗(t̄), 0⃗

)
, then

it is unlikely that the same user loses its ranking when the field
of competition is reduced. This is because the user wins on the
weight of its own merit, in this case, its channels and queue
sizes.

The above intuition motivates the following algorithm.
The algorithm begins by sorting the users based on{
RF

i

(
Q⃗(t̄), α⃗(t̄), 0⃗

)}
, the full feedback queue-weighted

drains. We then allocate full feedback bandwidth to the first
c users. The algorithm is described more formally below in
the general case with c ∈ (0,K]. The proposed formulation

Algorithm 2 Greedy feedback allocation
1: Set gi = ∞ for all i, i.e., initialize to zero feedback

bandwidth for all users.
2: Sort

{
Qi(t̄)R

F
i

(
Q⃗(t̄), α⃗(t̄), 0⃗

)}
in descending order. In-

dex the sorted set by {i1, i2, . . . , iK}.
3: Set gik = 0 for k = 1, 2, . . . , ⌊c⌋ and gi⌈c⌉ =

− log2 (c− ⌊c⌋).

in (16) can be seen as a generalization of the formulation
proposed by Gopalan et al. [11] to a multi-carrier setting. In
particular, when L = 1, (16) reduces to the throughput-optimal
feedback allocation problem in [11]. The authors do not address
the two challenges raised at the end of Section III, that of

efficient computation of the objective function in (16) followed
by efficient optimization. In contrast, we are able to propose
an efficient algorithm above that outputs a c-sparse solution,
a development that is made possible by the derivations in the
previous section.

In the next section, we run extensive numerically experiments
under realistic settings in order to evaluate our proposed two
time-scale greedy feedback allocation and data scheduling
algorithm.

VI. NUMERICAL EXPERIMENTS

In Section VI-A, we introduce the simulation setup and this
is followed by Section VI-B where we present the results of
our experiments. We compare the throughput of the greedy
feedback allocation algorithm with the full CSI scheduling
algorithm as well as against an equal allocation algorithm where
each user is given the same amount of feedback bandwidth.

A. Simulation setup

The simulation parameters, that are closely aligned to the
LTE specification [20]–[22], are described below:

Network geography: We consider a circular cell of radius
D = 7km, which is of the order of a typical urban cell-size
[22]. The base station is located at the center

(
D
2 ,

D
2

)
.

Arrivals process: We study both symmetric and asymmet-
ric deterministic arrivals processes in our experiments. The
asymmetric case is motivated by the increasing and concurrent
demand from mobile users for a plethora of applications such as
gaming, video, VoIP, file downloads, etc. We model asymmetric
arrivals using parameter κ and set the arrival rate vector to be

λ⃗ = [κλ κλ . . . κλ︸ ︷︷ ︸
K
2

λ λ . . . λ︸ ︷︷ ︸
K
2

]T bits/s, κ ∈ {1, 2, 5}. (17)

This means that one half of the users in the system are
assumed to have larger throughput demands. Of course, κ = 1
represents the symmetric case. Without loss of generality, we
normalize the duration of a slot to one second and treat (17)
as the number of bits arriving in one slot.

Spatial distribution, path-loss, large-scale coherence time:
We assume that the users are uniformly distributed on the circle.
The users positions induce a path-loss gain [20], [23] at time
t that is given by

αi (t) = 10−(32.45+20 log10(fc)+20 log10(di(t))).

where di(t) is the distance from the i-th user to the base
station, and fc = 1800MHz denotes the carrier frequency.
Recall that users change positions every TLS slots. We set to
TLS = 25s in our simulations.

Bandwidth, number of OFDMA sub-carriers, transmit
power and noise modelling: The total system bandwidth



is ω = 10MHz with L = 1024. The transmit power is
set to P = 10W which is calculated as 46dbm (EIRP) −
6dB (Cable losses) = 10dB. The additive noise at the receiver
is modelled [20], [23] as

No = 10
−147+NF+10log10(ω/L)

10 ,

where NF = 9dB is the noise floor.

Channel distribution and CQI Table: We use a 16-state CQI
table from the LTE standard [24]

M = {0.05, 0.15, 0.23, 0.37, 0.6016, 0.877, 1.17,
1.47, 1.91, 2.4, 2.7, 3.3, 3.9, 4.5, 5.1, 5.55}.

Note that as the first CQI value is not specified by the authors
[24], we choose an arbitrary value of 0.05bps/Hz. Recall that
the channels are assumed to be i.i.d. across OFDMA bands.
The probability distribution (on any band)

Pr (Xij(t) = rm) = ρmi (αi (t̄)) (18)

is calculated as follows. We discretize/quantize the Shannon
capacity random variable given by log2

(
1 + Pαi(t̄)h

No

)
, where

h ∼ exp(1) is a standard exponential random variable, using
codebook M. One can then derive the probability distribution
induced on the CQI Table or codebook M as ρmi (αi (t̄)) =

exp
(
− 2rm−1

αi(t̄)

)
− exp

(
− 2rm+1−1

αi(t̄)

)
for m = 1, 2, . . . ,M − 1,

and ρmi (αi (t̄)) = exp
(
−2rm−1

αi(t̄)

)
for m = M .

Intuitively speaking, one expects sub-carrier grouping to
exhibit the worst performance versus the full feedback case
when the channel distribution in (18) has lower variance, e.g.,
in the low-SNR and high-SNR regime. In these regimes, it is
likely that Xeff

ij ≈ Xij for any gi thus alleviating the loss
in throughput due to grouping. We are therefore motivated to
evaluate the performance of the grouping approach under a
uniform spatial distribution on the circle, which translates into
a uniform distribution on M that has highest variance.

Number of users and feedback budget: The number of users
is set to K = 32. We consider two cases c ∈ {4, 8} for the
feedback budget that is given by B = cL log2 M ; c = 4 and
c = 8 corresponds to feedback reductions of 125% and 75%
respectively in relation to full feedback bandwidth.

B. Simulation Results

Having described the simulation setup in detail, we now
present the results of our experiments. Under each case
(c, κ) ∈ {4, 8} × {1, 2, 5}, we compare the performance of
three algorithms: the full feedback case with c = K, the
greedy feedback algorithm described in Section V and an equal
allocation algorithm that is described next.

The equal allocation algorithm is a “one-shot” algorithm that
divides the total feedback bandwidth equally amongst all users
at the beginning of the communication epoch. In other words,
the feedback allocation is given by

gEQ
k (t) = gEQ

k =
⌈
− log2

( c

K

)⌉
, ∀k,∀t. (19)

As a sanity check on our simulation results, one can derive a
lower bound on the throughput that the above equal allocation

algorithm can support. This is made possible by the simple
observation that any arbitrary scheduler provides a service rate
that can be achieved by MaxWeight owing to the optimality
of the latter. The lower bound is calculated based on the max-
sum-rate scheduler, which selects the user with the best channel
in each OFDMA sub-band. The total system rate in the case of
the max-sum-rate scheduler can be calculated in closed-form,
using similar arguments as presented earlier in the paper, as∑

j E
[
maxk X

eff
kj

]
=LE

[
maxk X

eff
kj

]
=L

∑M
m=1 rmPr

(
maxk X

eff
kj = rm

)
=L

∑M
m=1 rm

[∏
k

(
1− Pr (Xk1 > rm)2

gk
)

−
∏

k

(
1− Pr (Xk1 > rm−1)

2gk
)]

,

(20)
where r0 = 0. When both the arrival processes and the user
channels are symmetric, the supportable per user is at least

µEQ
k (c) = L

K

∑M
m=1 rm

[∏
k

(
1−

(
1− m

M

)2gEQ
k

)

−
∏

k

(
1−

(
1− m−1

M

)2gEQ
k

)]
.

(21)

In fact, under symmetric arrivals and channels, (21) repre-
sents the maximum supportable symmetric throughput under
one-shot feedback allocation policies with constraint B =
cL log2 M, c ∈ {1, 2, 3, . . .} bits.

We use the above analysis to perform a sanity check of the re-
sults presented in Fig. 1 that correspond to a symmetric setting
(κ = 1) and uniform for L = 1024, K = 32 and c ∈ {4, 8}. In
particular, we find that the one-shot equal allocation algorithm
with c = 4 and c = 8 is indeed able to support a maximum
throughput of roughly 350kbps and 800kbps respectively as
predicted by the above analysis (µEQ

k (6) = 353.56kbps and
µEQ
k (8) = 806kbps respectively). The dynamic feedback al-

location algorithm however outperforms the equal allocation
approach by 242% (80% resp.) as shown when c = 4 (c = 8
resp.). We also see that loss in throughput between the greedy
algorithm and the full feedback case is only 13% when c = 8.
When c = 4, the loss in throughput due to sub-carrier grouping
is 42%. The results from the asymmetric case (κ = 2 and
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Fig. 1. Throughput under three feedback schemes with symmetric arrivals
κ = 1. The average queue length is measured over 10000 iterations.

κ = 5) are plotted in Fig. 2. Here, we see that the greedy



algorithm outperforms the equal allocation approach by almost
275% (200% resp.) and underperforms with respect to the full
feedback algorithm by 47% (10% resp.) when c = 4 (c = 8
resp.). Similarly with κ = 5, we see that the greedy algorithm
outperforms the equal allocation approach by 400% (150%
resp.) and underperforms with respect to the full feedback
algorithm by 30% (10% resp.) when c = 4 (c = 8 resp.).
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The competitive performance of proposed algorithm leads
us to an interesting observation that solutions in the space
Gc−sparse = {(g1, . . . , gK) :

∑K
k=1 2

−gk ≤ c, gk ∈
{0,∞}, ∀k} are good approximations of the true solutions
that lie in G = {(g1, . . . , gK) :

∑K
k=1 2

−gk ≤ c, gk ∈
{0, 1, . . . , log2 L,∞}, ∀k}. The gains from greedy feedback
allocation over the equal allocation policy do of course come
with some expenditure in bandwidth due to control overhead.
As mentioned earlier, the required bandwidth scales logarith-
mically in the number of users and is exactly equal to c log2 K

TLS

bits per second. When c ∈ {4, 8}, K = 32, and TLS = 25s, the
overhead amounts to 0.8bps and 1.6bps, which is negligible.

VII. CONCLUDING REMARKS

This paper develops a joint sub-carrier grouping and data
scheduling policy that operates on two time-scales. The sub-

carrier grouping technique determines a grouping factor for
each user that maximizes the queue-weighted drain of the
system. We derive a closed-form bound on the queue-weighted
drain that is tight for most systems with large packet sizes
and sufficient small CQI tables. The closed-form expression in
turn allows for the development of a fast greedy algorithm that
incurs control overhead that scales only logarithmically in the
number of users. We evaluate the performance of the greedy
algorithm through numerical experiments. Future directions
include developing feedback reduction protocols that involve
both sub-carrier grouping and codebook size adaptation.

APPENDIX A
PROOF OF LEMMA 1

Without loss of generality, we restrict our analysis to the
first sub-band in all three parts of the proof since all bands are
statistically equivalent.
(a) Without loss of generality, we restrict our analysis to
the first sub-band since all bands are statistically equivalent.
Firstly, since the channels are independent across users, we
can drop the conditioning to get Pr

(
Xeff

i1 ≥ rm

∣∣∣ Yi ∈ Am

)
=

Pr
(
Xeff

i1 ≥ rm

)
. The remainder of the proof, given below, is

immediate since the channels are i.i.d. across sub-bands for a
given user

Pr
(
Xeff

i1 ≥ rm

)
= Pr

(
mins∈Fi(1) Xis ≥ rm

)
=

[
PXij (rm)

]2gi
.

(22)

(b) The proof proceeds as follows
Pr (Yi ∈ Am)

=1− Pr (Yi ̸∈ Am)

=1− Pr
(
maxk ̸=i σkiX

eff
k1 (t) ̸∈ [ rm−1, rm )

)
=Pr

(
maxk ̸=i σkiX

eff
k1 (t) < rm

)
− Pr

(
maxk ̸=i σkiX

eff
k1 (t)

< rm−1) since (0, rm−1) and (rm,∞) are disjoint intervals
=
∏

k ̸=i Pr
(
Xeff

k1 (t) < rm
σki

)
+
∏

k ̸=i Pr
(
Xeff

k1 (t) <
rm−1

σki

)
=
∏

k ̸=i

[
1−

(
PXk1

(
rm
σki

))2gk ]
+
∏

k ̸=i

[
1−

(
PXk1

(
rm−1

σki

))2gk ]
,

(23)
where the penultimate step follows since the channels are i.i.d.
across users on any given frequency band.
(c) The events {Xeff

ij ≥ rm} and {Yi ∈ Am} are indepen-

dent and thus E
[
Qi(t̄)X

eff
ij (t)

∣∣∣ Xeff
ij ≥ rm, Yi ∈ Am

]
=

E
[
Qi(t̄)X

eff
ij (t)

∣∣∣ Xeff
ij ≥ rm

]
. The latter conditional expec-

tation is straightforward to compute and given as

E
[
Qi(t̄)X

eff
i1 (t)

∣∣∣ Xeff
i1 ≥ rm

]
=

1∑m−1
p=1 χp

M∑
n=m

rnχin

where χin = Pr
(
Xeff

i1 (t) = rn

)
is the probability distribution

of the effective channels of user i. The probability distribution
function is derived below

χin =Pr
(
Xeff

i1 (t) = rn
)

=Pr
(
Xeff

i1 (t) > rn−1

)
− Pr

(
Xeff

i1 (t) > rn
)

=

{
(PXi1 (rn))

2gi − (PXi1 (rn+1))
2gi , n = 1, . . . ,M − 1

(PXi1 (rn))
2gi , n = M.



The result follows.
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