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Abstract

A time-slotted queued system of multiple flows with a single-server is considered, in which each flow or channel

has exogenous arrivals, and the service rates to the flows vary over time according to a fixed distribution. In this

setting, it is assumed that not more than one channel can be serviced in a single time slot. Unlike much recent

work on this problem, attention is drawn to the case where theserver can obtain onlypartial informationabout the

instantaneous state of the channel (e.g., due to limited feedback capabilities). In each time slot, the server is allowed

to specify a single subset of flows from a collection ofobservablesubsets (e.g., all subsets of a particular size),

observe the current service rates for that subset and subsequently pick a flow to serve.

A precise characterization of the stability region for sucha system is provided. An online scheduling algorithm

is presented, that uses information about marginal distributions to pick the subset and theMax-Weightrule to pick a

flow within the subset, and which is provably throughput-optimal. In the case where the observable subsets are all

disjoint, or where the subsets and channel statistics are symmetric, it is shown that a simple scheduling algorithm

- Max-Sum-Queue- that essentially picks subsets having the largest squared-sum of queues, followed by picking

a flow using Max-Weight within the subset, is throughput-optimal. However, it is demonstrated that under more

general conditions on the observable subsets and channel statistics, the simpler Max-Sum-Queue algorithm may not

be throughput-optimal.

I. I NTRODUCTION

There has been much recent interest in scheduling over wireless cellular networks where channel state information

is available at the base-station [2], [3], [4]. A canonical system consists of a base-station (the server) and a collection

of mobile users (the queues). Time is slotted (typically of the order of a millisecond), like in the high-speed WiMAX

[5], Ultra Mobile Broadband (UMB), GSM-based HSDPA and 1xEV-DO communications technologies. In each

time-slot, the channel state, i.e., the channel quality such as SINR or data rate that can be sustained over the time-

slot to the mobile, is potentially available via a feedback channel from the mobile terminals to the base-station.
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Based on the load (packets queued at the base-station) as well as the channel state, the base-station schedules users

for channel access at each time-slot.

As the capacity of the wireless system increases, growing numbers of users will be connected to the base-station

at any given time. As a result, schemes wherein all users transmit channel state feedback to the base-station may

become untenable, due to feedback bandwidth constraints. One approach to mitigate this problem is for the base-

station to request channel state information from a (small)sub-collection of users and make scheduling decisions

based on this partial channel state information. Our goal isto understand how the base-station can intelligently

decide which subsets of the users to sample to obtain partialchannel state information, and how to schedule users

based on this information. Furthermore, we are interested in understanding how this partial information degrades

the stability region, i.e., what is the effect of partial information on the capacity of a wireless network.

We characterize the exact stability region given any set of observable subsets, and we provide an algorithm that is

throughput-optimal. Unlike the full-information case studied in e.g., [2] that requires no distributional information,

our algorithm requires knowledge of the marginals of the channel state distribution for the observable subsets.

For the special case of symmetric flows, we provide a simpler throughput-optimal algorithm that requires no such

information. We further show that the reduction in the stability region is due precisely to the inability to observe

the full instantaneous state, as opposed to failure to obtain the full joint distribution of the channel state. Indeed we

show that knowledge of the full distribution may not yield a larger stability region, unless the observable subsets

themselves are enlarged.

A. Main Contributions

We consider a base-station system servingN users and channels, with each user generating data, and withchannels

which have an arbitrary joint distribution over a finite state-space (the channel is assumed to be independent across

time but not across users), and the servernot havingknowledge of the channel joint distribution.

In each time-slot, the base-station is allowed to acquire channel state1 from one among a predefined collection

of subsets of channels. For example, in a ten-user system, the constraint could be that we can acquire channel state

from at most three users per time-slot (we note, though, thatour main results are competely general with respect to

the structure of the observable subset collection). We henceforth refer to this as a system with partial channel-state

information.

The scheduling task at each time-slot is to first determine the subset of channels for which channel state will be

acquired and then determine a single user to schedule from within this subset. In this paper, we characterize the

stability region for this multi-user system, and develop algorithms that achieve the full stability region. Specifically,

the main contributions in this paper are as follows.

1At each time-slot, the complete channel state is aN dimensional vector, with thei-th component of the vector corresponding to the data

rate that can be sustained to thei-th mobile user over the time-slot if this user is chosen by the scheduler. Correspondingly, the partial channel

state corresponds to a sub-vector of thisN dimensional vector.
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1) We derive the stability region for a system withN users and an arbitrary collection of observable subsets (i.e.,

a collection of subsets of users for which the channel state can be simultaneously acquired), and for any joint

channel distribution across users where channel realizations are independent and identically distributed over

time. The stability region corresponds to the set of arrivalrates that can be sustained such that the queues at

the base-station are stable (positive recurrent).

We demonstrate that the stability region with partial channel state information can be described by the

convex hull of “local” stability regions for the observableuser subsets. These local regions are completely

characterized by a simple class of scheduling policies commonly calledStatic Split Service rules(e.g., [2]).

A numerical example is presented that illustrates the degradation in the stability region as the amount of

channel state information decreases (i.e., when there are fewer simultaneously observable channels).

2) The characterization of the stability region shows that it is completely determined by just the marginal statistics

of the aggregate channel over observable subsets. It also leads to the important counterintuitive result that

additional information about the joint distribution of thechannel state, even if provided to the scheduler at all

times, cannot help increase throughput. In other words, thedegradation of the stability region is precisely due

to the lack of capability to observe channel state, as opposed to lack of knowledge about how the channel

state is distributed.

3) Next, we develop a queue-length based “online” scheduling policy that uses queue-length information along

with knowledge of subset-marginal distributions, and which is throughput-optimal, i.e., the policy attains all

rate points within the stability region. The policy consists of two stages: In each time slot,(a) the base-station

first determines the subset of channel measurements to observe. This is done using theexpectedrates over the

observable subsets weighted by theactualqueue lengths at the base-station; and(b) within the chosen subset,

the policy uses theMax-Weightrule [6], [2] which uses the product of theactualchannel rate (received from

the mobile in the chosen subset) and theactual queue-length to make the scheduling decision.

4) We develop a simpler online policy (theMax-Sum-Queue rule) that requires no distributional information. In

the first stage, this policy determines the subset of users chosen by only the queue lengths and does not use the

expected channel rates. The Max-Sum-Queue policy chooses that subset over which the sum of the squares of

the queue-lengths is largest. The second stage is the same asbefore, namely, the Max-Weight policy restricted

to the chosen subset. We show that if the observable subsets are disjoint or the observable subsets and channels

are symmetric, this policy is throughput-optimal. Finally, we provide an example to show that in general this

policy is not throughput optimal if the symmetric-channel-and-observable-subsets/disjoint-observable-subsets

condition is not met.

B. Related Work

There has been much work in developing scheduling algorithms for down-link wireless systems for various

performance metrics that include stability, utility maximization and probabilistic delay guarantees [6], [7], [8],

[9], [10], [11], [12], [13]. However, the above studies primarily focus on the case where complete channel state
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information is available at the base-station, and thus consider problems orthogonal to the main issues in this paper.

In the context of partial channel information, related workincludes that of [14] where the authors study the

problem of a server (terminal) accessingN time varying channels which are independent across users and time

(e.g., a multi-channel MAC). The server has a cost for (sequentially) probing channels, with a channel dependent

probing cost, and gains a reward which depends on the user andthe probed state, if a packet is transmitted

successfully. The authors formulate the problem of minimizing the expected cost (probing cost minus reward for

transmissions) where the cost functions and the channel probabilities are known to the server. They further develop

constant factor (within the optimal cost) approximation algorithms that operate in polynomial time for both the

saturated data case, as well as when the user (terminal) generates packets according to a Markov chain. The authors

in [15], [16] have earlier considered the special cases withequal probing costs and identically distributed channels.

Recent results in this context also include [17] where the authors develop structural properties of the optimal probing

strategy using a dynamic programming approach.

For systems with channels that are independent across usersand with infinitely backlogged data at the base-station,

there has been work considering limited feedback from the mobile users to the base-station. In these studies, the

mobiles use thresholds to determine if their channel quality is “good enough,” and if so, send their channel state

information to the base-station [18], [19], [20], [21], [22].

The work in this paper is, to the best of our knowledge, the first to consider characterizing stability of these

wireless networks under partial information regimes, while obtaining corresponding throughput optimal efficient

algorithms. In particular, the work here differs significantly from the previous work described above in the sense of

investigating stability in the presence of partial channelstate information. Also, we emphasize the need for efficient

scheduling rules based on feedback received via queue length information.

II. SYSTEM MODEL AND DEFINITIONS

Throughout the paper, we assume a common probability space(Ω,F ,P) which supports all random variables

and random processes. Consider a time-slotted model ofN < ∞ users serviced by a single server acrossN

unidirectional communication channels{c1, . . . , cN}
△
= C. An integer number of data packets arrive at the input

of every channel at the beginning of a time slot, to be serviced by the server. Packets get queued at the inputs of

channels if they are not immediately transmitted. We assumethat at most one of the channels can be activated for

transmission in a single time slot.

Further, in any given time slott ∈ {0, 1, 2, . . .}, the set of channelsC assumes astateL(t) from a finite set

of aggregate channel statesL = {l1, . . . , l|L|}, with the channel state remaining constant within each timeslot. In

each channel statel ∈ L, every channelci ∈ C assumes a dataservice rateof µl
i, i.e., a maximum ofµl

i packets

can be served from queuei (corresponding to channelci) when the aggregate channel is in statel. Henceforth, we

identify each statel ∈ L with its N -dimensional vector of service rates(µl
i)

N
i=1, and treatL(t) as a random vector

which can take any such valuel.

The random channel state processL
△
= (L(t))∞t=0 is assumed to be an independent and identically distributed
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(iid) discrete-time random process taking values from the finitestate spaceL. For l ∈ L, let πl △
= P(L(0) = l).

Observe that the channel state process isiid across time only, and can have any joint distribution acrossusers (i.e.,

across channels).

Let us denote byAi(t) the number of packets that arrive at channelci at time slott, and letA(t)
△
= (Ai(t))

N
i=1 ∈

RN . The packet arrival processAi
△
= (Ai(t))

∞
t=0 at the input of each channelci, i = 1, . . . , N , is assumed to be

a nonnegative finite-state irreducible discrete-time Markov chain in its stationary distribution. We callE[Ai(0)] =

λi > 0 the arrival rate at channeli, i = 1, . . . , N . Each arrival process is taken to be independent of all other

processes.

Our channel observations are limited to a given collection of subsets ofC (whose union is assumed to beC) called

the collection ofobservable subsets. Let us denote this collection of observable subsets byO = {O1, O2, . . . , O|O|}.

In the example of Section III-B,C is a set of three channels and the setO contains all subsets of size two. In a given

time slot, an observable subsetα = {cn1 , . . . , cnm
} ⊂ C is said to be in asub-stateµk = (µk

n1
, . . . , µk

nm
) ∈ Rm if

L(t)nj
= µk

nj
, j = 1, . . . ,m. Denote byLα(t) them-length sub-state random vector that is the projection ofL(t)

onto coordinatesn1, . . . , nm.

Similar to the development in [2], we say that the state of thesystem evolves according to the random process

S = (S(t))∞t=0 whereS(t)
△
= (Q1(t), . . . , QN(t), U11(t), . . . , U1Q1(t), . . . , UN1(t), . . . , UNQN

(t)). Here,Qj(t)

denotes the length of the packet queue for channelcj ∈ C in time slott andUik(t) is the current delay of thek-th

packet in queuei at time t.

In this regard, ascheduling policyP is a pair of maps(G,H), whereG is a map from the state of the systemS(t)

to a fixed probability distribution on the set of observable subsetsO, andH is a map which takesS(t) restricted to

a particular observable subset, along with its sub-state, into a fixed probability distribution on the channels which

comprise the subset. Such a scheduling policyP is applied to select a transmitting channel using two steps.At

every time slott, in the first step, we pick an observable setα randomly according to the distributionG(S(t))

after which we are able to sample the sub-state of the chosen observable set. Then, using the distributionH on the

observable set and its sub-stateLα(t), we pick a channel for transmission from that observable set. This scheduling

model differs from the one in [2] in that this is a two-stage procedure where the subset to be sampled in the first

step is a function of just queue information and not the instantaneous channel state.

Under a scheduling policyP , the stateS is a discrete-time countable-state Markov chain which we assume to

be irreducible and aperiodic. A rate vectorΛ = (λ1, . . . , λN ) ∈ RN is said to besupportedby a scheduling policy

P if the Markov chainS is ergodic or positive recurrent under scheduling usingP , when the arrival rates at the

inputs of channelsc1, . . . , cN areλ1, . . . , λN respectively. In other words a policy supports an arrival rate vector if

the input packet queues at all channels in the system remain stable under the policy. Associated with each policy

P is its rate regionR(P)
△
= {Λ ∈ RN : Λ is supported byP}. Theachievable rate regionor throughput regionor

stability regionR is then defined to be the union of the rate regions for all possible scheduling policiesP . A rate

vectorΛ is said to beachievableif it is supported by some scheduling policy. Likewise, a setor regionA ⊂ RN

is said to be achievable if all its elements are achievable. Ascheduling policy is said to bethroughput-optimalif
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it supports all vectors in the achievable rate region.

We wish to characterize the achievable rate region for the model we have described. Henceforth, we shall naturally

assume that all the subsets inO are maximal with respect to set inclusion.

III. T HE ACHIEVABLE RATE REGION

In the first part of this section, we show two main results. First, we characterize the achievable rate region for any

collection of observable subsetsO. Next, we show that this region is attained using a special class of scheduling

policies calledStatic Split Service (SSS) rules[2]. The reason they are called so is that they are independent of the

queue lengths at every time slot and rely only on the channel state to make randomized scheduling decisions. We

present an example in which we explicitly describe the achievable rate region for a system of three channels, under

different partial information structures. The final part ofthis section characterizes ‘good’ or optimal SSS scheduling

rules.

A. Description of the throughput region

Consider an observable subsetα ∈ O, α = {ck1 , ck2 , . . . , ckm
} wherek1, . . . , km ∈ {1, . . . , N}. Let Q(α)

denote them-dimensional subspace ofRN where coordinates with indices other thank1, . . . , km are zero. If only

users fromα are served, then any stabilizable rate must lie inQ(α). Denote this stabilizable rate region byR(α).

Applying Theorem 1 in [2] to the subsetα, we can describe the achievable rate region when onlyα is allowed to

be picked in the first scheduling step:

Lemma 1:There exists a scheduling policyP stabilizing a rate vectorΛ ∈ R(α) if and only if there exists a

stochastic matrixφα such that

λi < vα
i (φα)

△
=
∑

l∈Lα

πl,αφα
liµ

l,α
i , ∀ci ∈ α.

Here,Lα is the set of sub-states ofα, πl,α is the marginal probability of the sub-statel andµl,α
i is the service rate

for channelci in sub-statel.

The matrixφα defines an SSS rule for the subsetα. The rows ofφα correspond to every sub-state ofα and the

columns ofφα correspond to every channel inα. Whenα is in the sub-statem = (µck1
, . . . , µckl

), the SSS rule

picks channeli for transmission with probabilityφα
mi.

Lemma 1 states that the stability region for scheduling using α is the convex polytopeR(α). The following

theorem establishes that the stability region for the wholesystem is the convex hull of such polytopes.

Theorem 1:The achievable region,C, for the whole system is the convex hull of the stabilizable regions in each

subspaceQ(α), for α ∈ O:

C
△
= conv({R(α) : α ∈ O}).

The theorem says that any rate vector in the stability regioncan be supported by timesharing across observable

subsets and across users within subsets. The proof of the theorem follows from the following two lemmas which

establish matching inner and outer bounds on the regionC:
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Lemma 2:C is achievable.

Proof: For λ =
∑K

i=1 pαi
λαi

with
∑K

i=1 pαi
= 1, pαi

≥ 0 andλαi
∈ R(αi) ∀i, selecting subsetαi in the first

step independently with probabilitypαi
and using the SSS ruleφαi corresponding to the vectorλαi

, ∀i, supports

the vectorλ.

Next, we show that no more rate vectors are achievable:

Lemma 3: If Λ ∈ RN is achievable, thenΛ ∈ C. In particular,Λ can be achieved by a global SSS scheduling

rule parametrized by a stochastic matrixφ of the form

φ =
∑

α∈O

pαφ
α, (1)

whereφα are stochastic matrices as described above, andpα is a probability distribution on the maximal observable

subsets,O.

Similar to the notion of an SSS rule for a maximal observable subset, the matrixφ above defines aglobal SSS

rule for our system. A scheduling policy implementing this global SSS rule selects a subsetα in the first step with

probability pα and subsequently uses the subset SSS ruleφα to pick a queue inα. The (long-term) service rate

such a rule provides to queuei is

vi
△
=
∑

α∈O

pαv
α
i (φα) =

∑

α∈O

pα

∑

l∈Lα

πl,αµl,α
i φα

li, (2)

and the throughput regionC is essentially the set of all(v1, . . . , vN ) aspα andφα
li range from 0 to 1 with

∑

α pα = 1

and
∑

i φ
α
li, for eachα ∈ O, l ∈ Lα and i ∈ α.

See Appendix A for the proof of Lemma 3.

Implications of the result:According to Theorem 1,

• The rate regionC is a function of the service rates of the channels andmarginal probabilities over the observable

subsetsonly, and does not explicitly depend upon the overall joint probability distribution of all the channels.

In other words,two systems of channels with different overall joint distributions but with identical marginal

distributionsπl,α on all observable subsetsα are indistinguishable to scheduling policies which use partial

information, from the point of view of long-term service rates that can be achieved.

• Suppose a scheduling policy with partial channel state information is aided by a ‘genie’ which furnishes the

policy with the joint probability distribution of all the channel states. Theorem 1 says that thisadditional

joint distribution information cannot help the scheduler enlarge the throughput region. Intuitively, being able

to observe the entire set of channel state realizations and directly schedule a channel allows for more global

SSS rules compared to the restricted set of SSS rules that canbe achieved by picking a subset of channels to

observe and scheduling a channel within the subset. This limitation on the available space of static rules in the

case of reduced instantaneous channel state information leads to the diminishment of the throughput region.
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B. Example: Rate region for Three Symmetric Channels

In this part of the section we derive the throughput region for a system of three channels by applying Theorem

1. We consider three subset structures - completely observable, pairwise observable and singleton observable - and

demonstrate how the throughput region shrinks with reduction in the available partial information.

Consider a system of three channelsC3 = {c1, c2, c3} in which the system can take one of eight possible states

{l1, . . . , l8} (Table I), and where each of the channelsci takes a rate of eithera or b (a < b) in every state. We

denote the 8 values that specify the joint distribution of all three channels byπ1, π2, . . . , π8 as shown in the table.

Further, let us assume thatπ1 = π2 = · · · = π8 = 1/8 which corresponds to aniid system of channels. We compute

the throughput region for the following channel state information structures:

1) Complete channel state information:Let O = {{c1, c2, c3}}, i.e. all channels are simultaneously observable.

In this case,C = R({c1, c2, c3}) whereR(α) is the set of all rate vectors(λ1, λ2, λ3) ∈ R3, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0,

for which there exists a stochastic8 × 3 matrix φ ≡ φ{c1,c2,c3} such that

φ11π1a+ φ21π2a+ φ31π3a+ · · · + φ81π8b > λ1,

φ12π1a+ φ22π2a+ φ32π3b+ · · · + φ82π8b > λ2, and

φ13π1a+ φ23π2b+ φ33π3a+ · · · + φ83π8b > λ3.

With πi = 1/8 for all i, we get the three-dimensional throughput region shown in Fig. 1.

2) Pairwise channel state information:Let O = {{c1, c2}, {c2, c3}, {c3, c1}}, i.e. at most a pair of channels is

simultaneously observable. In this case,

C = conv(R({c1, c2}),R({c2, c3}),R({c3, c1})).

For the subset{c1, c2}, there are four sub-states with corresponding rates(a, a), (a, b), (b, a) and(b, b) which we

denote by sub-states 1 through 4 respectively. The subset throughput regionR({c1, c2}), say, is the set of all rate

vectors(λ1, λ2, 0) ∈ R3, λ1 ≥ 0, λ2 ≥ 0, for which there exists a stochastic4 × 2 matrix φ ≡ φ{c1,c2} such that

φ11(π1 + π2)a+ φ21(π3 + π4)a+ φ31(π5 + π6)b+ φ41(π7 + π8)b > λ1, and

φ12(π1 + π2)a+ φ22(π3 + π4)b + φ32(π5 + π6)a+ φ42(π7 + π8)b > λ2.

In general, for the subset{ci, cj} = {c1, c2, c3}\{ck} with i, j, k ∈ {1, 2, 3} and πn = 1/8 for all n, the

orthogonal projection ofR({ci, cj}) onto the planeλk = 0 is as shown in Fig. 2. Accordingly, the throughput

regionC for the system is depicted in Fig. 3. Observe that:

• The throughput regionC is now a function only of the marginal probabilities(π1+π2) = P(L(t)1 = a, L(t)2 =

a) etc.

• The throughput region of Fig. 3 has shrunk compared to the region in Fig. 1 due to the pairwise observability

constraint.
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Channel\ State s1 s2 s3 s4 s5 s6 s7 s8

c1 a a a a b b b b

c2 a a b b a a b b

c3 a b a b a b a b

State

probability π1 π2 π3 π4 π5 π6 π7 π8

TABLE I

PROBABILITY ASSIGNMENTS FOR THREE-CHANNEL SYSTEM

3) Singleton channel state information:Let O = {{c1}, {c2}, {c3}}, i.e. only the state of one channel can be

observed in the first scheduling step. In this case,

C = conv(R({c1}),R({c2}),R({c3})).

Each observable subset now has only two sub-states with corresponding ratesa andb. The subset throughput region

R({c1}), say, is the set of all rate vectors(λ1, 0, 0) ∈ R3, λ1 ≥ 0, for which there exists a stochastic2× 1 matrix

φ = φ{c1} such that

φ11(π1 + π2 + π3 + π4)a+ φ21(π5 + π6 + π7 + π8)b > λ1.

Using πn = 1/8 for all n, we get thatR({c1}) is just the line segment joining(0, 0, 0) and ((a + b)/2, 0, 0),

and likewise forR({c2}) andR({c3}). Thus the throughput regionC is the dotted simplex which is shown in Fig.

2. Observe that:

• The throughput regionC is now a function only of the marginal probabilities(π1+π2+π3+π4) = P(L(t)1 = a)

etc.

• The simplexC is strictly smaller than the throughput region with pairwise channel state information, due to

the singleton observability constraint.

C. The ‘regret’ of a partial information scheduler

We have seen that the throughput region of a system with partial channel state information depends only on the

marginal channel state distributions over observable subsets. Let a collection of observable subsets be fixed. Given

a joint channel state distribution that induces marginals over the observable subsets, the set of rate vectors that

belong to the throughput region with complete channel stateinformationexclusive ofthe throughput region with

partial channel state information is a measure of how much a partial information scheduler which ‘knows’ the joint

channel distribution would ‘regret’ not being able to observe the full instantaneous channel state.

However, given only the marginals over observable subsets,there are, in general, many joint distributions that

are conistent with the marginals. In this situation, a natural measure of how much a partial information scheduler
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Fig. 2. Rate region for 2 channelsci andcj , with complete channel state information

would ‘regret’ not being able to observe the full instantaneous channel state is the set of rate vectors that belong

to the throughput region forevery joint distribution consistent with the given marginals on the observable subsets

exclusive ofthe throughput region with partial channel state information. In other words, this ‘regret region’ is the

intersection of the throughput regions for all systems witha consistent joint channel state distribution, excluding

the throughput region with partial channel state information over the observable subsets. In this section, we present

two examples - the first example demonstrating that the regret region is empty and the second example showing

that the regret region can be non-empty (i.e.,any scheduling policy with complete channel state informationcan

guaranteeablysupport more rates than all policies with partial channel state information).

1) Consider the example of the previous section with pairwise channel state information, i.e.
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(0, 0, 0)
λ1

λ2

λ3

(1

2
a + 1

2
b, 0, 0)

(1

2
b + 1

4
a, 1

4
b, 0)

(1

2
b + 1

4
a, 0, 1

4
b)

(0, 1

4
b, 1

2
b + 1

4
a)

(0, 0, 1

2
a + 1

2
b)

(0, 1

2
a + 1

2
b, 0)

(1

4
b, 1

2
b + 1

4
a, 0)

(0, 1

2
b + 1

4
a, 1

4
b)

(1

4
b, 0, 1

2
b + 1

4
a)

Fig. 3. Rate region for 3 channels with pairwise and singleton channel state information

O = {{c1, c2}, {c2, c3}, {c3, c1}}. Suppose we know the pairwise marginals to be as follows:P(L(t)i = µi,

L(t)j = µj) = 1
4 , i, j ∈ {1, 2, 3}, i 6= j, µi, µj ∈ {a, b}. Note that theiid joint distributionπ1 = · · · = π8 =

1/8 used earlier agrees with these pairwise marginals.

These pairwise constraints give us a feasible set of possible joint channel distributions: it is the set of vectors

(π1, . . . , π8) in the simplex that satisfy the equationsπ1 + π2 = 1
4 , π1 + π3 = 1

4 , π1 + π4 = 1
4 , π2 + π5 = 1

4 ,

etc. In matrix form, these constraints along with the simplex constraints become





























1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0
...

1 1 1 1 1 1 1 1





































































π1

π2

π3

π4

π5

π6

π7

π8









































=



































1/4

1/4

1/4

1/4
...

1/4

1



































,

with πi ≥ 0 for all i. The set of solutions for the vector~π = (π1 π2 . . . π8)
T is the set of convex

combinations of the vectors~π(1) = (1/4 0 0 1/4 0 1/4 1/4 0)T and

~π(2) = (0 1/4 1/4 0 1/4 0 0 1/4)T , i.e.,

~π ∈ Π
△
= {η~π(1) + (1 − η)~π(2) : 0 ≤ η ≤ 1}.

The iid joint distributionπ1 = · · · = π8 = 1/8 corresponds toη = 1/2. Let C~π denote the throughput region
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with complete channel state information when the joint distribution of channel states is~π ∈ Π. As beforeC

denotes the throughput region with pairwise partial information, as in Fig. 3. SinceC ⊂ C~π ∀ ~π ∈ Π due to

the joint distributions agreeing with the marginals, we must have

C ⊂
⋂

~π∈Π

C~π.

The hexagonal face ofC in Fig. 3 represents the maximum sum rate that can be supported, and is described by

λ1+λ2+λ3 = 1
4a+ 3

4b. We observe that for the rate regionC~π(1)
, the sumλ1+λ2+λ3 can be at most14a+ 3

4b,

showing thatC~π(1)
= C. Thus we getC =

⋂

~π∈Π C~π. This shows that
⋂

~π∈Π C~π - the set of rates which can

guaranteeably be supported by scheduling policies with complete state information given pairwise marginals

- is no more thanC - the set of rates which can be supported by policies with partial channel state information.

2) Our next example illustrates thatC (
⋂

~π∈Π C~π in general. Consider two channelsc1 andc2 which take two

states each - rate 1 and rate 2. The aggregate channel thus takes one out of four states in each time slot, with

the corresponding rate pairs(µ1, µ2) being (1,1), (1,2), (2,1) and (2,2). Let the (joint) probabilities of these

states be denoted byπ1, π2, π3 andπ4 respectively. We denote the (singleton) observable subsets byα = {c1}

andβ = {c2}. Let us constrain the distribution(πi)
4
i=1 by insisting that the marginals be as follows:

πα
1 = P(L(t)1 = 1) = π1 + π2 = 0.7,

πα
2 = P(L(t)1 = 2) = π3 + π4 = 0.3,

πβ
1 = P(L(t)2 = 1) = π1 + π3 = 0.4, and

πβ
2 = P(L(t)2 = 2) = π2 + π4 = 0.6.

These are verified to be valid marginals; for instance, the joint probability distributions~π(1) = (0.1, 0.6, 0.3, 0)

and~π(2) = (0.4, 0.3, 0, 0.3) induce these marginals. In fact, we can parametrize the setΠ of all valid joint

distributions which yield these marginals by

Π = {η~π(1) + (1 − η)~π(2) : 0 ≤ η ≤ 1}.

From the marginal distribution, we getE[µ1] = 1.3 andE[µ2] = 1.6, hence the achievable rate region with

partial (singleton) channel state information is as in Fig.4(a). However, the full channel state information

rate region assuming the ‘extreme-case’ joint distributions~π(1) and~π(2) is as depicted in Figs. 4(b) and 4(c)

respectively. We observe that
⋂

~π∈Π

C~π = C~π(2)
) C.

Thus, in this case, given the singleton marginals, a scheduler with complete channel state information can

support a strictly higher rate guaranteeably over all jointdistributions (e.g., the rate(1, 0.6)) than a scheduler

with partial channel state information.
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(0, 1.6)

λ2

λ1(0, 0) (1.3, 0)

(a)

(0.7, 1.2)

λ2

λ1(0, 0) (1.3, 0)

(0, 1.6) (0.6, 1.3)

(b)

(1, 0.6)

λ2

λ1(0, 0) (1.3, 0)

(0, 1.6)

(c)

Fig. 4. (a) Rate region with singleton channel state information for 2 channels, (b) Rate region with full channel state information for joint

distribution π(1), (c) Rate region with full channel state information for joint distributionπ(1)

D. The structure of ‘good’ SSS rules

We conclude the section with a theorem which provides a characterization ofmaximalglobal SSS rules. We call

a global SSS rule maximal if no vector inC dominates its vector of service rates(vi)
N
i=1, where a vectorx ∈ RN

dominatesa vectory ∈ RN if xi ≤ yi for all i, andxj < yj holds for at least onej. The result says that a maximal

or optimal global SSS rule chooses the subset that gives the highest expected value of maximum weighted service

rate for a subset, and further picks that user to serve that gives the maximum weighted observed rate.

Theorem 2:Consider a maximal global SSS rule associated with SSS rules{φ∗α : α ∈ O} and a distribution

{p∗α : α ∈ O} over subsets. Then, there exists a set of strictly positive constantsνi, i = 1, . . . , N such that for any

l, i andα,

p∗α > 0, φ∗α
li > 0 ⇒ i ∈ arg max

j∈α
νjµ

l,α
j , and (3)

p∗α > 0 ⇒ α ∈ arg max
β∈O

∑

l∈Lβ

πl,β(max
j∈β

νjµ
l,β
j ). (4)

According to Theorem 2, at timet, in the first scheduling step, a maximal global SSS rule chooses a subsetα

for which
∑

l∈Lα
πl,α(maxj∈α νjµ

l,α
j ) is maximized, and further picks queuei in α which maximizesνiµ

l(t),α
i ,

wherel(t) is the observed sub-state of subsetα. We refer the reader to Appendix B for the proof of Theorem 2.

IV. A T HROUGHPUT-OPTIMAL SCHEDULING ALGORITHM

Motivated by the form of the result in Theorem 2, we present a scheduling algorithm which, for a system having

arrival rates in the described achievable region, takes as input only the state of the system at each time slot and

decides which (maximal) subset to observe and ultimately, which channel in that subset to schedule. Knowledge

of the arrival rates is not assumed in such a case. However, itis presumed that the marginal probabilitiesπl,α of

the subsetα being in the sub-statel are known.
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Algorithm 1:

At each time slott,

• Step 1:Select a setδ ∈ O, given by

δ ∈ argmax
α∈O

∑

l∈Lα

πl,α

(

max
i∈α

Qi(t)µ
l,α
i

)

,

where the symbolsO, Lα andµl,α
i have the same meaning as in the proof of Lemma 3 andQi(t) represents

the length of theith queue at the beginning of time slott.

• Step 2: Let the observed sub-state ofδ be s ∈ Lδ. Schedule channelj ∈ δ using theMax-Weightrule (also

known as theModified Largest-Weighted-Work-First (M-LWWF)rule [2], [6]), i.e.

j ∈ arg max
i∈δ

Qi(t)µ
s,δ
i .

Note: A suitable rule to break ties in each case is assumed.

The following result provides an important equivalent characterization of the above algorithm in terms of knowing

the extreme points of the achievable rate regionC. This fact is the basis for the throughput-optimality property of

the algorithm, shown by Theorem 3.

Lemma 4:Let E be the (finite) set of extreme points for the achievable rate regionC. If subsetδ is chosen in

Step 1of Algorithm 1 at timet, then

R(δ) ∩ arg max
v∈E

〈v,Q(t)〉 6= ∅.

That is, the algorithm selects any subset whose rate region contains an extreme point maximizing the inner

product〈x,Q(t)〉 over allx ∈ E and hence a point maximizing〈y,Q(t)〉 over all y ∈ C. Refer to Appendix C for

the proof of Lemma 4.

The chief result in this section is the following theorem, which says that the scheduling policy defined above is

throughput-optimal for scheduling with partial channel-state information.

Theorem 3:Algorithm 1 makes the system stable if the vector of arrival rates lies in the achievable region.

The proof of stability uses fluid limit machinery. Roughly, by scaling and “compressing” time and concurrently

scaling down the magnitude of the queue length process, the discrete and random queue length process “looks

like” a deterministic fluid process which is driven by a (vector) constant rate fluid arrival process (the components

corresponding to the mean arrival rates to each of the users), and whose service rate corresponds to the “average”

service rate under the scheduling algorithm. For the systemwe are considering, showing that such a limiting fluid

queue length trajectory has negative drift is sufficient to prove that the discrete-time stochastic queue length process

is stable (positive recurrent) [23], [2], [24].

The full technical details are deferred to the Appendix, andhere we give only the key Lyapunov function idea

for proving negative drift. Unlike the proof used for Theorem 3 of [2], here we face the additional difficulty of

assuring that we pick the correct observation subsetδ ∈ O, in addition to picking the correct queue to serve inδ.
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We show that maximizing the negative drift of our Lyapunov function is exactly the problem of maximizing the

inner product〈y,Q(t)〉 over all y ∈ C. If we pick the “wrong” subset, then maximizing the linear function above

becomes impossible. To side-step this problem, we rely on Lemma 4, which guarantees that the chosen subset will

indeed be one with an extreme point maximizing the linear function.

We use the quadratic Lyapunov function

L1(y) =
1

2

N
∑

i=1

y2
i (5)

for a vectory = (y1, . . . , yN). Let q(t) denote a fluid limit of the queue-length process. The following property

establishes negative drift, and (as in [2]) along with a result from [23] implies Theorem 3.

Lemma 5:Consider a feasible system operating under Algorithm 1 as the scheduling discipline. For anyδ1 > 0,

there existsδ2 > 0 such that the following holds. With probability 1, a limiting set of functions defining the fluid

limit satisfies the following property at any regular point t:

L1(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2 < 0.

The proof relies on Lemma 4, and can be found in Appendix D-A.

V. THE MAX -SUM-QUEUE ALGORITHM

The throughput-optimal scheduling algorithm in the previous section requires knowledge of both the instantaneous

queue lengths and marginal statistics of the channel. In this section, we present a ‘simpler’ scheduling policy which

only uses queue-length information to pick the subset to observe:

Algorithm 2 (Max-Sum-Queue):

At each time slott,

• Step 1: Select a setδ ∈ O, given by

δ = arg max
α∈O

∑

i∈α

Q2
i (t),

whereQi(t) denotes the length of theith queue at the beginning of time slott.

• Step 2: Let the observed sub-state ofδ be s ∈ Lδ. Schedule channelj ∈ δ using theMax-Weightrule, i.e.

j = argmax
i∈δ

Qi(t)µ
s,δ
i .

Note: A suitable rule to break ties in each case is assumed.

In this section we show that theMax-Sum-Queuealgorithm is throughput-optimal in two cases of interest: (i)

when the subsets inO are disjoint; and (ii) when the channel is symmetric in the users. In the next section, we

prove by example thatMax-Sum-Queueis not throughput-optimal in general.
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A. Max-Sum-Queue for disjoint subsets

The following result shows that when the collection of observable subsets is mutually disjoint, Max-Sum-Queue

is throughput-optimal.

Theorem 4:Under the assumption that every pair of maximal observable subsets is disjoint, the Max-Sum-Queue

scheduling algorithm makes the system stable if the vector of arrival rates lies in the achievable region.

To prove Theorem 4, we follow a similar route as in the previous section, defining fluid limits and proving that

a suitably defined Lyapunov function has negative drift. TheLyapunov function we use here is

L2(y) = max
β∈O

hβ(y),

where

hβ(y) =
1

2

∑

i∈β

y2
i .

The following key lemma is used to establish the negative drift of the Lyapunov function, and is the analog of

Lemma 5.

Lemma 6:Consider a feasible system operating under the Max-Sum-Queue scheduling discipline. For anyδ1 > 0,

there existsδ2 > 0 such that the following holds. With probability 1, a limiting set of functions defining the fluid

limit satisfies the following additional property at any regular point t:

L2(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2.

We refer the reader to Appendix D-B for the details. There is an intuitive geometric explanation for this result. It is

based on two observations: first, due to the disjoint subset assumption and the Max-Sum-Queue algorithm, if any

queue is unstable, all queues are unstable; next, given an extreme pointxα in each setR(α), the convex hull of

those extreme points will always lie on an exposed face ofC. Note that this is not true in the general case.

B. Max-Sum-Queue for symmetric channels

It is instructive to note that the reason that the presented scheduling policies work in their respective cases is that at

any pointt ∈ [0,∞), they maximize the linear objective function〈q(t), u〉 over allu in the convex polytopeC which

represents the achievable rate region. The drift of the sum-of-squares Lyapunov function defined by (5) happens to

be precisely the difference between〈q(t), λ〉 andmaxu∈C〈q(t), u〉. This geometric interpretation allows us to prove

the useful result that Max-Sum-Queue is actually throughput-optimal for systems of symmetric channels and subsets:

Theorem 5:Consider a symmetric system, i.e., where all theN channels have an identical distribution of service

rates. Further, let the observable subsets be all subsets ofa fixed cardinalityK. For such a system, Max-Sum-Queue

is throughput-optimal.
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Proof: Let λ be the vector of arrival rates to the system ofN channels represented byS = {1, . . . , N}, such

that λ ∈ intC. As before, we consider the drift of the sum-of-squares Lyapunov function defined by (5):

d

dt
L1(q(t)) =

N
∑

i=1

qi(t)(λi − f̂i(t))

= 〈q(t), λ〉 − 〈q(t), f̂(t)〉,

where f̂(t) ≡ (f̂i(t))
N
i=1 is the instantaneous vector of service rates chosen by Max-Sum-Queue at timet in the

fluid time scale. We show that̂f(t) ∈ C maximizes the inner product〈q(t), x〉 over all x ∈ C or equivalently over

all the extreme points ofC; this establishes that the drift ofL(q(t)) is strictly negative and bounded away from

zero and hence Max-Sum-Queue is throughput-optimal.

The subsets which Max-Sum-Queue picks for scheduling att are the ones that contain the topK queues in the

system. Without loss of generality, letq1(t) ≥ q2(t) ≥ . . . ≥ qN (t), and let

A = arg max
β⊂S,|β|=K

∑

i∈β

q2i (t).

Every setα ∈ A is picked by Max-Sum-Queue in the fluid timescale, and thus has the same queue values ordered

in descending order. Further, since the channels are symmetric, every subset rate regionR(β) for β ⊂ S, |β| = K,

is identical up to a permutation of indices. It follows that the extreme points ofC maximizing〈·, q(t)〉 must lie in

the rate regionsR(α) whereα ∈ A, since only theK heaviest queues can maximize this inner product over all

permutations of extreme points.

Since these extreme points are precisely the ones picked by Max-Sum-Queue in each subset, and thatf̂(t) lies

in the convex hull of these extreme points,f̂(t) maximizes the inner product〈q(t), x〉 over all x ∈ C, and we are

done.

For an alternative view of why the Max-Sum-Queue policy works for symmetric channels, refer to Appendix E.

VI. M AX -SUM-QUEUE APPLIED TO ARBITRARY SUBSETS

In this section we show that the simpleMax-Sum-Queuescheduling algorithm is not throughput-optimal in

general. An intuitive fluid argument is presented first, followed by a formal proof.

Consider a system of three channelsc1, c2 and c3. The system assumes four possible statesS1, S2, S3 andS4

with the corresponding channel rates, expressed by (rate ofc1, rate ofc2, rate ofc3), being (100,100,2), (100,200,2),

(200,100,2) and (200,200,2) respectively. Further, each state occurs with probability14 . The maximal observable

subsets areα = {c1, c2}, β = {c2, c3} andγ = {c3, c1}, i.e., all pairs of channels. The achievable rate region for

the system is shown in Fig. 5.

Set the vector of arrival rates to beλb ≡ (λ1b, λ2b, λ3b) = (175
2 , 175

2 , 0) − ǫ(1, 1, 0) + δ(0, 0, 1), with ǫ = 1
2 and

0 < δ = 1
100 <

1
75 (shown in Fig. 5). It is easily verifiable thatλ lies in the interior of the rate region. We show that

a regular pointt ∈ [0,∞) can exist with the fluid-limit queue-length process satisfying q1(t) = q2(t) = q3(t) > 0,

and with q̇1(t) = q̇2(t) = q̇3(t) > 0. In such a case, the queue fluid levelsq1(t), q2(t) andq3(t) increase (linearly)

at a constant rate.
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λa

λ1λ3

C : (50, 125, 0)

E : (150, 0, 0)

B : (0, 150, 0)

A : (0, 100, 1)

G : (0, 0, 2)

F : (100, 0, 1)

D : (125, 50, 0)

λ2

λb

Fig. 5. Rate region for described 3-channel system

Let us hypothesize thatt is a regular point in[0,∞) satisfying the conditionq1(t) = q2(t) = q3(t) > 0. Since

all the qi(t) are equal, the system must ‘serve’ all three subsets with some timesharing probabilitiespα, pβ andpγ

which must be strictly positive. The regularity hypothesisnow impliesq̇1(t) = q̇2(t) = q̇3(t) (see [24]), and hence

⇒ λ1b − 150pγ −
175

2
pα

= λ2b − 150pβ −
175

2
pα

= λ3b − 0 = δ

⇒ pγ = pβ , and

150pβ +
175

2
pα = λ2b − δ = 86.99.

Together withpα +pβ +pγ = 1, we getpβ = pγ ≈ 0.02 andpα ≈ 0.96 which is the unique timesharing solution

between the subsetsα, β andγ. Hencet is indeed a regular point, all the queue fluid limits are equal, and increase

linearly at the same rateδ > 0.

Remarks:

1) We observe that the (mutually exclusive) conditionsq1(t) = q2(t) > q3(t) andq1(t) = q2(t) < q3(t) lead to

all the qi becoming equal within finite time. Hence the stateq1(t) = q2(t) = q3(t) is an ‘unstable attractor’

for the fluid limits in this sense.

2) For the arrival rate vectorλa = (87, 87, 0) (shown in Fig. 5), we can similarly show that starting from

q1(0) = q2(0) = q3(0) = c > 0 implies thatq1(t) = q2(t) = q3(t) = c at all timest ∈ [0,∞).

Next, as a consequence of the linear growth, we show that the Markov chain describing the state of the system is

transient, which implies that all the queues grow without bound almost surely. This is accomplished by demonstrating

two crucial properties -

• With high probability the aggregate state of the system of channels is distributed according to the invariant

distributionπ of the Markov chain describing its evolution, and
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• Whenever the channel states are typically distributed thus, the smallest queue always grows with a rate bounded

away from zero.

Theorem 6:The three-channel system considered is unstable under the Max-Sum-Queue scheduling policy.

Furthermore, the Markov chain describing the evolution of its state is transient.

The proof is deferred to Appendix F.

VII. C ONCLUSIONS ANDFUTURE WORK

The Max-Weightrule is a striking example of a simple feedback based scheduling policy that is throughput-

optimal. Likewise, with partial channel state information, the algorithm we presented which uses queue lengths and

expected channel states is throughput-optimal. Under constraints like disjoint set observations or symmetric channels,

just looking at the heaviest queues suffices for stability. Both the scheduling algorithms we studied for the partial

information case can be viewed as extensions of Max-Weight,which inherit its property of throughput-optimality.

Possible directions for future work include extensions to network-wide scheduling with partial observability of

channels. Can the presented scheduling policies be extended to network-wide policies as withMax-Weightand the

Back Pressure algorithm [25]?

Another line of research would be to study what happens when the channel is correlated across time and when the

scheduler is allowed to use the whole past history to make service decisions. For instance, allowing the channel to be

Markovian in time leads to a Partially Observable Markov Decision Process (POMDP) problem, and it is interesting

to investigate the stability region and the existence of throughput-optimal scheduling policies. Is scheduling based

on queue lengths and expected channel states still optimal?

A different direction to pursue would be to examine the delaytails of such scheduling policies. One could also

examine the large deviations of the queue lengths arising from these policies.

APPENDIX A

PROOF OFLEMMA 3

Lemma 3:If Λ ∈ RN is achievable, thenΛ ∈ C. In particular,Λ can be achieved by a global SSS scheduling

rule parametrized by a stochastic matrixφ of the form

φ =
∑

α∈O

pαφ
α,

whereφα are stochastic matrices as described above, andpα is a probability distribution on the maximal observable

subsets,O.

Proof: Let Λ = (λ1, . . . , λN ) be supported under the scheduling policyP = (G,H). Note that for a maximal

observable subsetα, the SSS matrixφα introduced earlier corresponds to a global SSS matrixφ where for a row

m of φ, i.e. a global system statel ∈ L, columns representing channels inα take the same values as the sub-state

of α induced byl. Other columns are identically zero. Henceforth, by the matrix φα we will mean the (global)

SSS matrix obtained by such an embedding procedure.
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Since the discrete-time Markov chainS representing the evolution of the system is assumed to be ergodic under

the policyP , let pα denote the long term fraction of time in which the maximal observable subsetα is chosen in

the first scheduling stage, with
∑

α∈O pα = 1. Due to the nature of the mapG and the fact that the channel-state

process isiid across time slots, we can write

φli =
∑

α∈O

pαφ
α
li

whereφli represents the probability with which channelci is picked for scheduling in the global system statel.

Accordingly, the service rate seen by channelci can be written as

λi =
∑

l∈L

πlµl
iφli

⇒ λi =
∑

l∈L

πlµl
i

∑

α∈O

pαφ
α
li

=
∑

α∈O

pα

∑

l∈L

πlµl
iφ

α
li

=
∑

α∈O

pα

∑

l=(l1,l2)∈L

π(l1,l2)µ
(l1,l2)
i φα

(l1,l2)i

wherel ∈ L is written (with respect to the maximal observable subsetα) as the pair(l1.l2) with l1 denoting the

sub-state ofα and l2 the sub-state ofαC = C − α. We note that ifci /∈ α thenφα
(l1,l2)i

= 0, and if ci ∈ α then

φα
(l1,l2)i

= φα
l1i which is independent of the sub-statel2 of αC . Also, whenci ∈ α, we denoteµ(l1,l2)

i by µl1,α
i , the

rate of channelci in α. For α ⊂ C, we letLα denote the set of all possible sub-states ofα. Hence we have

λi =
∑

{α∈O:i∈α}

pα

∑

l1∈Lα

∑

l2∈L
αC

π(l1,l2)µl1,α
i φα

l1i

=
∑

{α∈O:i∈α}

pα







∑

l1∈Lα





∑

l2∈L
αC

π(l1,l2)



µl1,α
i φα

l1i







(6)

The quantity in square brackets is just the probabilityπl1,α of the maximal observable subsetα being in sub-state

l1, hence the expression in curly brackets can be labelledλα
i : the service rate to channelci when only subsetα is

being observed. Hence,

λi =
∑

{α∈O:i∈α}

pαλ
α
i

⇒ Λ =
∑

{α∈O:i∈α}

pαΛα
i

whereΛα = (λα
1 , . . . , λ

α
N ) (λα

j = 0 if cj /∈ α). Notice thatΛα is achievable using the trivial distribution onα and

the SSS rule(φα
l1i : l1 ∈ Lα, ci ∈ α), henceΛα ∈ R(α). ThereforeΛ ∈ C.

APPENDIX B

PROOF OFTHEOREM 2

Theorem 2:Consider a maximal global SSS rule associated with SSS rules{φ∗α : α ∈ O} and a distribution
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{p∗α : α ∈ O} over subsets. Then, there exists a set of strictly positive constantsνi, i = 1, . . . , N such that for any

l, i andα,

p∗α > 0, φ∗α
li > 0 ⇒ i ∈ arg max

j∈α
νjµ

l,α
j , and (7)

p∗α > 0 ⇒ α ∈ arg max
β∈O

∑

l∈Lβ

πl,β(max
j∈β

νjµ
l,β
j ). (8)

For proving Theorem 2, we use the following lemma to first characterize what is meant by a vector of rates

being maximal in the rate region.

Lemma 7:For a maximal global SSS rule corresponding to the vectorv = (vi)
N
i=1 ∈ C of service rates, there

exist positive constantsν1, . . . , νN such thatv solvesmaxu∈C

∑N
i=1 νiui.

Proof: Let {e1, . . . , eM} be all the extreme points ofC, with v =
∑M

j=1 pjej and
∑M

j=1 pj = 1, pj ≥ 0

j = 1, . . . ,M . Consider the following linear program:

max
Λ,{qj}

Λ

subject to

M
∑

j=1

qjeji ≥ Λvi, ∀i = 1, . . . , N, (9)

M
∑

j=1

qj = 1, 0 ≤ qj ≤ 1, ∀j = 1, . . . ,M.

whereeji denotes thei-th coordinate ofej . We know thatΛ = 1 and{qj} = {pj} solve this linear program with

constraints (9) satisfied as equalities. Then, by the Kuhn-Tucker theorem [26], there exists a set of non-negative

Lagrange multipliersν0, . . . , νN such thatΛ = 1 and{qj} = {pj} also solve the following linear program (with

the same value of the maximum):

max
Λ,{qj}

ν0Λ +

N
∑

i=1

νi





M
∑

j=1

qjeji − Λvi



 (10)

subject to

M
∑

j=1

qj = 1, 0 ≤ qj ≤ 1, ∀j = 1, . . . ,M.

We note that everyνi must be strictly positive owing to the tightness in (9), andν0 = 1. Rewriting (10), we get

that {qj} = {pj} maximizes

N
∑

i=1

αi

M
∑

j=1

qjeji

over all distributions{qj}, i.e., v = (vi)
N
i=1 maximizes

∑N
i=1 νiui over all u ∈ C.
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Proof of Theorem 2:Let v∗ be the vector of long-term service rates for a maximal globalSSS rule parametrized

by the distributions{φ∗α : α ∈ O} and {p∗α : α ∈ O}. We have by Lemma 7 that there exist positive constants

ν1, . . . , νN such thatv∗ solves

max
v∈C

N
∑

i=1

νivi

= max
{pν},{φν}

N
∑

i=1

νi

∑

ν

pν

∑

l∈Lν

πl,νµl,ν
i φν

li

= max
{pν},{φν}

∑

ν

pν

∑

l∈Lν

πl,ν
N
∑

i=1

νiµ
l,ν
i φν

li. (11)

Equivalently,{pα} = {p∗α} and {φα} = {φ∗α} solves (11), and properties (7) and (8) of the theorem follow,

since otherwise the maximum in (11) would not be attained.

APPENDIX C

PROOF OFLEMMA 4

Lemma 4:Let E be the (finite) set of extreme points for the achievable rate regionC. If subsetδ is chosen in

Step 1of Algorithm 1 at timet, then

R(δ) ∩ arg max
v∈E

〈v,Q(t)〉 6= ∅.

Proof: If v ∈ C, then

〈v,Q(t)〉 =
∑

i

Qi(t)vi

=
∑

i

Qi(t)
∑

α∈O

pα

∑

l∈Lα

πl,αµl,α
i φα

li (from Theorem 1 and (2))

=
∑

α∈O

pα

∑

l∈Lα

πl,α
∑

i∈α

Qi(t)µ
l,α
i φα

li (12)

≤
∑

α∈O

pα

∑

l∈Lα

πl,α

(

max
i∈α

Qi(t)µ
l,α
i

)

≤ max
α∈O

∑

l∈Lα

πl,α

(

max
i∈α

Qi(t)µ
l,α
i

)

=
∑

l∈Lδ

πl,δ

(

max
i∈δ

Qi(t)µ
l,δ
i

)

(by hypothesis and definition of Algorithm 1).

Let k(l)
△
= argmaxi∈δ Qi(t)µ

l,δ
i , l ∈ Lδ, with ties broken according to a fixed precedence rule amongi ∈ δ.

Define a SSS ruleφ∗δ which serves only subsetδ, and for whichφ∗δ
li = i if i = k(l) and 0 otherwise,l ∈ Lδ. If
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u ≡ (u1, . . . , uN) is the vector of long term service rates forφ∗δ, then we haveu ∈ R(δ), and

〈u,Q(t)〉 =
∑

i

Qi(t)ui

=
∑

l∈Lδ

πl,δ
∑

i∈δ

Qi(t)µ
l,δ
i φ∗δ

li (following (12))

=
∑

l∈Lδ

πl,δ

(

max
i∈δ

Qi(t)µ
l,δ
i

)

(by definition ofφ∗δ).

SinceR(δ) is a convex polytope, it must contain an extreme pointw such thatmaxv∈E〈v,Q(t)〉 = 〈w,Q(t)〉 =

〈u,Q(t)〉. Thusw ∈ R(δ) ∩ arg maxv∈E〈v,Q(t)〉 which proves the lemma.

APPENDIX D

The following two appendices (D-A and D-B) are provided for completeness. The setup and proofs in these

sections are analogous to those in [2], and use the machineryof fluid limits to establish stability of Algorithm 1

and Algorithm 2 (Max-Sum-Queue).

A. Proof of Lemma 5

Lemma 5:Consider a feasible system operating under Algorithm 1 as the scheduling discipline. For anyδ1 > 0,

there existsδ2 > 0 such that the following holds. With probability 1, a limiting set of functions defining the fluid

limit satisfies the following property at any regular point t:

L1(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2 < 0.

For proving lemma 5, we set up fluid limit processes for the system dynamics, following the development in [2].

Let us define the norm of the stateS(t) as ||S(t)||
△
=
∑N

1 Qi(t). Let S(n) denote a processS with an initial

condition such that||S(n)(0)|| = n. We define the following random functions associated with the processS(n)(t).

Let F (n)
i (t) be the total number of packets to queuei that arrived by timet ≥ 0, including the packets present at

time 0; andF̂ (n)
i (t) be the number of type-i packets that were served by timet ≥ 0. So F̂ (n)

i (0) = 0 for all i. As

in [27] and [28] we ‘encode’ the initial state of the system, i.e. we extend the definition ofF (n)
i (t) to the negative

interval t ∈ [−n, 0) by assuming that the packets present in the system in its initial stateS(n)(0) arrived in the

past at some of the time instants−(n−1),−(n−2), . . . , 0, according to their delays in the stateS(0). So we have

F
(n)
i (−n) = 0 for all i andn, and

∑N
i=1 F

(n)
i (0) = n. Let C(n)

α (t) denote the total number of time slots beforet

when subsetα was chosen for scheduling. Denote byGα,(n)
l (t) the total number of time slots before timet when

the subsetα was picked and its sub-state wasl; and byĜα,(n)
li the number of time slots before timet when subset

α was picked, its observed sub-state wasl and queuei was scheduled for service.
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As in [2], consider the scaled processesf (n), f̂ (n), g(n), ĝ(n), q(n) andc(n), where

f (n) = (f
(n)
i (t), t ≥ −1, i = 1, 2, . . . , N),

f̂ (n) = (f̂
(n)
i (t), t ≥ 0, i = 1, 2, . . . , N),

g(n) = (g
α,(n)
l (t), t ≥ 0, l ∈ Lα, α ∈ O),

ĝ(n) = (ĝ
α,(n)
li (t), t ≥ 0, l ∈ Lα, α ∈ O, i = 1, 2, . . . , N),

q(n) = (q
(n)
i (t), t ≥ 0, i = 1, 2, . . . , N),

c(n) = (c(n)
α (t), t ≥ 0, α ∈ O),

and the scaling is defined as

z(n)(t)
△
=

1

n
Z(n)(nt)

for a processZ(n)(t).

The following lemma establishes convergence of these scaled processes to the corresponding fluid limit processes,

and is a variant of Lemma 1 in [2]. The fluid limit processes have desirable properties like being absolutely

continuous (and thus differentiable almost everywhere), non-decreasing and time-conserving.

Lemma 8:The following statements hold with probability 1. For any sequence of processesX(n), there exists a

subsequenceX(k), k ⊆ n, such that for eachi, 1 ≤ i ≤ N , α ∈ O and l ∈ Lα,

(f
(k)
i (t), t ≥ −1) ⇒ (fi(t), t ≥ −1)

(f
(k)
i (t), t ≥ 0) → (fi(t), t ≥ 0) u.o.c.

(f̂
(k)
i (t), t ≥ 0) → (f̂i(t), t ≥ 0) u.o.c.

(q
(k)
i (t), t ≥ 0) → (qi(t), t ≥ 0) u.o.c.

(g
α,(k)
l (t), t ≥ 0) → (gα

l (t), t ≥ 0) u.o.c.

(ĝ
α,(k)
li (t), t ≥ 0) → (ĝα

li(t), t ≥ 0) u.o.c.

(c(k)
α (t), t ≥ 0) → (cα(t), t ≥ 0) u.o.c.

where the functionsfi are non-negative non-decreasing RCLL in[−1,∞), the functionsfi, f̂i, gα
l , ĝα

li, cα are

non-negative non-decreasing Lipschitz-continuous in[0,∞), functionsqi are continuous in[0,∞), “⇒” signifies

convergence at continuity points of the limit, and “u.o.c.”means uniform convergence on compact sets, ask → ∞.

The limiting set of functions

x = (f, f̂ , g, ĝ, q, c)
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also satisfies the following properties, for alli, 1 ≤ i ≤ N , α ∈ O and l ∈ Lα:

fi(t) − fi(0) = λit, t ≥ 0,

f̂i(0) = 0,

f̂i(t) ≤ fi(t), t ≥ 0,

∑

i∈α

ĝα
li(t) = gα

l (t), t ≥ 0,

gα
l (t) = πl,αcα(t), t ≥ 0,

∑

α∈O

cα(t) = t, t ≥ 0,

for any interval[t1, t2] ⊂ [0,∞),

f̂i(t2) − f̂i(t1) ≤
∑

α∈O

∑

l∈Lα

µl,α
i (ĝα

li(t1) − ĝα
li(t2)),

if qi(t) > 0 for t ∈ [t1, t2] ⊂ [0,∞), then

f̂i(t2) − f̂i(t1) =
∑

α∈O

∑

l∈Lα

µl,α
i (ĝα

li(t1) − ĝα
li(t2)).

The next lemma about the fluid limit processes is a consequence of using Algorithm 1 as the scheduling rule. It

is analogous to Lemma 2 in [2] and describes the evolution of the fluid processes under Algorithm 1.

Lemma 9:Consider a system operating with Algorithm 1 as the scheduling discipline. With probability 1, the

fluid limit processes satisfy the following properties:

1) If

µl,α
i qi(t) < max

j
µl,α

j qj(t)

for some regular pointt ≥ 0, for somei, l andα, then

ĝ
′α
li (t) = 0.

2) If
∑

l∈Lη

πl,η

(

max
i∈η

qi(t)µ
l,η
i

)

< max
α∈O

∑

l∈Lα

πl,α

(

max
i∈α

qi(t)µ
l,α
i

)

for some regular pointt ≥ 0, for someη, then

c′η(t) = 0.

Proof of Lemma 5: Since the system is assumed to be feasible, its rate vector isa convex combination of

feasible rate vectors of its maximal observable subsets, byLemma 3. Hence there must exist a fixed distribution

{pα}α∈O together with subset SSS rules{φα}α∈O such that, using Theorem 1 of [2] and (6), we have

λi < vi({pα}, {φ
α}) :=

∑

α∈O

pα

∑

l∈Lα

πl,αµl,α
i φα

li.
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For any regulart ≥ 0 such thatL1(q(t)) > 0, the derivative ofL1(q(t)) can be written as follows:

d

dt
L(q(t)) =

N
∑

i=1

qi(t)(λi − f̂ ′
i(t))

=

N
∑

i=1

qi(t)(λi − vi({pα}, {φ
α})) +K({pα}, {φ

α}, q(t)) −K({c′α(t)}, {φ̂α}, q(t)), (13)

where we use the notation

K({rα}, {ψ
α}, y) ≡

∑

i

yi

∑

α

rα
∑

l∈Lα

πl,αµl,α
i ψα

li,

φ̂α
li ≡

ĝ
′α
li (t)

πl,αc′α(t)
,

and we use the fact, following from properties of the fluid limits, that

f̂ ′
i(t) =

∑

α∈O

∑

l∈Lα

µl,α
i ĝ

′α
li (t).

We can always chooseδ3 > 0 such thatL(y) ≥ δ1 implies maxi yi ≥ δ3. Then the first sum in (13) is bounded

as follows:
N
∑

i=1

qi(t)(λi − vi({pα}, {φ
α})) ≤ −δ3 min

i
(vi({pα}, {φ

α}) − λi) ≡ −δ2.

It remains to show that

K({pα}, {φ
α}, q(t)) ≤ K({c′α(t)}, {φ̂α}, q(t)). (14)

Using Properties 1 & 2 of Lemma 9, we have

K({c′α(t)}, {φ̂α}, q(t)) =
∑

i

qi(t)
∑

α

c′α(t)
∑

l∈Lα

πl,αµl,α
i φ̂α

li

=
∑

α

c′α(t)
∑

l∈Lα

πl,α
∑

i

qi(t)µ
l,α
i φ̂α

li

= max
α

∑

l∈Lα

πl,α
(

max
i
qi(t)µ

l,α
i

)

= max
α

∑

l∈Lα

πl,α
∑

i

qi(t)µ
l,α
i φ̂α

li

≥
∑

α

pα

∑

l∈Lα

πl,α
(

max
i
qi(t)µ

l,α
i

)

≥
∑

α

pα

∑

l∈Lα

πl,α
∑

i

qi(t)µ
l,α
i φα

li

= K({pα}, {φ
α}, q(t)).

This proves Lemma 5.
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B. Proof of Lemma 6

Lemma 6:Consider a feasible system with disjoint observable subsets operating under the Max-Sum-Queue

scheduling discipline. For anyδ1 > 0, there existsδ2 > 0 such that the following holds. With probability 1, a

limiting set of functions defining the fluid limit satisfies the following additional property at any regular point t:

L2(q(t)) ≥ δ1 ⇒
d

dt
L(q(t)) ≤ −δ2.

Towards the proof of Lemma 6, we have the following lemma - again an analog of Lemma 2 in [2] - using the

Lyapunov functionL2(·), where

L2(y) = max
β∈O

hβ(y),

with

hβ(y) =
1

2

∑

i∈β

y2
i .

Lemma 10:Consider a system with disjoint observable subsets operating with Max-Sum-Queue as the scheduling

discipline. With probability 1, the fluid limit processes satisfy the following properties:

1) If

µl.α
i qi(t) < max

j
µl,α

j qj(t)

for some regular pointt ≥ 0, for somei, l andα, then

ĝ
′α
li (t) = 0.

2) If

hη(q(t)) < max
α∈O

hα(q(t))

for some regular pointt ≥ 0, for someη, then

c′η(t) = 0.

Proof of Lemma 6: Let argmaxα∈O hα(q(t)) be comprised ofβ1, . . . , βm with eachβi ∈ O, whereβ1

is chosen by a fixed precedence rule among subsets inO; thus L2(q(t)) = 1
2

∑

i∈β1
q2i (t). For a regular point

t ∈ [0,∞), we have
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d

dt
L2(q(t)) =

d

dt
hβ1(t) =

∑

i∈β1

qi(t)(λi − f̂ ′
i(t)) (15)

=
∑

i∈β1

qi(t)



λi −
∑

l∈Lβ1

µl,β1

i ĝ
′α
li (t)





=
∑

i∈β1

qi(t)λi − c′β1
(t)

∑

l∈Lβ1

πl,β1

∑

i∈β1

qi(t)µ
l,β1

i φ̂β1

li

=
∑

i∈β1

qi(t)λi − c′β1
(t)

∑

l∈Lβ1

πl,β1(max
i
qi(t)µ

l,β1

i )

=
∑

i∈β1

qi(t)λi − c′β1
(t)Kβ1(q(t))

= 〈q(t), λ〉β1 − c′β1
(t)Kβ1(q(t)) = w, say. (16)

whereφ̂α
li

△
=

ĝ
′α
li (t)

πl,αc′α(t) ,Kα(y)
△
=
∑

l∈Lα
πl,α

(

maxi∈α yiµ
l,α
i

)

for α ∈ O, 〈x, y〉α :=
∑

i∈α xiyi, and
∑m

j=1 c
′
βj

(t) =

1. More generally, as a result of the above, we have

d

dt
hβj

(t) = 〈q(t), λ〉βj
− c′βj

(t)Kβj
(q(t)) ∀j = 1, . . . ,m. (17)

Sincet is a regular point, we have, using (17),

d

dt
hβj

(q(t)) =
d

dt
hβ1(q(t)), ∀j = 1, . . . ,m

⇒ 〈q(t), λ〉βj
− c′βj

(t)Kβj
(q(t)) = 〈q(t), λ〉β1 − c′β1

(t)Kβ1(q(t)) ∀j = 1, . . . ,m.

Define

q̃i(t) :=
qi(t)

Kβj
(q(t))

if i ∈ βj for somej, and 0 otherwise,

and let q̃(t) := (q̃1(t), . . . , q̃N (t)). q̃(t) is well-defined since a queuei belongs to at most one of the (disjoint)βj .

Consider

〈q̃(t), f̂ ′(t)〉 =
m
∑

j=1

〈q̃(t), f̂ ′(t)〉βj

=
m
∑

j=1

∑

i∈βj

q̃i(t)f̂
′
i(t)

=
m
∑

j=1

[Kβj
(q(t))]−1

∑

i∈βj

qi(t)f̂
′
i(t)

=
m
∑

j=1

[Kβj
(q(t))]−1c′βj

(t)Kβj
(q(t)) (using (15)-(16))

=
m
∑

j=1

c′βj
(t) = 1.
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Note that due to Step 2 of the Max-Sum-Queue policy,f̂ ′(t)|βj
maximizes〈q(t), x〉βj

over allx ∈ C. Hence by

the above we have that̂f ′(t) maximizes〈q̃(t), x〉∪jβj
over allx ∈ C. Sinceλ lies in the interior ofC, there exists

ǫ > 0 such that

〈q̃(t), λ〉 − 〈q̃(t), f̂(t)〉 ≤ −ǫ.

⇒ 〈q̃(t), λ〉 −
m
∑

j=1

c′βj
(t) ≤ −ǫ

⇒
m
∑

j=1

〈q̃(t), λ〉βj
−

m
∑

j=1

c′βj
(t) ≤ −ǫ

⇒
m
∑

j=1

〈q(t), λ〉βj

Kβj
(q(t))

−
m
∑

j=1

c′βj
(t) ≤ −ǫ

⇒
m
∑

j=1

(

〈q(t), λ〉βj
− c′βj

(t)Kβj
(q(t))

Kβj
(q(t))

)

≤ −ǫ

⇒ w

m
∑

j=1

K−1
βj

(q(t)) ≤ −ǫ.

∴ w ≤ −ǫ





m
∑

j=1

K−1
βj

(q(t))





−1

=: −δ2

wheneverL(q(t)) ≥ δ1, since
[

∑m
j=1K

−1
βj

(q(t))
]−1

is monotone increasing inq(t).

This establishes the strictly negative drift and concludesthe proof.

APPENDIX E

PROOF OFTHEOREM 5

Theorem 5:Consider a symmetric system, i.e., where all theN channels have an identical distribution of service

rates. Further, let the observable subsets be all subsets ofa fixed cardinalityK. For such a system, Max-Sum-Queue

is throughput-optimal.

Proof: We show that Max-Sum-Queue is equivalent to the throughput-optimal rule defined in Section 4 for a

symmetric system. The throughput-optimal algorithm picksa subsetγ ∈ O such that

γ ∈ arg max
α∈O

∑

l∈Lα

πl,α

(

max
i∈α

Qi(t)µ
l,α
i

)

, (18)

while Max-Sum-Queue picks a subsetδ ∈ O such that

δ ∈ argmax
α∈O

∑

i∈α

Q2
i (t)

i.e. δ contains the topK queues at timet. We claim thatδ belongs to the set in the right hand side of (18). For if

not, there exists a subsetη 6= δ such thatη does not contain the topK queues and
∑

l∈Lη

πl,η

(

max
i∈η

Qi(t)µ
l,η
i

)

>
∑

l∈Lδ

πl,δ

(

max
j∈δ

Qj(t)µ
l,δ
j

)
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Assume without loss of generality that the queues{Qi}i∈η and{Qj}j∈δ are ordered in descending order within

subsetsη and δ respectively. Since the system is symmetric, each subset sees identical sub-states with identical

distributions on them, so we can assume thatLη andLδ are also identical, alongwith the corresponding sets of

πl,η andπl,δ. Hence we have

∑

l∈Lη

πl,η

[(

max
i∈η

Qi(t)µ
l,η
i

)

−

(

max
j∈δ

Qj(t)µ
l,δ
j

)]

> 0

which is a contradiction as each queue inδ is at least as large as its corresponding queue inη. This proves the

theorem.

APPENDIX F

PROOF OFTHEOREM 6

Theorem 6:The three-channel system considered in Section VI is unstable under the Max-Sum-Queue scheduling

policy. Furthermore, the Markov chain describing the evolution of its state is transient.

We will need technical preliminaries similar to [29] to prove Theorem 6. As stated earlier, fix the vector of arrival

rates to beλ = (87, 87, 0.01). For eachn we split the nonnegative real line[0,∞) into equal contiguous intervals

of sizenT each. Let thek-th interval[(k− 1)nT, knT ) be denoted byCk. We divide every interval uniformly into

Pn
T

△
= nT/n1/4 equal contiguous sub-intervals of sizen1/4. Define:

• Ai,n,k
j : Number of arrivals from flowj in the i-th sub-interval of thek-th interval, i.e. in[(k − 1)nT + (i−

1)n1/4, (k − 1)nT + in1/4), and

• Bi,n,k
m : Number of time slots that the channel is in statem in the i-th sub-interval of thek-th interval, i.e. in

[(k − 1)nT + (i− 1)n1/4, (k − 1)nT + in1/4).

We define the following arrival process and channel process deviation events:

En,k
j (T, ν) =

⋃

1≤i≤P n
T

{∣

∣

∣

∣

∣

Ai,n,k
j

n
1
4

− λj

∣

∣

∣

∣

∣

> ν

}

,

Gn,k
m (T, ν) =

⋃

1≤i≤P n
T

{∣

∣

∣

∣

Bi,n,k
m

n
1
4

− πm

∣

∣

∣

∣

> ν

}

.

Note that by hypothesis, the eventsEn,k
j (T, ν) andGn,k

m (T, ν) are independent for anyn, m, j, k, T > 0 and

ν > 0. For positive integersn and k and real numbersT > 0 and ν > 0 we define the following error event,

corresponding to at least one of the channel service rates orinput flows being ‘atypical’ in its empirical distribution

in the k-th time interval:

Fn,k(T, ν) =





⋃

j

En,k
j (T, ν)





⋃

(

⋃

m

Gn,k
m (T, ν)

)

.

The following lemma upper-bounds the probability of this error event:
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Lemma 11:Fix T > 0, ν > 0 and ǫ > 0. Then, there existsn0 = n0(T, ν, ǫ) > 0 such that for alln > n0, for

any fixed positive integerk, and uniformly overa1, . . . , a(k−1)nT−1, we have

P
(

Fn,k(T, ν)
∣

∣A(1) = a1, . . . , A((k − 1)nT − 1) = a(k−1)nT−1

)

< ǫ.

Proof: Since by hypothesis there are only finitely many channels andaggregate channel states, it suffices to

show that

P
(

En,k
j (T, ν)|A(1) = a1, . . . , A((k − 1)nT − 1) = a(k−1)nT−1

)

< ǫ (19)

and

P
(

Gn,k
m (T, ν)|A(1) = a1, . . . , A((k − 1)nT − 1) = a(k−1)nT−1

)

< ǫ (20)

for all k, j andm, andn large enough.

By Theorem 3.1.2 in [30], sinceAi is a finite-state irreducible discrete-time Markov chain for every i, the

empirical meanAi,n,k
j /n

1
4 obeys a large deviations principle with a convex, good rate function. This means that

Ai,n,k
j /n

1
4 → λj in probability for everyj at a uniformly exponential rate. There are only a polynomial(Tn

3
4 )

number of sub-intervals in every interval of sizenT , hence (19) follows. (20) is obtained in a similar manner since

by Cramér’s Theorem [30], the empirical mean ofiid random variables obeys a large deviations principle with a

convex, good rate function.

The lemma basically lets us assume that the empirical measures of the channel service rate and arrival processes

look like their true measures, with very high probability.

Let QS(k, t) denote the smallest queue length in the three queue lengthsQi(k, t), i = 1, 2, 3, at the beginning

of the t-th sub-interval in thek-th interval of time. The following lemma is crucial to the proof of instability and

describes how the queueing system behaves in a typical interval.

Lemma 12:Fix T > 0. There existsn1 ∈ Z+, ν > 0 and r > 0 such that for anyk ∈ Z+ and n > n1,

conditioned on the fact that the eventFn,k(T, ν) has not occurred, the following happens. If

min{Q1(k, l), Q2(k, l), Q3(k, l)} > n

for somel ∈ {1, . . . , Pn
T }, then

QS(k, l + l′) −QS(k, l)

l′
≥ r ∀ l′ ∈ {1. . . . , Pn

T − l}.

This lemma essentially tells us that in any typical interval, the lowest of the three queues strictly increases with

a uniform minimum rate, provided that the queues are sufficiently large to start with.

Proof: Recall that a sub-interval consists ofn
1
4 time slots. We can chooseν > 0 to be much smaller than

all the λi. If we denote by∆ (< ∞) the maximum possible channel service rate in the system andby Λ the

maximum of the three arrival ratesλ1, λ2, λ3, the change in any queue within an interval is at mostΓn
1
4 where

Γ = |Λ + ν − ∆|. We can pickδ > 0 sufficiently small, andn ∈ Z+ sufficiently large such that this quantity is
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negligible compared to a queue length error ofδn and such that the second step of the Max-Sum-Queue policy is

immune to queue length errors of uptoδn if all queues are at least of lengthn.

Let Sδn(k, l) denote the subset of queues whose lengths are withinδn of the smallest queue lengthQL(k, l), at

the beginning of thel-th sub-interval in thek-th interval. Without loss of generality we can assume thatSδn(k, ·)

does not change froml to l′, since if otherwise we can partition the set of intervals from l to l′ into contiguous

subsets with this property and obtain the result using the uniform boundr.

The proof proceeds by considering various cases for the number of queues inSδn(k, l):

Case 1- Sδn(k, l) contains exactly one element: In this case, the single element is the unique smallest queue in

the system, and remains the unique smallest queue throughout, until sub-intervall′. Hence the only subset picked

by the first step of the Max-Sum-Queue policy is that consisting of the other two queues. Consequently this queue

is never served at all, and must increase at a rate at least(min{λ1, λ2, λ3} − ν) > 0.

Case 2- Sδn(k, l) contains exactly two elements: Here we need to consider three further subcases:

2(a) - Sδn(k, l) = {1, 2}: In such a situation only the subset{2, 3} or {1, 3} can be picked by the first step of

Max-Sum-Queue. Let us upper-bound the maximum rate at whichQ1 andQ2 together are served. If we assume

(in the best case) thatQ3 is never picked for service in the second step of Max-Sum-Queue, thenQ1 andQ2 share

the service time, and the total service rate to them is at most200(1
2 + ν) + 150(1

2 − ν) = 150 + 50ν. The service

discipline reduces to serving the longest ofQ1 andQ2.

We claim that in this time, the difference|Q1 −Q2| cannot exceed a constant amount, say10Γ, since if it did,

then there was a last previous time when the order of the queues was the same and the difference was under5Γ.

This implies that the difference grew under the longest-queue policy, a contradiction.

The total arrival rate toQ1 andQ2, however, is at least2(87− ν) = 174− 2ν, henceQ1 +Q2 increases with a

net rate of at least(174− 2ν)− (150 + 50ν) = 24− 52ν. Hence their average increases with a net rate of at least

(24− 52ν)/2 = 12− 26ν, and sinceQ1 andQ2 remain within10Γ of each other throughout andn can be chosen

large enough, the lowest queue increases with rate at least (arbitrarily close to)12 − 26ν > 0 for small enough

ν > 0.

2(b) - Sδn(k, l) = {1, 3}: Here, the only possible subsets which can be picked are{1, 2} and{2, 3}. Note that

Q3 can never be served when the first subset is picked. If the second subset is picked, sinceQ2 > Q1 always, the

only state in whichQ1 is served is when its rate is 200 andQ2’s rate is 100. HenceQ3 increases with a rate at

least0.01 − ν, while Q1 increases with a rate at least(87 − ν) − (1
4 + ν)200 = 37 − 201ν > 0 for small enough

ν > 0.

2(c) - Sδn(k, l) = {2, 3}: Similar to the previous case by symmetry.

Case 3- Sδn(k, l) contains exactly three elements: In this case, all three subsets are capable of being chosen in

the first scheduling step.Q3 is never served, hence its length increases at rate at least0.01 − ν > 0. Partition the

total time into sections where(i) Q3 is the smallest queue,(ii) Q3 is between the other two queues, and(iii) Q3

is the largest queue. For(i), the smallest queueQ3 clearly increases with rate bounded away from zero. For(ii) ,

only the subset consisting of the top two queues is picked, hence the smallest queue increases with rate at least
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87− ν > 0. For (iii) , we can use the same argument as with case2(a) to see that the smallest queue increases with

a strictly positive rate. This completes the proof.

Proof of Theorem 6:Fix anyT > 0. Lemma 12 gives usn1, ν > 0 andr > 0 such that in a typical interval

(where the interval size isnT sub-intervals withn > n1), if all queues are greater thann, then the lowest queue

always increases with a rate at leastr. LetR > 0 be the maximum possible service rate in the system (in this case

R = 200), and letK = ⌈R
r ⌉+ 1 where⌈x⌉ denotes the smallest integer at leastx. Chooseǫ ∈ (0, 1) small enough

so thatǫ2K < 1, and furthermore, so that

(K − 1)ǫ2K

(1 − ǫ2K)2
+

2ǫ2K

1 − ǫ2K
< 1. (21)

Lemma 11 now gives usn0 such that forn > n0 and anyk,

P
(

Fn,k(T, ν)
∣

∣A(1) = a1, . . . , A((k − 1)nT − 1) = a(k−1)nT−1

)

< ǫ, (22)

uniformly over alla1, . . . , a(k−1)nT−1. Fix n to be any integer greater thann0 andn1.

Using the notationQS(k, t) introduced earlier to mean the length of the smallest queue at the beginning of the

t-th time sub-interval in thek-th time interval, letX = (Xs : s = 1, 2, 3, . . .) be the random process denoting the

size of the smallest queue at the beginning of every intervalof time: Xs = QS(s, 1) ∀s = 1, 2, 3, . . . Let m be an

integer such thatm > n and let all queues start with initial statem: Q1(1, 1) = Q2(1, 1) = Q3(1, 1) = m.

Define the (time-valued) random variableτm to be the first time after starting thatX drops belowm: τm
△
=

min{s > 1 : Xs ≤ m}. We show thatP(τm <∞) < 1, implying that the smallest queue (and hence every queue)

grows without bound with a nonzero probability and establishing transience of the Markov chain describing the

evolution of the system stateS(t). We can write

P(τm <∞) =

∞
∑

l=0

P(lK ≤ τm < (l + 1)K). (23)

Let Bl be the random variable which counts the number of atypical intervals of time upto intervallK:

Bl
△
=

lK
∑

s=1

χF n,s(T,ν).

We claim thatlK ≤ τm < (l + 1)K implies Bl+1 ≥ l, for otherwiseBl+1 < l, and by Lemma 12, for

lK ≤ t < (l + 1)K, we have

Xt ≥ m+ [t−Bl+1]rnT −Bl+1RnT

≥ m+ [lK −Bl+1]rnT −Bl+1RnT

= m+ nT [lKr−Bl+1(r +R)]

> m+ lnT [(K − 1)r −R]

≥ m,

a contradiction tolK ≤ τm < (l + 1)K.
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From (23), we can write

P(τm <∞) ≤
∞
∑

l=1

P(Bl ≥ l − 1)

=

∞
∑

l=1

lK
∑

l′=l−1

P(Bl = l′)

(a)

≤
∞
∑

l=1

lK
∑

l′=l−1

(

lK

l′

)

ǫl
′

≤
∞
∑

l=1

lK
∑

l′=l−1

2lKǫl

=
∞
∑

l=1

((K − 1)l + 2)(ǫ2K)l

= (K − 1)

∞
∑

l=1

l(ǫ2K)l + 2

∞
∑

l=1

(ǫ2K)l

=
(K − 1)ǫ2K

(1 − ǫ2K)2
+

2ǫ2K

1 − ǫ2K

(b)
< 1.

Here(a) is by applying (22) to

P(Bl = l′) = P

(

lK
∑

s=1

χF n,s(T,ν) = l′

)

=
∑

1≤i1<···<il′≤lK

P
(

χF n,i1(T,ν) = 1, . . . , χF n,i
l′ (T,ν) = 1, χF n,i(T,ν) = 0, i /∈ {i1, . . . , il′}

)

=
∑

1≤i1<···<il′≤lK

P
(

χF n,1(T,ν) = 0
)

P
(

χF n,2(T,ν) = 1
∣

∣χF n,1(T,ν) = 0
)

· · ·

P
(

χF n,i1(T,ν) = 1
∣

∣χF n,i1−1(T,ν) = 0, · · · , χF n,1(T,ν) = 0
)

· · ·

≤
∑

1≤i1<···<il′≤lK

ǫl
′

=

(

lK

l′

)

ǫl
′

,

and (b) follows from (21). This completes the proof.
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