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Abstract

A time-slotted queued system of multiple flows with a singégver is considered, in which each flow or channel
has exogenous arrivals, and the service rates to the flowsovar time according to a fixed distribution. In this
setting, it is assumed that not more than one channel canribiEest in a single time slot. Unlike much recent
work on this problem, attention is drawn to the case wheres#dreer can obtain onlpartial informationabout the
instantaneous state of the channel (e.g., due to limitedbfegk capabilities). In each time slot, the server is albwe
to specify a single subset of flows from a collection aifservablesubsets (e.g., all subsets of a particular size),
observe the current service rates for that subset and sudrsihyy pick a flow to serve.

A precise characterization of the stability region for sachystem is provided. An online scheduling algorithm
is presented, that uses information about marginal digtdbs to pick the subset and tivax-Weightrule to pick a
flow within the subset, and which is provably throughputimjat. In the case where the observable subsets are all
disjoint, or where the subsets and channel statistics arengyric, it is shown that a simple scheduling algorithm
- Max-Sum-Queue that essentially picks subsets having the largest sqtmnedof queues, followed by picking
a flow using Max-Weight within the subset, is throughputiopd. However, it is demonstrated that under more
general conditions on the observable subsets and chamtistiss, the simpler Max-Sum-Queue algorithm may not

be throughput-optimal.

I. INTRODUCTION

There has been much recent interest in scheduling overesgealellular networks where channel state information
is available at the base-station [2], [3], [4]. A canonigatem consists of a base-station (the server) and a coltecti
of mobile users (the queues). Time is slotted (typicallyhaf order of a millisecond), like in the high-speed WIMAX
[5], Ultra Mobile Broadband (UMB), GSM-based HSDPA and 1xB®@ communications technologies. In each
time-slot, the channel state, i.e., the channel qualithsag& SINR or data rate that can be sustained over the time-

slot to the mobile, is potentially available via a feedbadlarmel from the mobile terminals to the base-station.
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Based on the load (packets queued at the base-station) laaswkke channel state, the base-station schedules users
for channel access at each time-slot.

As the capacity of the wireless system increases, growimgbeus of users will be connected to the base-station
at any given time. As a result, schemes wherein all usersrrdrchannel state feedback to the base-station may
become untenable, due to feedback bandwidth constraims.approach to mitigate this problem is for the base-
station to request channel state information from a (snsaib)-collection of users and make scheduling decisions
based on this partial channel state information. Our goa&b isnderstand how the base-station can intelligently
decide which subsets of the users to sample to obtain pahéinel state information, and how to schedule users
based on this information. Furthermore, we are interesteanderstanding how this partial information degrades
the stability region, i.e., what is the effect of partialanfnation on the capacity of a wireless network.

We characterize the exact stability region given any sebstovable subsets, and we provide an algorithm that is
throughput-optimal. Unlike the full-information case @died in e.g., [2] that requires no distributional infornwetj
our algorithm requires knowledge of the marginals of thencleh state distribution for the observable subsets.
For the special case of symmetric flows, we provide a simpierughput-optimal algorithm that requires no such
information. We further show that the reduction in the digbregion is due precisely to the inability to observe
the full instantaneous state, as opposed to failure to whiai full joint distribution of the channel state. Indeed we
show that knowledge of the full distribution may not yieldaader stability region, unless the observable subsets

themselves are enlarged.

A. Main Contributions

We consider a base-station system senfihgsers and channels, with each user generating data, andhaitimels
which have an arbitrary joint distribution over a finite st&pace (the channel is assumed to be independent across
time but not across users), and the semvetr havingknowledge of the channel joint distribution.

In each time-slot, the base-station is allowed to acquiennokl state from one among a predefined collection
of subsets of channels. For example, in a ten-user systentotistraint could be that we can acquire channel state
from at most three users per time-slot (we note, though,dbatnain results are competely general with respect to
the structure of the observable subset collection). We dfenth refer to this as a system with partial channel-state
information.

The scheduling task at each time-slot is to first determieestibset of channels for which channel state will be
acquired and then determine a single user to schedule frahinwthis subset. In this paper, we characterize the
stability region for this multi-user system, and develogoaithms that achieve the full stability region. Specifigal

the main contributions in this paper are as follows.

1At each time-slot, the complete channel state &7 alimensional vector, with the-th component of the vector corresponding to the data
rate that can be sustained to thth mobile user over the time-slot if this user is chosen keygbheduler. Correspondingly, the partial channel

state corresponds to a sub-vector of thisdimensional vector.
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1) We derive the stability region for a system withusers and an arbitrary collection of observable subsets (i.

a collection of subsets of users for which the channel st@tebe simultaneously acquired), and for any joint
channel distribution across users where channel realizmtare independent and identically distributed over
time. The stability region corresponds to the set of arnaéts that can be sustained such that the queues at
the base-station are stable (positive recurrent).

We demonstrate that the stability region with partial chemnstate information can be described by the
convex hull of “local” stability regions for the observahlser subsets. These local regions are completely
characterized by a simple class of scheduling policies conyncalled Static Split Service ruleg.qg., [2]).

A numerical example is presented that illustrates the dizsdien in the stability region as the amount of
channel state information decreases (i.e., when thereearer fsimultaneously observable channels).

2) The characterization of the stability region shows thist completely determined by just the marginal statistics
of the aggregate channel over observable subsets. It a@sis ® the important counterintuitive result that
additional information about the joint distribution of tohannel state, even if provided to the scheduler at all
times, cannot help increase throughput. In other wordsgdéwggadation of the stability region is precisely due
to the lack of capability to observe channel state, as ogptséack of knowledge about how the channel
state is distributed.

3) Next, we develop a queue-length based “online” schedyliwlicy that uses queue-length information along
with knowledge of subset-marginal distributions, and wahie throughput-optimal, i.e., the policy attains all
rate points within the stability region. The policy consisf two stages: In each time sl¢s) the base-station
first determines the subset of channel measurements toveb3dnis is done using thexpectedates over the
observable subsets weighted by #wtual queue lengths at the base-station; éojwithin the chosen subset,
the policy uses thdMax-Weightrule [6], [2] which uses the product of tteectual channel rate (received from
the mobile in the chosen subset) and #wtual queue-length to make the scheduling decision.

4) We develop a simpler online policy (thdax-Sum-Queue ru)ehat requires no distributional information. In
the first stage, this policy determines the subset of userserhby only the queue lengths and does not use the
expected channel rates. The Max-Sum-Queue policy chobaesubset over which the sum of the squares of
the queue-lengths is largest. The second stage is the sane¢oss, namely, the Max-Weight policy restricted
to the chosen subset. We show that if the observable subrsadgsgint or the observable subsets and channels
are symmetric, this policy is throughput-optimal. Finallye provide an example to show that in general this
policy is not throughput optimal if the symmetric-chaniaeld-observable-subsets/disjoint-observable-subsets

condition is not met.

B. Related Work

There has been much work in developing scheduling algostifion down-link wireless systems for various
performance metrics that include stability, utility maxmation and probabilistic delay guarantees [6], [7], [8],

[9], [10], [11], [12], [13]. However, the above studies panly focus on the case where complete channel state
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information is available at the base-station, and thusidengproblems orthogonal to the main issues in this paper.

In the context of partial channel information, related wamnkludes that of [14] where the authors study the
problem of a server (terminal) accessingtime varying channels which are independent across usetgime
(e.g., a multi-channel MAC). The server has a cost for (setially) probing channels, with a channel dependent
probing cost, and gains a reward which depends on the usetheng@robed state, if a packet is transmitted
successfully. The authors formulate the problem of miningzhe expected cost (probing cost minus reward for
transmissions) where the cost functions and the channbbpilities are known to the server. They further develop
constant factor (within the optimal cost) approximatiogalthms that operate in polynomial time for both the
saturated data case, as well as when the user (terminaljages@ackets according to a Markov chain. The authors
in [15], [16] have earlier considered the special cases widfhal probing costs and identically distributed channels.
Recent results in this context also include [17] where thtb@ng develop structural properties of the optimal probing
strategy using a dynamic programming approach.

For systems with channels that are independent acrossarsrgith infinitely backlogged data at the base-station,
there has been work considering limited feedback from theil@aisers to the base-station. In these studies, the
mobiles use thresholds to determine if their channel quait’good enough,” and if so, send their channel state
information to the base-station [18], [19], [20], [21], [R2

The work in this paper is, to the best of our knowledge, the fwsconsider characterizing stability of these
wireless networks under partial information regimes, whabtaining corresponding throughput optimal efficient
algorithms. In particular, the work here differs signifitdgirfrom the previous work described above in the sense of
investigating stability in the presence of partial charstate information. Also, we emphasize the need for efficient

scheduling rules based on feedback received via queuenlémigrmation.

Il. SYSTEM MODEL AND DEFINITIONS

Throughout the paper, we assume a common probability sacé, P) which supports all random variables
and random processes. Consider a time-slotted modéV of oo users serviced by a single server acréés
unidirectional communication channels,,...,cx} 2 C. An integer number of data packets arrive at the input
of every channel at the beginning of a time slot, to be sedvizg the server. Packets get queued at the inputs of
channels if they are not immediately transmitted. We asstimaeat most one of the channels can be activated for
transmission in a single time slot.

Further, in any given time slat € {0,1,2,...}, the set of channel§' assumes atate L(t) from a finite set
of aggregate channel stat€s= {l4,...,l ¢}, with the channel state remaining constant within each sioé In
each channel statec £, every channet; € C' assumes a datgervice rateof !, i.e., a maximum oful packets
can be served from queudcorresponding to channe]) when the aggregate channel is in statelenceforth, we
identify each staté € £ with its N-dimensional vector of service ratégl) |, and treatL(¢) as a random vector
which can take any such valie

The random channel state procd;ssé_ (L(t))52, is assumed to be an independent and identically distributed
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(iid) discrete-time random process taking values from the fistiée spaceS. Forl € L, let ! 2 P(L(0) = 1).
Observe that the channel state procesalisicross time only, and can have any joint distribution acussss (i.e.,
across channels).

S (A, €

RYM. The packet arrival process; 2 (A;(t))52, at the input of each channe), i = 1,..., N, is assumed to be

Let us denote byl;(¢) the number of packets that arrive at channedt time slott, and letA(¢)

a nonnegative finite-state irreducible discrete-time Markhain in its stationary distribution. We cdll[A4;(0)] =
A > 0 the arrival rate at channel, i = 1,..., N. Each arrival process is taken to be independent of all other
processes.

Our channel observations are limited to a given collectibsubsets of” (whose union is assumed to b8 called
the collection ofobservable subsetket us denote this collection of observable subset®by {O1, 0, ...,0o}.
In the example of Section I1I-B;' is a set of three channels and the @atontains all subsets of size two. In a given
time slot, an observable subset= {c,,, ..., ¢y, } C C is said to be in aub-stateu* = (u% ,... puk ) e R™ if
L(t)n; = uﬁj, j=1,...,m. Denote byL“(t) the m-length sub-state random vector that is the projectiod @
onto coordinates, ..., n,.

Similar to the development in [2], we say that the state ofdh&tem evolves according to the random process
S = (S(t)52, where S(t) 2 (Q1(t)y..., Qn(®),Ur1(t), ..., Urg,(t), ..., Un1(t),...,Ungy(t)). Here,Q;(t)
denotes the length of the packet queue for chaanel C in time slott and U, (t) is the current delay of thg-th
packet in queué at timet.

In this regard, acheduling policyP is a pair of mapsg, H), whereg is a map from the state of the systefty)
to a fixed probability distribution on the set of observahlesetsO, and is a map which takes'(¢) restricted to
a particular observable subset, along with its sub-state,a fixed probability distribution on the channels which
comprise the subset. Such a scheduling politys applied to select a transmitting channel using two stéps.
every time slott, in the first step, we pick an observable serandomly according to the distributiofi(S(t))
after which we are able to sample the sub-state of the chdsssrwable set. Then, using the distributignon the
observable set and its sub-stdte(¢), we pick a channel for transmission from that observableTdgs scheduling
model differs from the one in [2] in that this is a two-stagegedure where the subset to be sampled in the first
step is a function of just queue information and not the imstaeous channel state.

Under a scheduling polic, the stateS is a discrete-time countable-state Markov chain which weime to
be irreducible and aperiodic. A rate vectbr= (\,...,Ax) € RY is said to besupportedby a scheduling policy
P if the Markov chainS is ergodic or positive recurrent under scheduling usihg when the arrival rates at the
inputs of channels;,...,cy areq,..., \y respectively. In other words a policy supports an arrivée rector if
the input packet queues at all channels in the system rentelilesunder the policy. Associated with each policy
P is its rate regionR(P) 2 {A € RN : A is supported byP}. Theachievable rate regiowr throughput regioror
stability regionR is then defined to be the union of the rate regions for all pdssicheduling policie®. A rate
vector A is said to beachievableif it is supported by some scheduling policy. Likewise, a setegion.4 ¢ RY

is said to be achievable if all its elements are achievablscieduling policy is said to béaroughput-optimaif
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it supports all vectors in the achievable rate region.
We wish to characterize the achievable rate region for théeahee have described. Henceforth, we shall naturally

assume that all the subsets@hare maximal with respect to set inclusion.

IlIl. THE ACHIEVABLE RATE REGION

In the first part of this section, we show two main resultsst-iwe characterize the achievable rate region for any
collection of observable subsets Next, we show that this region is attained using a spec&dscbf scheduling
policies calledStatic Split Service (SSS) rulgy. The reason they are called so is that they are indepérdahe
gueue lengths at every time slot and rely only on the chartagd $0 make randomized scheduling decisions. We
present an example in which we explicitly describe the agltike rate region for a system of three channels, under
different partial information structures. The final parttis section characterizes ‘good’ or optimal SSS schedulin

rules.

A. Description of the throughput region

Consider an observable subsete O, « = {ck,,Cky,--.,Ck,, } Whereky,... . k, € {1,...,N}. Let Q(«)
denote then-dimensional subspace & where coordinates with indices other than .. ., k,, are zero. If only
users fromo are served, then any stabilizable rate must li@ijfv). Denote this stabilizable rate region B(«).
Applying Theorem 1 in [2] to the subset we can describe the achievable rate region when anly allowed to
be picked in the first scheduling step:

Lemma 1:There exists a scheduling polidy stabilizing a rate vectoA € R(«) if and only if there exists a
stochastic matrix)® such that

Ai < v (9%) 2 Z gt Ve € a.
leLqy
Here, L, is the set of sub-states of 7" is the marginal probability of the sub—stdtanduﬁ"" is the service rate
for channele; in sub-statd.
The matrix¢p® defines an SSS rule for the subsetThe rows of¢® correspond to every sub-state @fand the
columns of¢ correspond to every channel in Whena is in the sub-staten = (uc, .- ,uckl), the SSS rule
picks channef for transmission with probability?,,.

Lemma 1 states that the stability region for scheduling gisinis the convex polytopé&(«). The following
theorem establishes that the stability region for the wisgitem is the convex hull of such polytopes.

Theorem 1:The achievable regior;, for the whole system is the convex hull of the stabilizalglgions in each
subspace&(«), for a € O:

ce conv({R(e) : v € O}).

The theorem says that any rate vector in the stability regambe supported by timesharing across observable
subsets and across users within subsets. The proof of thesthefollows from the following two lemmas which

establish matching inner and outer bounds on the re@ion
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Lemma 2:C is achievable.

Proof: For A = 325 | pa da, With 35 po, = 1, pa, > 0 andX,, € R(a;) Vi, selecting subset; in the first
step independently with probabilify,, and using the SSS rul¢*: corresponding to the vecto,,, Vi, supports
the vector\. ]

Next, we show that no more rate vectors are achievable:
Lemma 3:1f A € RY is achievable, them € C. In particular,A can be achieved by a global SSS scheduling
rule parametrized by a stochastic matgiof the form

¢ = pad® @)

acO

where¢® are stochastic matrices as described above parid a probability distribution on the maximal observable
subsetsQ.

Similar to the notion of an SSS rule for a maximal observablesst, the matrixy) above defines @lobal SSS
rule for our system. A scheduling policy implementing this gIbB&S rule selects a subsetin the first step with
probability p, and subsequently uses the subset SSS gtiléo pick a queue inv. The (long-term) service rate
such a rule provides to queuas

02 Y prf(67) = Y pa Y b, @)

ac0 acO €L

and the throughput regiahis essentially the set of alby, ..., vx) asp, andgf; range from 0 to L with~_ po =1
and)_, o7, for eacha € O, I € L, andi € a.

See Appendix A for the proof of Lemma 3.

Implications of the result:According to Theorem 1,

« The rate regioi is a function of the service rates of the channelsadginal probabilities over the observable
subsetonly, and does not explicitly depend upon the overall joir@hability distribution of all the channels.
In other words,two systems of channels with different overall joint dizitions but with identical marginal
distributions 7> on all observable subsets are indistinguishable to scheduling policies which usetipr

information, from the point of view of long-term serviceemthat can be achieved

o Suppose a scheduling policy with partial channel statermétion is aided by a ‘genie’ which furnishes the
policy with the joint probability distribution of all the @mnnel states. Theorem 1 says that thditional
joint distribution information cannot help the schedulelage the throughput regiarintuitively, being able
to observe the entire set of channel state realizations ardtlg schedule a channel allows for more global
SSS rules compared to the restricted set of SSS rules thdiecanhieved by picking a subset of channels to
observe and scheduling a channel within the subset. Thitalion on the available space of static rules in the

case of reduced instantaneous channel state informathols k® the diminishment of the throughput region.
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B. Example: Rate region for Three Symmetric Channels

In this part of the section we derive the throughput regionafeystem of three channels by applying Theorem
1. We consider three subset structures - completely obislervaairwise observable and singleton observable - and
demonstrate how the throughput region shrinks with redacdi the available partial information.

Consider a system of three chann€ls= {c1, c2, c3} in which the system can take one of eight possible states
{l1,...,ls} (Table 1), and where each of the channelsakes a rate of eithet or b (a < b) in every state. We
denote the 8 values that specify the joint distribution éfttalee channels by, mo, ..., g as shown in the table.
Further, let us assume that = 7, = --- = g = 1/8 which corresponds to aid system of channels. We compute

the throughput region for the following channel state infation structures:

1) Complete channel state informatiohet O = {{c1, c2,¢3}}, i.e. all channels are simultaneously observable.
In this caseC = R({c1, ca,c3}) whereR(a) is the set of all rate vectofs\1, Ao, A3) € R3, \; >0, A0 > 0,3 >0,
for which there exists a stochastic 3 matrix ¢ = ¢ic1:¢2:¢s} such that
G110 + P217T20 + P317m3a + - - - + Pg17eD > Aq,
P12T1a + G222 + P3am3b + - - + Pgamgh > A2, and
$13T1a + P23T2b + P33m3a + - - - + Pg3meb > Az,

With 7; = 1/8 for all 4, we get the three-dimensional throughput region shown n Ei

2) Pairwise channel state informatiori:et O = {{c1, 2}, {c2,c3}, {c3,c1}}, i.€. at most a pair of channels is

simultaneously observable. In this case,

C = con(R({c1, c2}), R({c2; c3}), R({es, c1})).

For the subsefc, c2}, there are four sub-states with corresponding réies), (a,b), (b, a) and(b, b) which we
denote by sub-states 1 through 4 respectively. The subsmighput regioriR({c1, c2}), say, is the set of all rate

vectors(\1, A2, 0) € R3, Ay > 0, Ay > 0, for which there exists a stochasticx 2 matrix ¢ = plere2} such that

d11(m1 + m2)a + ¢21(m3 + ma)a + ¢31(ms + 76)b + a1 (77 + 78)b > Ay,  and
G12(m1 + T2)a + Pa2(m3 + ma)b + P32(ms + W6 )a + Paz (w7 + 7)b > Ao.

In general, for the subsefic;,c;} = {c1,c2,c3}\{ex} with 4,5,k € {1,2,3} and 7w, = 1/8 for all n, the
orthogonal projection ofR({c;,c;}) onto the plane\, = 0 is as shown in Fig. 2. Accordingly, the throughput
regionC for the system is depicted in Fig. 3. Observe that:

« The throughput regio@ is now a function only of the marginal probabilitiés, +m2) = P(L(t)1 = a, L(t)2 =

a) etc.
« The throughput region of Fig. 3 has shrunk compared to thimmeg Fig. 1 due to the pairwise observability

constraint.
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Channel\ State | s1  s2 s3 s4 S5 Se St S8
c1 a a a a b b b b
co a a b b a a b b
c3 a b a b a b a b
State
probability T w2 W3 W4 T T Ty T8
TABLE |

PROBABILITY ASSIGNMENTS FOR THREECHANNEL SYSTEM

3) Singleton channel state informatioet O = {{c1}, {c2},{c3}}, i.e. only the state of one channel can be

observed in the first scheduling step. In this case,

C = com(R({e1}), R({e2}), R({es}))-

Each observable subset now has only two sub-states witespwnding rateg andb. The subset throughput region
R({c1}), say, is the set of all rate vectof;,0,0) € R3, A\; > 0, for which there exists a stochasficx 1 matrix
¢ = ¢le} such that

¢11(m1 + 7o + T3 + Ta)a + G21(T5 + M6 + 77 + T8)D > Ay

Using m,, = 1/8 for all n, we get thatR({c1}) is just the line segment joinin¢p, 0,0) and ((a + b)/2,0,0),
and likewise forR({c2}) andR({cs}). Thus the throughput regiah is the dotted simplex which is shown in Fig.
2. Observe that:

« The throughput regio@ is now a function only of the marginal probabilities; +mo+m3+74) = P(L(t); = a)

etc.

« The simplexC is strictly smaller than the throughput region with pairgvishannel state information, due to

the singleton observability constraint.

C. The ‘regret’ of a partial information scheduler

We have seen that the throughput region of a system withgbatiannel state information depends only on the
marginal channel state distributions over observableetsbtet a collection of observable subsets be fixed. Given
a joint channel state distribution that induces marginaisr dhe observable subsets, the set of rate vectors that
belong to the throughput region with complete channel stdtamation exclusive ofthe throughput region with
partial channel state information is a measure of how mucaragb information scheduler which ‘knows’ the joint

channel distribution would ‘regret’ not being able to oh&ethe full instantaneous channel state.

However, given only the marginals over observable subsie¢se are, in general, many joint distributions that

are conistent with the marginals. In this situation, a redtuneasure of how much a partial information scheduler
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(0,2a+1b,0)
(3,30 + La,0)

(0,36 + 1a,1b)
(%b + im ib, 0)

7 1 7
,,a+ ﬂb, ﬁa-&- ﬂb)

Ta+16,0,00 M

(0, %b, %b + ia)

(%b + lla, 0, %b)

1 1
(0.0 0.+ 2b) (1,0,3b + 1a)

A3
Fig. 1. Rate region for 3 channels with complete channeé stdbrmation
Aj

(0,0) (la+1p,00 A

Fig. 2. Rate region for 2 channets andc;, with complete channel state information

would ‘regret’ not being able to observe the full instantaune channel state is the set of rate vectors that belong
to the throughput region fogveryjoint distribution consistent with the given marginals ¢re tobservable subsets
exclusive othe throughput region with partial channel state inforwmatin other words, this ‘regret region’ is the
intersection of the throughput regions for all systems veithonsistent joint channel state distribution, excluding
the throughput region with partial channel state inforoaiver the observable subsets. In this section, we present
two examples - the first example demonstrating that the tegggon is empty and the second example showing
that the regret region can be non-empty (iay scheduling policy with complete channel state informatiam

guaranteeablysupport more rates than all policies with partial channafesinformation).

1) Consider the example of the previous section with pagveisannel state information, i.e.
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A2

(0,2a + 2b,0)
4 (36,16 + 1a,0)
(0,36 + 1a,1b) /F
! (30 + a, 1b,0)

0,0,0 1a+16,0,0
(0,0, b + 1a) (0,0,0) (ga+25,0,0) .
(%b + %a, 0, ib)

(0,0, 30 + 30) (1,0,1b + 1a)

Az

Fig. 3. Rate region for 3 channels with pairwise and singletbannel state information

O = {{c1,c2},{c2,c3},{c3,c1}}. Suppose we know the pairwise marginals to be as foll@®y&i(t);, = p.,
L(t); = pj) = 4, 4,5 € {1,2,3}, i # 4, i, pt; € {a,b}. Note that theid joint distribution7) = - = 75 =

1/8 used earlier agrees with these pairwise marginals.

These pairwise constraints give us a feasible set of pegsiolt channel distributions: it is the set of vectors
(m1,...,ms) in the simplex that satisfy the equations+ mp = £, m + 73 = 2, m + M4 = L, M + 75 = 1,

etc. In matrix form, these constraints along with the simplenstraints become

1

1/4
1 1.0 0 0 0 0 O Ty
1/4
101 00 0 O0 O T3
1/4
10 01 00 0O o
=1 1/4 |,
01 00 1 000 5
6
1/4
11 1 11111 7
1
s
with 7; > 0 for all i. The set of solutions for the vectat = (71 7 ... mg)T is the set of convex

combinations of the vectorg;) = (1/4 0 0 1/4 0 1/4 1/4 0)" and
Ty =0 1/4 1/4 0 1/4 0 0 1/4)7, ie,

- A - -
7 ell={nTa) + (1 —n)Tg :0<n <1}

Theiid joint distribution7; = --- = g = 1/8 corresponds te) = 1/2. Let Cz denote the throughput region
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with complete channel state information when the jointriistion of channel states i8 € I1. As beforeC
denotes the throughput region with pairwise partial infation, as in Fig. 3. Sinc€ C Cz V 7 € II due to
the joint distributions agreeing with the marginals, we trheve
cc()cx
Fell
The hexagonal face @ in Fig. 3 represents the maximum sum rate that can be suppartd is described by
A1+ A2+ A3 = 2a+2b. We observe that for the rate regiép,, , the sum\; + Xy + A3 can be at mosta+ 3,

= C. Thus we geC = (.. Cz. This shows thaf)._; Cz - the set of rates which can

showing thatC #en Cr

(1) FEIl
guaranteeably be supported by scheduling policies withpbeta state information given pairwise marginals
- is no more thart - the set of rates which can be supported by policies withadarthannel state information.

2) Our next example illustrates thétC Cx in general. Consider two channels and ¢, which take two

7ell
states each - rate 1 and rate 2. The aggregate channel tlessotad out of four states in each time slot, with
the corresponding rate paifg, pu2) being (1,1), (1,2), (2,1) and (2,2). Let the (joint) probiieis of these
states be denoted by, 72, 73 andm, respectively. We denote the (singleton) observable ssliset = {¢; }

and 3 = {c2}. Let us constrain the distributiofr;)?_; by insisting that the marginals be as follows:

7T2a = ]P)(L(t)l = 2) =m3 4+ w4 = 0.3,
™ =P(L(t); =1) =m +m3 = 0.4, and
Wg = P(L(t)g = 2) = m9 + w4 = 0.6.

These are verified to be valid marginals; for instance, tive irobability distributionst(;) = (0.1,0.6,0.3,0)
and () = (0.4,0.3,0,0.3) induce these marginals. In fact, we can parametrize thélsef all valid joint

distributions which yield these marginals by
II= {777?(1) +(1- 77)77"(2) :0<n<1}.

From the marginal distribution, we g&{u;] = 1.3 andE[us] = 1.6, hence the achievable rate region with
partial (singleton) channel state information is as in H¢n). However, the full channel state information
rate region assuming the ‘extreme-case’ joint distrimgi ;) and 7, is as depicted in Figs. 4(b) and 4(c)
respectively. We observe that

() Cz=Cxry, 2C.

rell
Thus, in this case, given the singleton marginals, a sclkeeduth complete channel state information can
support a strictly higher rate guaranteeably over all jdistributions (e.g., the ratg, 0.6)) than a scheduler

with partial channel state information.
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Ao Ay A2
(0,1.6) (0,1.6)  ~~__(0.6,1.3) (0,1.6)
‘ (0.7,1.2)
(1,0.6)
(0,0) (1.3,0) A1 (0,0) (1\.3,0) A (0,0) (1\.3,0) Al

(@) (b) (©

Fig. 4. (a) Rate region with singleton channel state infdgiomafor 2 channels, (b) Rate region with full channel statfoimation for joint

distribution 7 (1), (c) Rate region with full channel state information fornpiistribution 1)

D. The structure of ‘good’ SSS rules

We conclude the section with a theorem which provides a cheviaation ofmaximalglobal SSS rules. We call
a global SSS rule maximal if no vector thdominates its vector of service rates)? ;, where a vector € R
dominatesa vectory € RV if z; < y; for all i, andx; < y; holds for at least ong. The result says that a maximal
or optimal global SSS rule chooses the subset that givesigihest expected value of maximum weighted service
rate for a subset, and further picks that user to serve thhasghe maximum weighted observed rate.

Theorem 2:Consider a maximal global SSS rule associated with SSS {ul&s: o € O} and a distribution

{pk : « € O} over subsets. Then, there exists a set of strictly positiwestants;, i = 1, ..., N such that for any
[, anda,
pe >0, ¢ >0=1i¢€arg max I(jué-’o‘7 and 3)
JEQ
>0=ae LA ) 4
o a € argrax ZGZL: w0 (masc ;) (4)
B

According to Theorem 2, at timg in the first scheduling step, a maximal global SSS rule ch®@ssubsedy
for which -, . 7*(max;eq yjﬂéfo‘) is maximized, and further picks quetdén o which maximizewmﬁ(t)’a,

wherel(t) is the observed sub-state of subaetWe refer the reader to Appendix B for the proof of Theorem 2.

IV. A THROUGHPUFOPTIMAL SCHEDULING ALGORITHM
Motivated by the form of the result in Theorem 2, we preserthaeduling algorithm which, for a system having
arrival rates in the described achievable region, takesast ionly the state of the system at each time slot and
decides which (maximal) subset to observe and ultimatehyclvchannel in that subset to schedule. Knowledge
of the arrival rates is not assumed in such a case. Howevierpitesumed that the marginal probabilitiés® of

the subsetr being in the sub-stateare known.
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Algorithm 1:

At each time slott,
« Step 1:Select a seb € O, given by

5 be ()™
€ argmax » (rgleag Qi)™ ),

€L

where the symbol®), L, and;ﬂi’(y have the same meaning as in the proof of Lemma 3@y{d) represent

Uy

the length of theith queue at the beginning of time slot
o Step 2: Let the observed sub-state @tbe s € L5. Schedule channgl € ¢ using theMax-Weightrule (also
known as theModified Largest-Weighted-Work-First (M-LWW)le [2], [6]), i.e.

j € arg max Qi(t),uf"s.
€9

Note A suitable rule to break ties in each case is assumed.

The following result provides an important equivalent @ederization of the above algorithm in terms of knowing
the extreme points of the achievable rate regiorhis fact is the basis for the throughput-optimality prapef
the algorithm, shown by Theorem 3.

Lemma 4:Let £ be the (finite) set of extreme points for the achievable raggonC. If subsets is chosen in

Step lof Algorithm 1 at timet, then
R(8) N arg max(v, Q(1)) # 0.

That is, the algorithm selects any subset whose rate regiateins an extreme point maximizing the inner
product({z, Q(t)) over allz € £ and hence a point maximizing, Q(t)) over ally € C. Refer to Appendix C for
the proof of Lemma 4.

The chief result in this section is the following theorem,iethsays that the scheduling policy defined above is
throughput-optimal for scheduling with partial channglts information.

Theorem 3:Algorithm 1 makes the system stable if the vector of arriedés lies in the achievable region.

The proof of stability uses fluid limit machinery. Roughly bcaling and “compressing” time and concurrently
scaling down the magnitude of the queue length process, ifueete and random queue length process “looks
like” a deterministic fluid process which is driven by a (w@gtconstant rate fluid arrival process (the components
corresponding to the mean arrival rates to each of the ysard)whose service rate corresponds to the “average”
service rate under the scheduling algorithm. For the systenare considering, showing that such a limiting fluid
gueue length trajectory has negative drift is sufficientrovp that the discrete-time stochastic queue length psoces
is stable (positive recurrent) [23], [2], [24].

The full technical details are deferred to the Appendix, Aede we give only the key Lyapunov function idea
for proving negative drift. Unlike the proof used for Theore of [2], here we face the additional difficulty of

assuring that we pick the correct observation subsetO, in addition to picking the correct queue to servejin
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We show that maximizing the negative drift of our Lyapunowdtion is exactly the problem of maximizing the
inner product(y, Q(t)) over ally € C. If we pick the “wrong” subset, then maximizing the lineanétion above
becomes impossible. To side-step this problem, we rely anrha 4, which guarantees that the chosen subset will
indeed be one with an extreme point maximizing the lineaction.

We use the quadratic Lyapunov function
1
Liy) ==Y v (5)

for a vectory = (y1,...,yn). Let ¢(t) denote a fluid limit of the queue-length process. The follfayvproperty
establishes negative drift, and (as in [2]) along with a ltesam [23] implies Theorem 3.

Lemma 5: Consider a feasible system operating under Algorithm 1 astheduling discipline. For any > 0,
there exists); > 0 such that the following holds. With probability 1, a limigrset of functions defining the fluid

limit satisfies the following property at any regular point t

La(a(0) > 61 = TL(g(1) < 6 <0,

The proof relies on Lemma 4, and can be found in Appendix D-A.

V. THE MAX-SUM-QUEUE ALGORITHM

The throughput-optimal scheduling algorithm in the prergisection requires knowledge of both the instantaneous
gueue lengths and marginal statistics of the channel. fnshétion, we present a ‘simpler’ scheduling policy which

only uses queue-length information to pick the subset tenes

Algorithm 2 (Max-Sum-Queye
At each time slott,

o Step 1: Select a seb € O, given by
= argm 2
§ = arg aeagz Q; (1),

1€
where@;(t) denotes the length of thi#h queue at the beginning of time slot
o Step 2: Let the observed sub-state &fbe s € Ls. Schedule channgl € 6 using theMax-Weightrule, i.e.

j = argmax Qi (t);".
i€H

Note A suitable rule to break ties in each case is assumed.
In this section we show that thdax-Sum-Queualgorithm is throughput-optimal in two cases of interegt: (
when the subsets i@ are disjoint; and (ii) when the channel is symmetric in therssin the next section, we

prove by example thatlax-Sum-Queuss not throughput-optimal in general.
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A. Max-Sum-Queue for disjoint subsets

The following result shows that when the collection of obabte subsets is mutually disjoint, Max-Sum-Queue
is throughput-optimal.

Theorem 4:Under the assumption that every pair of maximal observalileets is disjoint, the Max-Sum-Queue
scheduling algorithm makes the system stable if the vedtarrival rates lies in the achievable region.

To prove Theorem 4, we follow a similar route as in the presisaction, defining fluid limits and proving that

a suitably defined Lyapunov function has negative drift. Thiapunov function we use here is

Lo(y) = h
2(y) max 5(y),

where

hs(y) = % >_vi
i€l
The following key lemma is used to establish the negativét dfithe Lyapunov function, and is the analog of
Lemma 5.
Lemma 6: Consider a feasible system operating under the Max-Sumu€seheduling discipline. For ady > 0,
there exists); > 0 such that the following holds. With probability 1, a limigrset of functions defining the fluid

limit satisfies the following additional property at any ub@ point t:
d
La(g(t)) 2 01 = —L(q(t)) < =0.

We refer the reader to Appendix D-B for the details. Therenisnduitive geometric explanation for this result. It is
based on two observations: first, due to the disjoint subs®iraption and the Max-Sum-Queue algorithm, if any
queue is unstable, all queues are unstable; next, given teenex pointz,, in each setR(«), the convex hull of

those extreme points will always lie on an exposed facé.dflote that this is not true in the general case.

B. Max-Sum-Queue for symmetric channels

Itis instructive to note that the reason that the preserdidduling policies work in their respective cases is that at
any pointt € [0, o), they maximize the linear objective functidq(t), «) over allu in the convex polytop€ which
represents the achievable rate region. The drift of the sfisguares Lyapunov function defined by (5) happens to
be precisely the difference betwegyit), \) andmax,cc(q(t), u). This geometric interpretation allows us to prove

the useful result that Max-Sum-Queue is actually throutdomiimal for systems of symmetric channels and subsets:
Theorem 5:Consider a symmetric system, i.e., where all Miehannels have an identical distribution of service

rates. Further, let the observable subsets be all subsatfx@d cardinality/’. For such a system, Max-Sum-Queue

is throughput-optimal.
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Proof: Let A\ be the vector of arrival rates to the systemMfchannels represented 8y= {1,..., N}, such

that A € intC. As before, we consider the drift of the sum-of-squares uyay function defined by (5):

Zqz )i — filt)

= (q(t), \) — (a(t), f(2)),

where f(t) = (fi(t))N, is the instantaneous vector of service rates chosen by MaxQueue at timé in the
fluid time scale. We show that(t) € C maximizes the inner product(t), z) over allz € C or equivalently over
all the extreme points of; this establishes that the drift di(¢(¢)) is strictly negative and bounded away from
zero and hence Max-Sum-Queue is throughput-optimal.

The subsets which Max-Sum-Queue picks for schedulingaaie the ones that contain the tép queues in the

system. Without loss of generality, let(¢) > ¢2(t) > ... > gn(¢), and let

A=ar max 2(t
g , e Kz{;ql()

Every setn € A is picked by Max-Sum-Queue in the fluid timescale, and thsstha same queue values ordered
in descending order. Further, since the channels are symen®tery subset rate regidR(g) for 5 C S, |8| = K
is identical up to a permutation of indices. It follows thaetextreme points of maximizing (-, ¢(¢)) must lie in
the rate regiondk(a) wherea € A, since only theK heaviest queues can maximize this inner product over all
permutations of extreme points.

Since these extreme points are precisely the ones pickeday3dm-Queue in each subset, and tﬁ(ai) lies
in the convex hull of these extreme poinf&¢) maximizes the inner producy(t), =) over allz € C, and we are
done. [ |

For an alternative view of why the Max-Sum-Queue policy veoftr symmetric channels, refer to Appendix E.

VI. MAX-SUM-QUEUE APPLIED TO ARBITRARY SUBSETS

In this section we show that the simplMax-Sum-Queuscheduling algorithm is not throughput-optimal in
general. An intuitive fluid argument is presented first,daléd by a formal proof.

Consider a system of three channels co andcs. The system assumes four possible st&tgsSs, S3 and Sy
with the corresponding channel rates, expressed by (ratg odite ofc,, rate ofes), being (100,100,2), (100,200,2),
(200,100,2) and (200,200,2) respectively. Further, eaate ccurs with probability&. The maximal observable
subsets arev = {c1, 2}, B = {ca2,c3} andy = {e3, 1}, i.e., all pairs of channels. The achievable rate region for
the system is shown in Fig. 5.

Set the vector of arrival rates to Bg = (A1p, Aap, Agp) = (122, 12,0) — €(1,1,0) + 6(0,0,1), with e = 1 and
0<é= m <= (shown in Fig. 5). It is easily verifiable thatlies in the interior of the rate region. We show that
a regular pomlt € [0,00) can exist with the fluid-limit queue-length process satigfyy; (t) = ¢2(t) = g5(t) > 0,
and with ¢ (t) = ¢2(t) = ¢3(t) > 0. In such a case, the queue fluid level$t), ¢2(t) andgs(t) increase (linearly)

at a constant rate.
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Fig. 5. Rate region for described 3-channel system

Let us hypothesize thatis a regular point in0, co) satisfying the conditiony; (t) = ¢2(t) = g5(¢) > 0. Since
all the ¢;(t) are equal, the system must ‘serve’ all three subsets wittegomesharing probabilities,, pg andp,

which must be strictly positive. The regularity hypothesitsv impliesq; (t) = ¢2(t) = ¢3(t) (see [24]), and hence

175
= Ap — 150])7 — Tpa
175
= Agp — 150pﬁ - TPQ
=X —0=9¢

= py=pg, and

175
150ps + —5~Pa = Az — 6 = 86.99.

Together withp,, +pg +p, = 1, we getpg = p, =~ 0.02 andp, ~ 0.96 which is the unique timesharing solution
between the subsets 3 and~. Hencet is indeed a regular point, all the queue fluid limits are egaatl increase
linearly at the same rat& > 0.

Remarks

1) We observe that the (mutually exclusive) conditign&) = g2(t) > ¢s(t) andq:(t) = g2(t) < ¢3(t) lead to

all the ¢; becoming equal within finite time. Hence the statét) = ¢2(¢t) = ¢5(¢) is an ‘unstable attractor’
for the fluid limits in this sense.

2) For the arrival rate vectok, = (87,87,0) (shown in Fig. 5), we can similarly show that starting from

¢1(0) = ¢2(0) = ¢3(0) = ¢ > 0 implies thatq; (t) = ¢2(t) = ¢3(t) = c at all timest € [0, c0).

Next, as a consequence of the linear growth, we show that em&dv chain describing the state of the system is
transient, which implies that all the queues grow withoutdbalmost surely. This is accomplished by demonstrating
two crucial properties -

« With high probability the aggregate state of the system @inctels is distributed according to the invariant

distribution 7 of the Markov chain describing its evolution, and
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« Whenever the channel states are typically distributed, tinessmallest queue always grows with a rate bounded
away from zero.
Theorem 6:The three-channel system considered is unstable under #he3dm-Queue scheduling policy.
Furthermore, the Markov chain describing the evolutiontsfstate is transient.

The proof is deferred to Appendix F.

VII. CONCLUSIONS ANDFUTURE WORK

The Max-Weightrule is a striking example of a simple feedback based schegdylolicy that is throughput-
optimal. Likewise, with partial channel state informatidime algorithm we presented which uses queue lengths and
expected channel states is throughput-optimal. Undetti@nts like disjoint set observations or symmetric chasne
just looking at the heaviest queues suffices for stabiligthBthe scheduling algorithms we studied for the partial
information case can be viewed as extensions of Max-Weighigh inherit its property of throughput-optimality.

Possible directions for future work include extensions édwork-wide scheduling with partial observability of
channels. Can the presented scheduling policies be exténdeetwork-wide policies as witMax-Weightand the
Back Pressure algorithm [25]?

Another line of research would be to study what happens wiheichannel is correlated across time and when the
scheduler is allowed to use the whole past history to makecgedecisions. For instance, allowing the channel to be
Markovian in time leads to a Partially Observable Markov Bien Process (POMDP) problem, and it is interesting
to investigate the stability region and the existence odulghput-optimal scheduling policies. Is scheduling based
on queue lengths and expected channel states still optimal?

A different direction to pursue would be to examine the dekils of such scheduling policies. One could also

examine the large deviations of the queue lengths arisimy fihese policies.

APPENDIXA

PROOF OFLEMMA 3

Lemma 3:If A € RY is achievable, therh € C. In particular,A can be achieved by a global SSS scheduling
rule parametrized by a stochastic matgiof the form

= pad®,

acO
where¢®™ are stochastic matrices as described aboveparid a probability distribution on the maximal observable

subsets.

Proof: Let A = (\1,..., A\y) be supported under the scheduling poley= (G, ). Note that for a maximal
observable subset, the SSS matrixy)™ introduced earlier corresponds to a global SSS matrixhere for a row
m of ¢, i.e. a global system stafec £, columns representing channelsdnake the same values as the sub-state
of a induced byl. Other columns are identically zero. Henceforth, by therinat® we will mean the (global)

SSS matrix obtained by such an embedding procedure.
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Since the discrete-time Markov chagrepresenting the evolution of the system is assumed to lweliergnder
the policy P, let p, denote the long term fraction of time in which the maximal exvable subset: is chosen in
the first scheduling stage, with, ., po = 1. Due to the nature of the map and the fact that the channel-state
process idid across time slots, we can write

G =Y padis

acO
where ¢;; represents the probability with which channglis picked for scheduling in the global system state

Accordingly, the service rate seen by chanaetan be written as

Ai = Z by

lel
= A= T Y pad

lel acO

= pa Y7ol
acO lel

il

— Z Do Z W(ll’h)ug 1 2)¢(();1,l2)i

aceO l:(ll,l2)€£

wherel € L is written (with respect to the maximal observable sulgeas the pair((;.l2) with [; denoting the
sub-state ofx and !/, the sub-state ofi® = C' — . We note that ifc; ¢ « then ¢?‘ll la)i = 0, and if¢; € o then
(I1,l2

O )i = ¢7:; which is independent of the sub-stdteof a. Also, whene; € a, we denotey; ) by uﬁl"‘, the

rate of channet; in «. Fora C C, we let £, denote the set of all possible sub-statesxoHence we have

Ai = Z Pa Z Z 71'([1’[2)#?70‘ b

{a€0:ica} 1eLy lzel:ac

= Y e d{ T | T | g, ©

{a€O:ica} heLla |2€L ¢
The quantity in square brackets is just the probabitity® of the maximal observable subsebeing in sub-state
[, hence the expression in curly brackets can be labelfedhe service rate to channegl when only subset: is
being observed. Hence,

Ai = Z Pa /\?

{a€0:ica}

=A= > paA?

{a€0:ica}
whereA® = (Af,...,A%) (A} = 0if ¢; ¢ ). Notice thatA* is achievable using the trivial distribution enand
the SSS rulggf; : 1 € La,¢; € a), henceA® € R(a). ThereforeA € C. [ |

APPENDIXB

PROOF OFTHEOREM 2

Theorem 2:Consider a maximal global SSS rule associated with SSS {ul&s : o € O} and a distribution
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{pk : « € O} over subsets. Then, there exists a set of strictly positvestants;, i = 1,..., N such that for any

l,7 ande,

ph >0, ¢ >0=1€ arg max Vjuéio‘, and 7)
Jjea
¥ >0= a € argmax 78 (max v; ub?). 8
v gﬂeOlg (mascrp1;”) (8)
s

For proving Theorem 2, we use the following lemma to first eletarize what is meant by a vector of rates
being maximal in the rate region.

Lemma 7:For a maximal global SSS rule corresponding to the vecter (v;)Y_, € C of service rates, there
exist positive constants,, ..., vy such thatv solvesmax,cc Zfi 1 Vitli.

Proof: Let {ei,.... ey} be all the extreme points af, with v = Y3 pje; and 312 p; = 1, p; > 0

j=1,..., M. Consider the following linear program:
max A
Adg;}
subject to
M
qu'ejiZA’Ui, V’L'Zl,...,N, (9)
j=1
M
Ygi=1, 0<qg <1, Vj=1,..,M.
j=1

wheree;; denotes thé-th coordinate ok;. We know thatA = 1 and{q;} = {p,} solve this linear program with
constraints (9) satisfied as equalities. Then, by the Kulck@r theorem [26], there exists a set of non-negative
Lagrange multiplierss, ...,vy such thatA = 1 and{¢,;} = {p;} also solve the following linear program (with

the same value of the maximum):

N M
max oA + v; gieji — Av; 10

subject to
M
> gp=1, 0<q <1, Vji=1,...,M.
j=1

We note that every; must be strictly positive owing to the tightness in (9), and= 1. Rewriting (10), we get
that {¢;} = {p,;} maximizes

N M
Z%‘Z%eﬁ

i=1  j=1

over all distributions{g;}, i.e.,v = (v;)¥, maximizest\L1 v;u; over allu € C. [ |
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Proof of Theorem 2:Let v* be the vector of long-term service rates for a maximal gl@®$ rule parametrized
by the distributions{¢** : @ € O} and{p}, : @ € O}. We have by Lemma 7 that there exist positive constants
v1,...,vy such that* solves

max V;v;

veC “
=1

T e & ”121’” > e

v lel,
l v 8%
= max v Vilt; @y 11
o, S S z Wb o a1)
Equivalently, {p.} = {p}} and{¢“} = {¢**} solves (11), and properties (7) and (8) of the theorem follow
since otherwise the maximum in (11) would not be attained. |
APPENDIXC

PROOF OFLEMMA 4
Lemma 4:Let £ be the (finite) set of extreme points for the achievable raggonC. If subsets is chosen in

Step lof Algorithm 1 at timet, then

R(§) Narg magx(v, Q1)) # 0.

ve

Proof: If v € C, then

= Z Qi(t)v

= ZQ )> pa Y wup®ef  (from Theorem 1 and (2))

acO leLq
= Z Pa Z ber Z Qz ,U*Z (blz (12)
acO leLq i€a

<Y pay, e (meaXQz( )z la)

acO leEL

€O
* lEL,

< max mhe (meaxQ (t)p lo‘)

=> ah? (maxQz (t)p ”) (by hypothesis and definition of Algorithm 1).
LELs

Let k(l) = argmax;es Q;(t )uﬁ"s, [ € Ls, with ties broken according to a fixed precedence rule amoag.

Define a SSS rule*® which serves only subsét and for whichg;? =i if i = k(I) and 0 otherwise] € Ls. If
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u = (uy,...,uy) is the vector of long term service rates f’, then we have: € R(§), and
(u, Q1)) = > Qi(t)us

=Y 7 Qit)u’ ¢y (following (12))

leLs €0

= Z 7h? (maéx Qi(t)uﬁ"s) (by definition of $*?).
1€

leLls

SinceR(9) is a convex polytope, it must contain an extreme painsuch thatmax,cs (v, Q(t)) = (w, Q(t)) =

(u, Q(t)). Thusw € R(d) Narg max,ee (v, Q(t)) which proves the lemma. [ |

APPENDIXD

The following two appendices (D-A and D-B) are provided fampleteness. The setup and proofs in these
sections are analogous to those in [2], and use the machaidhyid limits to establish stability of Algorithm 1

and Algorithm 2 (Max-Sum-Queue).

A. Proof of Lemma 5

Lemma 5:Consider a feasible system operating under Algorithm 1 astheduling discipline. For any > 0,
there exists); > 0 such that the following holds. With probability 1, a limigrset of functions defining the fluid

limit satisfies the following property at any regular point t

La(a(0) > 61 = CL(g(1) < 6 <0.

For proving lemma 5, we set up fluid limit processes for thaesysdynamics, following the development in [2].
Let us define the norm of the stat&t) as||S(t)|] 2 Zf’ Qi(t). Let S denote a procesS with an initial
condition such thal|S™ (0)|| = n. We define the following random functions associated with ghocesss (™ (t).
Let Fi(") (t) be the total number of packets to queuthat arrived by time > 0, including the packets present at
time O; andﬁi(") (t) be the number of typépackets that were served by time> 0. So Fi(") (0) =0 for all i. As

in [27] and [28] we ‘encode’ the initial state of the systene, we extend the definition dﬂ(") (t) to the negative
interval t € [—n,0) by assuming that the packets present in the system in ifslistiate S()(0) arrived in the
past at some of the time instantgn — 1), —(n —2), ..., 0, according to their delays in the sta#¢0). So we have
F"™(=n) =0 for all i andn, and S, F"(0) = n. Let C{"”)() denote the total number of time slots befare
when subsetr was chosen for scheduling. Denote 6?’(”)(75) the total number of time slots before tinevhen
the subsetv was picked and its sub-state wiasand by@fg’(”) the number of time slots before timtevhen subset

a was picked, its observed sub-state wamnd queue was scheduled for service.
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As in [2], consider the scaled processg®), f(™), ¢ 4™ (™) andc(™), where
O = (@), t> -1, i=1,2,...,N),
FO = (f™M @), t>0,i=1,2,...,N),
g™ = (g (t), t >0, 1 € Lo, a € O),
9 = (G (t), t >0, 1€ La, a €0, i=1,2,...,N),
g™ = (™), t>0,i=1,2,...,N),

™ = (M), t >0, a€0),

«

and the scaling is defined as
2 () 2 L 700 ()
n

for a processZ(™ (t).

The following lemma establishes convergence of these dgaitcesses to the corresponding fluid limit processes,
and is a variant of Lemma 1 in [2]. The fluid limit processes énaesirable properties like being absolutely

continuous (and thus differentiable almost everywherej-decreasing and time-conserving.

Lemma 8:The following statements hold with probability 1. For angjgence of processes (™), there exists a

subsequenc& (¥), k C n, such that for each, 1 <i < N, a € O andl € L.,

(FP ).t > —1) = (fi(t), ¢ > —1)

(£ (@)= 0) = (fi(£),t > 0) woc.
(F (), ¢ > 0) = (fi(t),t > 0) w.o.c.
(@ (t),t > 0) = (qi(t),t >0) w.o.c.
(g (), t > 0) = (g(t),t > 0) w.o.c.
G2 (), t > 0) — (§(t),t > 0) w.o.c.

3

(B (1)t > 0) = (ca(t),t >0) w.oc

where the functiong; are non-negative non-decreasing RCLL[inl, o), the functionsf;, fz g7, G55, cq are
non-negative non-decreasing Lipschitz-continuoufimo), functionsg; are continuous irf0, oo), “=" signifies
convergence at continuity points of the limit, and “u.om&ans uniform convergence on compact setg; as oc.

The limiting set of functions

= (f,f 99 0c)
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also satisfies the following properties, for alll <i < N, a € O andl € L,:

fi(t) — f:(0) = \t, £ >0,

for any intervalty,t2] C [0, 00),

filta) = fit)) < D7D w9 (t) — 5 (1)),

acOleLl,

if gi(t) > 0 for ¢ € [t1,t2] C [0,00), then

filta) = fitr) = D D ub® (3 (t) — 4 (t2))-

acOlel,
The next lemma about the fluid limit processes is a conseguehasing Algorithm 1 as the scheduling rule. It

is analogous to Lemma 2 in [2] and describes the evolutiomeffiuid processes under Algorithm 1.

Lemma 9:Consider a system operating with Algorithm 1 as the schaduliiscipline. With probability 1, the

fluid limit processes satisfy the following properties:
1) If
l, 1,
1y " qi(t) < max 117 q;(t)
for some regular point > 0, for somei, [ and«, then
9, (t) = 0.

2) If

1, , L
Z vl (I?ea;]xqi( ") < max Z (mauxqZ )ulo‘)

lec, © et

for some regular point > 0, for somen, then
c,(t) =0.

Proof of Lemma 5: Since the system is assumed to be feasible, its rate vectwic@vex combination of
feasible rate vectors of its maximal observable subsetd,doyma 3. Hence there must exist a fixed distribution

{pa}taco together with subset SSS rul¢s“},co such that, using Theorem 1 of [2] and (6), we have

A < oi{pak {61 = 3 pa 3wl

a0 lelq
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For any regular > 0 such thatL,(¢(t)) > 0, the derivative ofL;(¢(t)) can be written as follows:
N A~
= Z qi(t)(Xi = fi(t))

= Z ai()(Ni = vi({pa}, {6°1) + K ({pa}, {67} (1) — K({cu(t)}, {67}, a(t)), (13)

where we use the notation
K{ra}, {W°h0) =D 0 Y 10 Yy 7o uy Y,
i o lela
o — _Gi2(1)
AT
and we use the fact, following from properties of the fluiditsnthat

Z Z Ml aﬁzg

acOleLly

We can always choos® > 0 such thatL(y) > §; implies max; y; > d3. Then the first sum in (13) is bounded

as follows:
Z% A = vi({pa}, {671) < ~Gsmin(ui({pa}, {67}) = A) = ~6a.

It remains to show that
K({pa}, {6°},a(1)) < K({ch (D)}, {6}, a(t)). (14)

Using Properties 1 & 2 of Lemma 9, we have

K({c,0)} {6} a®) = ai(t) > ch(t) D 7 ui®ef;
i « leL
=1 “"Zqz 1 f;

l€Lq
= max Z rhe (max qi(t)ué’a)
¢ leL, ’
= max Z he ZqZ b de
leLa
> Zpa Z mhe (m?x qi(t)ué’o‘)
a €L
2D e 27D il
« €L
= K({pa}, {0"},4(1)).
This proves Lemma 5. |
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B. Proof of Lemma 6

Lemma 6:Consider a feasible system with disjoint observable sgbeptrating under the Max-Sum-Queue
scheduling discipline. For any; > 0, there exist®, > 0 such that the following holds. With probability 1, a

limiting set of functions defining the fluid limit satisfiesetfiollowing additional property at any regular point t:

Lo(a(t) 2 81 = S L(a(t)) <~

Towards the proof of Lemma 6, we have the following lemma -imga analog of Lemma 2 in [2] - using the
Lyapunov functionLy(-), where

Lo(y) = h
2(y) Tax 5(Y),

with
1 2
haly) =5 D}
i€l
Lemma 10:Consider a system with disjoint observable subsets opgratith Max-Sum-Queue as the scheduling
discipline. With probability 1, the fluid limit processestiséy the following properties:
1) If
i ai(t) < max 1, (t)

for some regular point > 0, for somei, [ and «, then
a1 = 0.
2) If

hy(q(t)) < max ha(q(t))

acO
for some regular point > 0, for somen, then
c,(t) = 0.

Proof of Lemma 6: Let arg max,co ha(q(t)) be comprised ofsy,. .., 5, with eachs; € O, where 5;
is chosen by a fixed precedence rule among subse€s; ithus La(q(t)) = %Ziem q2(t). For a regular point

t € [0,00), we have
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d
§L2((J(t)) hﬁl Z ai(t)(\i — fi (1)) (15)
1€/
z(z )
i€f1 IE[,gl
=Y athi— s (6) D 7N gt o)
1€61 leﬁgl 1€61
=D @t =y (1) D 7 (maxqi(t)uy™)
1€L leﬁgl
= a(th — ¢, () Ep, (q(t)
1€61
= <q(t)7 )‘>[31 - Clﬁl (t)Kﬁl (q(t)) =w, Ssay. (16)

fy DN g A
wheregf: = %, Ko(y) = Y ier. mhe (maxiea yi,ué’o‘) fora € O,(z,y)a = icq Tilis andzgn:l c’ﬁj (t) =
1. More generally, as a result of the above, we have

s (1) = {al0). N, — (0, (alt) WG =1,...m. a7)

Sincet is a regular point, we have, using (17),

= (q(t), \)g; — ¢, () K, (a(t) = (a(t), N g, — ¢, () Ep, (q(t) Yi=1,....m.
Define

qi(t)
Kp,(q(t))

and letg(t) := (¢ (t),...,qn(t)). 4(t) is well-defined since a queuebelongs to at most one of the (disjoirit).

gi(t) == if i€ ; for somej, and O otherwise

Consider

|

sl
—

~
~—
=
—~

~
~—

Jj=11€p,;
= [Kp, (@)™ > et f ()
Jj=1 1€06;
= [Kp,(q(t)] "' cs, () Kp, (q(t)) (using (15)-(16))
j=1
= cp(t)=1
j=1
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Note that due to Step 2 of the Max-Sum-Queue polﬁf{rt)mj maximizes(q(t), z)s, over allz € C. Hence by
the above we have that (t) maximizes(g(t), z)u,; over allz € C. SinceA lies in the interior ofC, there exists

€ > 0 such that

j=1 j=1
m 1), N5 —csy (K t
S (@) N, — &, (0K @) _
=wd K3l(g(t)) < —e
j=1
-1
w < —e [Z KB;(q(t))} =1~y
j=1
wheneverL(q(t)) > 01, since [Z;.”:l ngl(q(t))} " is monotone increasing iq(t).
This establishes the strictly negative drift and concluttiesproof. |
APPENDIXE

PROOF OFTHEOREMb5

Theorem 5:Consider a symmetric system, i.e., where all Miehannels have an identical distribution of service
rates. Further, let the observable subsets be all subsatx@fd cardinality/. For such a system, Max-Sum-Queue

is throughput-optimal.

Proof: We show that Max-Sum-Queue is equivalent to the througbptitmal rule defined in Section 4 for a
symmetric system. The throughput-optimal algorithm pieksubsety € O such that
Lo ) I,
7 €argmax » (rgleag Qi(t)p; ) : (18)
leLa
while Max-Sum-Queue picks a subset O such that

2
5e argglgg;@ (t)
i.e. 6 contains the topg< queues at time. We claim thatd belongs to the set in the right hand side of (18). For if
not, there exists a subset § such thaty does not contain the tof” queues and

> whn (rglea;]x Qi(t)uﬁ’") >y ah (glgg Q; (t)ué-";)

leL, leLs
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Assume without loss of generality that the que§éks}ic, and{Q;};cs are ordered in descending order within
subsets) and ¢ respectively. Since the system is symmetric, each subsstidentical sub-states with identical
distributions on them, so we can assume thatand £s are also identical, alongwith the corresponding sets of
b and7h9. Hence we have
. 1, 1,6

> b [(r?g]x Qi(t)ui"> - (rglgng(t)uj )] >0

leL, :
which is a contradiction as each queuedins at least as large as its corresponding queug. ifthis proves the

theorem. [ |

APPENDIXF

PROOF OFTHEOREM6

Theorem 6The three-channel system considered in Section VI is ulestaitler the Max-Sum-Queue scheduling

policy. Furthermore, the Markov chain describing the etioluof its state is transient.

We will need technical preliminaries similar to [29] to ppVheorem 6. As stated earlier, fix the vector of arrival
rates to be\ = (87,87,0.01). For eachn we split the nonnegative real lif8, co) into equal contiguous intervals
of sizenT each. Let thé-th interval[(k — 1)nT, knT) be denoted by’;,. We divide every interval uniformly into
Py 2 nT /n'/* equal contiguous sub-intervals of sizé’*. Define:

. Aé’”’k: Number of arrivals from flow; in thei-th sub-interval of thek-th interval, i.e. in[(k — 1)nT + (i —

Dnt/4, (k —1)nT +in'/*), and
« Bk Number of time slots that the channel is in stategn the i-th sub-interval of thek-th interval, i.e. in
[(k — )nT + (i — 1)n/4, (k — 1)nT +in'/4),

We define the following arrival process and channel procesg&aton events:
Aiin7k
n,k _ ¥
EM vy = | { >v},

1<i<Pp
Bi,n,k
Gy = Y {‘ m —ﬁm‘w}.

1<i<Pp n

— /\j

Ble

n

Al

Note that by hypothesis, the everE#”“(T, v) andG™*(T,v) are independent for any, m, j, k, T > 0 and
v > 0. For positive integers: and & and real number§” > 0 andr > 0 we define the following error event,
corresponding to at least one of the channel service rategot flows being ‘atypical’ in its empirical distribution

in the k-th time interval:

F™F(T, ) = U5y=k(T,y) U(UGW(T,V))

J m

The following lemma upper-bounds the probability of thisoerevent:
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Lemma 11:Fix T'> 0, » > 0 ande > 0. Then, there existay = no(7, v, €) > 0 such that for alln > ng, for

any fixed positive integek, and uniformly overay, . .., ag—1),7—1, We have
P (F™"(T,v)|A(1) = a1,..., A((k = 1)nT — 1) = ag—1ynr—1) < €.

Proof: Since by hypothesis there are only finitely many channelsaggiegate channel states, it suffices to
show that
i (E;“k(ﬂ WIAQ) = a1,..., A((k — )T —1) = a(k,lw,l) <e (19)

and

P (G%k(T, VA1) = ay,...,A((k—1)nT — 1) = a(k_l)nT_l) <e€ (20)

for all k, 7 andm, andn large enough.

By Theorem 3.1.2 in [30], sincel; is a finite-state irreducible discrete-time Markov chaim &very i, the
empirical meanA;’”’k/ni obeys a large deviations principle with a convex, good ratection. This means that
A;’”’k/ni — A; in probability for every;j at a uniformly exponential rate. There are only a polynor(ﬂab%)
number of sub-intervals in every interval of siz&', hence (19) follows. (20) is obtained in a similar mannecsin
by Cramér’s Theorem [30], the empirical meaniiof random variables obeys a large deviations principle with a
convex, good rate function. |

The lemma basically lets us assume that the empirical messtdrthe channel service rate and arrival processes
look like their true measures, with very high probability.

Let Qs(k,t) denote the smallest queue length in the three queue ledditist), i = 1,2, 3, at the beginning
of the ¢-th sub-interval in the:-th interval of time. The following lemma is crucial to thegof of instability and

describes how the queueing system behaves in a typicaVahter

Lemma 12:Fix T > 0. There existsn; € Z*, v > 0 andr > 0 such that for anyk € ZT andn > ng,

conditioned on the fact that the evefit-* (T, v) has not occurred, the following happens. If

min{Ql(k, l)a QQ(ka l)a Q3(k7 l)} >n

for somel € {1,..., P}}, then

QS(ka [+ l/) B QS(ka l)

; >r YU e{l... Pr—I}

This lemma essentially tells us that in any typical intertaé lowest of the three queues strictly increases with

a uniform minimum rate, provided that the queues are sufffilsidarge to start with.

Proof: Recall that a sub-interval consists of time slots. We can choose > 0 to be much smaller than
all the \;. If we denote byA (< oo) the maximum possible channel service rate in the systembgnd the
maximum of the three arrival rates , \2, A3, the change in any queue within an interval is at most where

' =|A +v — Al. We can picks > 0 sufficiently small, anch € ZT sufficiently large such that this quantity is
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negligible compared to a queue length errowafand such that the second step of the Max-Sum-Queue policy is
immune to queue length errors of upta if all queues are at least of length

Let S°"(k, 1) denote the subset of queues whose lengths are withiof the smallest queue lengthy,(k, 1), at
the beginning of thé-th sub-interval in thek-th interval. Without loss of generality we can assume t&t(k, -)
does not change frorhto I/, since if otherwise we can partition the set of intervalsrfrbto I’ into contiguous
subsets with this property and obtain the result using thfoum boundr.

The proof proceeds by considering various cases for the sumfoqueues inS°" (k, 1):

Case 1- S°"(k, 1) contains exactly one element: In this case, the single elemmehe unique smallest queue in
the system, and remains the unique smallest queue throygimdil sub-intervall’. Hence the only subset picked
by the first step of the Max-Sum-Queue policy is that congistif the other two queues. Consequently this queue
is never served at all, and must increase at a rate at (aasf{ A1, Ao, A3} — /) > 0.

Case 2- S°"(k,1) contains exactly two elements: Here we need to considee thuther subcases:

2(a) - S°"(k,1) = {1,2}: In such a situation only the subsf2,3} or {1,3} can be picked by the first step of
Max-Sum-Queue. Let us upper-bound the maximum rate at wRictand @, together are served. If we assume
(in the best case) th&}s is never picked for service in the second step of Max-Sume@uthen; andQ- share
the service time, and the total service rate to them is at Rt + ) + 150(3 — v) = 150 4 50v. The service
discipline reduces to serving the longest@f and Q-.

We claim that in this time, the differend€); — (2| cannot exceed a constant amount, $8¥, since if it did,
then there was a last previous time when the order of the gueas the same and the difference was urider
This implies that the difference grew under the longestsgugolicy, a contradiction.

The total arrival rate t@); and @2, however, is at least(87 — v) = 174 — 2v, hence®; + @2 increases with a
net rate of at least174 — 2v) — (150 + 50v) = 24 — 52v. Hence their average increases with a net rate of at least
(24 — 52v)/2 = 12 — 26v, and sinceR; and Q- remain within10T" of each other throughout andcan be chosen
large enough, the lowest queue increases with rate at ledstrérily close t0)12 — 26v > 0 for small enough
v > 0.

2(b) - S°"(k,1) = {1,3}: Here, the only possible subsets which can be picked{&re} and{2,3}. Note that
Q@3 can never be served when the first subset is picked. If thendesabset is picked, sin@@, > @, always, the
only state in whichQ@; is served is when its rate is 200 agi’s rate is 100. Hencé)s increases with a rate at
least0.01 — v, while @, increases with a rate at lea®7 — v) — (4 + 1)200 = 37 — 201v > 0 for small enough
v>0.

2(c) - S (k,1) = {2,3}: Similar to the previous case by symmetry.

Case 3- S%(k,1) contains exactly three elements: In this case, all thresetalare capable of being chosen in
the first scheduling stefs is never served, hence its length increases at rate atdddst v > 0. Partition the
total time into sections wher@) @3 is the smallest queu€ij) Q3 is between the other two queues, &iij Qs
is the largest queue. Fd@i), the smallest queu€@; clearly increases with rate bounded away from zero. (Hpr

only the subset consisting of the top two queues is pickedcdn¢he smallest queue increases with rate at least
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87 — v > 0. For (iii), we can use the same argument as with &{agto see that the smallest queue increases with
a strictly positive rate. This completes the proof.
[ |

Proof of Theorem 6:Fix anyT > 0. Lemma 12 gives ug, v > 0 andr > 0 such that in a typical interval
(where the interval size isT sub-intervals withn > n;), if all queues are greater than then the lowest queue
always increases with a rate at leastet R > 0 be the maximum possible service rate in the system (in tigs ca
R =200), and letK = [£] 41 where[z] denotes the smallest integer at leasChoosex € (0, 1) small enough
so thate2® < 1, and furthermore, so that

(K —1)e2K 2¢2K

1. 21
(1—e2K)2 1 —e2K < (21)
Lemma 11 now gives usg such that fom > ng and anyk,
P (F”’k(T, V)‘A(l) =ay,...,A(k—1)nT —-1) = a(k_l)nT_l) < €, (22)
uniformly over allay, ..., ax—1),r—1. Fix n to be any integer greater thap andn;.

Using the notatiorQs(k, t) introduced earlier to mean the length of the smallest quétleeabeginning of the
t-th time sub-interval in thé-th time interval, letX = (X, : s = 1,2,3,...) be the random process denoting the
size of the smallest queue at the beginning of every intesf/éime: X, = Qs(s,1) Vs =1,2,3,... Letm be an

integer such that. > n and let all queues start with initial state: Q1(1,1) = Q2(1,1) = Q3(1,1) =m.

Define the (time-valued) random variabitg, to be the first time after starting thaf drops belowm: 7, 2

min{s > 1: X; < m}. We show that’(r,,, < oo) < 1, implying that the smallest queue (and hence every queue)
grows without bound with a nonzero probability and estdlitig transience of the Markov chain describing the

evolution of the system statg(¢). We can write
Pt < 00) = Y P(K < 7 < (14 1)K). (23)
1=0

Let B; be the random variable which counts the number of atypidahmals of time upto intervalK:

A IK
Bl = ZXF”,S(T_’V).
s=1

We claim thatlK < 7, < (I + 1)K implies B;41 > [, for otherwiseB;;1 < [, and by Lemma 12, for
IK <t<(l+1)K, we have
X; >m+ [t — Bip1|lrnT — By  RnT
>m+ [IK — Bjy1)rnT — Bi41 RnT
=m+nT[IKr — Bi41(r + R)]
>m+InT[(K —1)r — R]
>m,

a contradiction td K < 7,,, < (I +1)K.
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From (23), we can write

Here (a) is by applying (22) to
IK

]P)(Bl = l/) = P <Z XF"‘S(T,V) = l/>
s=1

1<y < <ip <IK

>

1<iy <<y <LK

IED (XFn,il (T,l/) = 1, e

(K —1) il(dK)l + 250:(62@
=1 =1

(K —1)e2® 2¢2K
(1 -e2K)2 1 — 2K
b

21

aXF7lviz/(T7y) =1, XFri(T,w) = 0,1 ¢ {il’

P (XFni(rw) =0) P (Xpn2(r.) = LXpni(ry) =0) -

P (Xprmis (1) = L|Xpmii-1(r0) = 0.+, Xpra(rp) =0) -

IN

’
>, ¢

1<iy <<y <IK

K\
1)

and (b) follows from (21). This completes the proof.
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