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Abstract

We consider the dimensionality-reduction problem (finding a subspace approximation of
observed data) for contaminated data in the high dimensional regime, where the num-
ber of observations is of the same magnitude as the number of variables of each obser-
vation, and the data set contains some (arbitrarily) corrupted observations. We propose
a High-dimensional Robust Principal Component Analysis (HR-PCA) algorithm that is
tractable, robust to contaminated points, and easily kernelizable. The resulting subspace
has a bounded deviation from the desired one, achieves maximal robustness – a break-
down point of 50% while all existing algorithms have a breakdown point of zero, and unlike
ordinary PCA algorithms, achieves optimality in the limit case where the proportion of
corrupted points goes to zero.

1 Introduction

The analysis of very high dimensional data – data sets where the dimensionality of each observation is
comparable to or even larger than the number of observations – has drawn increasing attention in the
last few decades (Donoho, 2000; Johnstone, 2001). For example, observations on individual instances
can be curves, spectra, images or even movies, where a single observation has dimensionality ranging
from thousands to billions. Practical high dimensional data examples include DNA Microarray data,
financial data, climate data, web search engine, and consumer data. In addition, the nowadays
standard “Kernel Trick” (Schölkopf & Smola, 2002) transforms virtually every data set to a high
dimensional one. Efforts of extending traditional statistical tools (designed for the low dimensional
case) into this high-dimensional regime are generally unsuccessful. This fact has stimulated research
on formulating fresh data-analysis techniques able to cope with such a “dimensionality explosion.”

Principal Component Analysis (PCA) is perhaps one of the most widely used statistical tech-
niques for dimensionality reduction. Work on PCA dates back as early as Pearson (1901), and
has become one of the most important techniques for data compression and feature extraction. It
is widely used in statistical data analysis, communication theory, pattern recognition, and image
processing (Jolliffe, 1986). The standard PCA algorithm constructs the optimal (in a least-square
sense) subspace approximation to observations by computing the eigenvectors or Principal Compo-
nents (PCs) of the sample covariance or correlation matrix. Its broad application can be attributed
to primarily two features: its success in the classical regime for recovering a low-dimensional sub-
space even in the presence of noise, and also the existence of efficient algorithms for computation.
It is well-known, however, that precisely because of the quadratic error criterion, standard PCA is
exceptionally fragile, and the quality of its output can suffer dramatically in the face of only a few
(even a vanishingly small fraction) grossly corrupted points. Such non-probabilistic errors may be
present due to data corruption stemming from sensor failures, malicious tampering, or other reasons.
Attempts to use other error functions growing more slowly than the quadratic that might be more
robust to outliers, results in non-convex (and intractable) problems.

In this paper, we consider a high-dimensional counterpart of Principal Component Analysis
(PCA) that is robust to the existence of arbitrarily corrupted or contaminated data. We start
with the standard statistical setup: a low dimensional signal is (linearly) mapped to a very high
dimensional space, after which point high-dimensional Gaussian noise is added, to produce points
that no longer lie on a low dimensional subspace. At this point, we deviate from the standard



setting in two important ways: (1) a constant fraction of the points are arbitrarily corrupted in a
perhaps non-probabilistic manner. We emphasize that these “outliers” can be entirely arbitrary,
rather than from the tails of any particular distribution, e.g., the noise distribution; we call the
remaining points “authentic”; (2) the number of data points is of the same order as (or perhaps
considerably smaller than) the dimensionality. As we discuss below, these two points confound (to
the best of our knowledge) all tractable existing Robust PCA algorithms.

A fundamental feature of the high dimensionality is that the noise is large in some direction, with
very high probability, and therefore definitions of “outliers” from classical statistics are of limited
use in this setting. Another important property of this setup is that the signal-to-noise ratio (SNR)
can go to zero, as the `2 norm of the high-dimensional Gaussian noise scales as the square root of
the dimensionality. In the standard (i.e., low-dimensional case), a low SNR generally implies that
the signal cannot be recovered, even without any corrupted points.

The Main Result
In this paper, we give a surprisingly optimistic message: contrary to what one might expect given
the brittle nature of classical PCA, and in stark contrast to previous algorithms, it is possible
to recover such low SNR signals, in the high-dimensional regime, even in the face of a constant
fraction of arbitrarily corrupted data. Moreover, we show that this can be accomplished with an
efficient (polynomial time) algorithm, which we call High-Dimensional Robust PCA (HR-PCA). The
algorithm we propose here is tractable, provably robust to corrupted points, and asymptotically
optimal, recovering the exact low-dimensional subspace when the number of corrupted points scales
more slowly than the number of “authentic” samples – to the best of our knowledge, the only
algorithm of this kind. Moreover, it is easily kernelizable.

Organization and Notation
In Section 2 we discuss past work and the reasons that classical robust PCA algorithms fail to extend
to the high dimensional regime. In Section 3 we present the setup of the problem, and the HR-PCA
algorithm. We also provide finite sample and asymptotic performance guarantees. The performance
guarantees are proved in Section 4. Kernelization, simulation and some technical details in the
derivation of the performance guarantees are postponed to the full version (Xu et al., 2010).

Capital letters and boldface letters are used to denote matrices and vectors, respectively. A k×k
unit matrix is denoted by Ik. For c ∈ R, [c]+ , max(0, c).We let Bd , {w ∈ Rd|‖w‖ ≤ 1}, and
Sd be its boundary. We use a subscript (·) to represent order statistics of a random variable. For
example, let v1, · · · , vn ∈ R. Then v(1), · · · , v(n) is a permutation of v1, · · · , vn, in a non-decreasing
order.

2 Relation to Past Work

In this section, we discuss past work and the reasons that classical robust PCA algorithms fail to
extend to the high dimensional regime.

Much previous robust PCA work focuses on the traditional robustness measurement known as
the “breakdown point” (Huber, 1981), i.e., the percentage of corrupted points that can make the
output of the algorithm arbitrarily bad. To the best of our knowledge, no other algorithm can handle
any constant fraction of outliers with a lower bound on the error in the high-dimensional regime.
That is, the best-known breakdown point for this problem is zero. We show that the algorithm we
provide has breakdown point of 50%, which is the best possible for any algorithm. In addition to
this, we focus on providing explicit lower bounds on the performance, for all corruption levels up to
the breakdown point.

In the low-dimensional regime where the observations significantly outnumber the variables of
each observation, several robust PCA algorithms have been proposed (e.g., Devlin et al., 1981; Xu
& Yuille, 1995; Yang & Wang, 1999; Croux & Hasebroeck, 2000; De la Torre & Black, 2001; De la
Torre & Black, 2003; Croux et al., 2007; Brubaker, 2009).

We discuss three main pitfalls these and other existing algorithms face in high dimensions.
Diminishing Breakdown Point: If an algorithm’s breakdown point has an inverse dependence on

the dimensionality, then it is unsuitable in our regime. Many algorithms fall into this category.
In Donoho (1982), several covariance estimators including M-estimator (Maronna, 1976), Convex
Peeling (Barnett, 1976; Bebbington, 1978), Ellipsoidal Peeling (Titterington, 1978; Helbling, 1983),
Classical Outlier Rejection (Barnett & Lewis, 1978; David, 1981), Iterative Deletion (Dempster &
Gasko-Green, 1981) and Iterative Trimming (Gnanadesikan & Kettenring, 1972; Devlin et al., 1975)
are all shown to have breakdown points upper-bounded by the inverse of the dimensionality, hence
not useful in the regime of interest.



Noise Explosion: In the basic PCA model, zero mean standard Gaussian noise is added to each
sample observed. Concentration results for Gaussian vectors promise that the noise magnitude will
sharply concentrate around the ball of radius equal to square root of the dimension. This can be
significantly larger than what we call the “signal strength,” namely, the magnitude of the signal
before noise was added. Thus, the ratio of the signal strength to the noise level quickly goes to
zero as we scale the dimensionality. Because of this, several perhaps counter-intuitive properties
hold in this regime. First, any given authentic point is with overwhelming probability very close
to orthogonal to the signal space (i.e., to the true principal components). Second, it is possible
for a constant fraction of corrupted points all with a small Mahalanobis distance to significantly
change the output of PCA. Indeed, by aligning the entire fraction of corrupted points magnitude
some constant multiple of what we have called the signal strength, it is easy to see that the output
of PCA can be strongly manipulated – on the other hand, since the noise magnitude is much larger,
and in a direction perpendicular to the principal components, the Mahalanobis distance of each
corrupted point will be very small. Third, the same example as above shows that it is possible for
a constant fraction of corrupted points all with small Stahel-Donoho outlyingness to significantly
change the output of PCA, where recall that Stahel-Donoho outlyingness of a sample yi is defined
as:

ui , sup
‖w‖=1

|w>yi −medj(w>yj)|
medk|w>yk −medj(w>yj)| .

Here medk stands for taking median over all k.
The Mahalanobis distance and the S-D outlyingness are extensively used in existing robust PCA

algorithms. For example, Classical Outlier Rejection, Iterative Deletion and various alternatives of
Iterative Trimmings all use the Mahalanobis distance to identify possible outliers. Depth Trimming
(Donoho, 1982) weights the contribution of observations based on their S-D outlyingness. More re-
cently, the ROBPCA algorithm proposed in Hubert et al. (2005) selects a subset of observations with
least S-D outlyingness to compute the d-dimensional signal space. Thus, in the high-dimensional
case, these algorithms may run into problems since neither Mahalanobis distance nor S-D outlying-
ness are valid indicator of outliers. Indeed, as shown in the simulations, the empirical performance
of such algorithms can be worse than standard PCA, because they remove the authentic samples.

Algorithmic Tractability: There are algorithms that do not rely on Mahalanobis distance or S-
D outlyingness, and have a non-diminishing breakdown point, namely Minimum Volume Ellipsoid
(MVE), Minimum Covariance Determinant (MCD) (Rousseeuw, 1984) and Projection-Pursuit (Li &
Chen, 1985). MVE finds the minimum volume ellipsoid that covers a certain fraction of observations.
MCD finds a fraction of observations whose covariance matrix has a minimal determinant. Projection
Pursuit maximizes a certain robust univariate variance estimator over all directions.

MCD and MVE are combinatorial, and hence (as far as we know) computationally intractable as
the size of the problem scales. More difficult yet, MCD and MVE are ill-posed in the high-dimensional
setting where the number of points (roughly) equals the dimension, since there exist infinitely many
zero-volume (determinant) ellipsoids satisfying the covering requirement. Nevertheless, we note that
such algorithms work well in the low-dimensional case, and hence can potentially be used as a post-
processing procedure of our algorithm by projecting all observations to the output subspace to fine
tune the eigenvalues and eigenvectors we produce.

Maximizing a robust univariate variance estimator as in Projection Pursuit, is also non-convex,
and thus to the best of our knowledge, computationally intractable. In Croux and Ruiz-Gazen
(2005), the authors propose a fast Projection-Pursuit algorithm, avoiding the non-convex optimiza-
tion problem of finding the optimal direction, by only examining the directions of each sample.
While this is suitable in the classical regime, in the high-dimensional setting this algorithm fails,
since as discussed above, the direction of each sample is almost orthogonal to the direction of true
principal components. Such an approach would therefore only be examining candidate directions
nearly orthogonal to the true maximizing directions.

Low Rank Techniques: Finally, we discuss the recent (as of yet unpublished) paper (Candès
et al., 2009). In this work, the authors adapt techniques from low-rank matrix approximation, and
in particular, results similar to the matrix decomposition results of Chandrasekaran et al. (2009),
in order to recover a low-rank matrix L0 from highly corrupted measurements M = L0 + S0, where
the noise term, S0, is assumed to have a sparse structure. This models the scenario where we
have perfect measurement of most of the entries of L0, and a small (but constant) fraction of the
entries are arbitrarily corrupted. This work is much closer in spirit, in motivation, and in terms of
techniques, to the low-rank matrix completion and matrix recovery problems in Candès and Recht
(2009); Recht (2009); Recht et al. (2010) than the setting we consider and the work presented herein.



In particular, in our setting, even one corrupted point can change every element of the measurement
M .

3 HR-PCA: The Algorithm

The algorithm of HR-PCA is presented in this section. We start with the mathematical setup of
the problem in Section 3.1. The HR-PCA algorithm as well as its performance guarantee are then
given in Section 3.2.

3.1 Problem Setup
We now define in detail the problem described above.

• The “authentic samples” z1, . . . , zt ∈ Rm are generated by zi = Axi + ni, where xi ∈ Rd

(the “signal”) are i.i.d. samples of a random variable x, and ni (the “noise”) are independent
realizations of n ∼ N (0, Im). The matrix A ∈ Rm×d and the distribution of x (denoted by µ)
are unknown. We do assume, however, that the distribution µ is absolutely continuous with
respect to the Borel measure, it is spherically symmetric (and in particular, x has mean zero
and variance Id) and it has light tails, specifically, there exist constants K, C > 0 such that
Pr(‖x‖ ≥ x) ≤ K exp(−Cx) for all x ≥ 0. Since the distribution µ and the dimension d are
both fixed, as m,n scale, the assumption that mu is spherically symmetric can be easily relaxed,
and the expense of potentially significant notational complexity.

• The outliers (the corrupted data) are denoted o1, . . . ,on−t ∈ Rm and as emphasized above, they
are arbitrary (perhaps even maliciously chosen). We denote the fraction of corrupted points by

λ
4
= (n− t)/n.

• We only observe the contaminated data set

Y , {y1 . . . ,yn} = {z1, . . . , zt}
⋃
{o1, . . . ,on−t}.

An element of Y is called a “point”.

Given these contaminated observations, we want to recover the principal components of A, i.e., the
top eigenvectors, w1, . . . ,wd of AA>. That is, we seek a collection of orthogonal vectors w1, . . . ,wd,
that maximize the performance metric called the Expressed Variance:

E.V.(w1, . . . ,wd) ,
∑d

j=1 w>
j AA>wj∑d

j=1 w>
j AA>wj

=

∑d
j=1 w>

j AA>wj

trace(AA>)
.

The E.V. is always less than one, with equality achieved exactly when the vectors w1, . . . ,wd have
the span of the true principal components {w1, . . . ,wd}. When d = 1, the Expressed Variance
relates to another natural performance metric — the angle between w1 and w1 — since by definition
E.V.(w1) = cos2(∠(w1, w1)).1 The Expressed Variance represents the portion of signal Ax being
expressed by w1, . . . ,wd. Equivalently, 1− E.V. is the reconstruction error of the signal.

It is natural to expect that the ability to recover vectors with a high expressed variance depends
on λ, the fraction of corrupted points — in addition, it depends on the distribution, µ generating the
(low-dimensional) points x, through its tails. If µ has longer tails, outliers that affect the variance
(and hence are far from the origin) and authentic samples in the tail of the distribution, become
more difficult to distinguish. To quantify this effect, we define the following “tail weight” function
V : [0, 1] → [0, 1]:

V(α) ,
∫ cα

−cα

x2µ(dx);

where µ is the one-dimensional margin of µ (recall that µ is spherically symmetric), and cα is such
that µ([−cα, cα] = α). Since µ has a density function, cα is well defined. Thus, V(·) represents how
the tail of µ contributes to its variance. Notice that V(0) = 0, V(1) = 1, and V(·) is continuous in
[0, 1] since µ has a density function. For notational convenience, we simply let V(x) = 0 for x < 0,
and V(x) = ∞ for x > 1.

The bounds on the quality of recovery, given in Theorems 1 and 2 below, are functions of η and
the function V(·).

1This geometric interpretation does not extend to the case where d > 1, since the angle between two
subspaces is not well defined.



High Dimensional Setting and Asymptotic Scaling
In this paper, we focus on the case where n ∼ m À d and trace(A>A) À 1. That is, the number of
observations and the dimensionality are of the same magnitude, and much larger than the dimen-
sionality of x; the trace of A>A is significantly larger than 1, but may be much smaller than n and
m. In our asymptotic scaling, n and m scale together to infinity, while d remains fixed. The value
of trace(A>A) also scales to infinity, but there is no lower bound on the rate at which this happens
(and in particular, the scaling of trace(A>A) can be much slower than the scaling of m and n).

While we give finite-sample results, we are particularly interested in the asymptotic perfor-
mance of HR-PCA when the dimension and the number of observations grow together to infinity.
Our asymptotic setting is as follows. Suppose there exists a sequence of sample sets {Y(j)} =
{Y(1),Y(2), . . . }, where for Y(j), n(j), m(j), A(j), d(j), etc., denote the corresponding values of
the quantities defined above. Then the following must hold for some positive constants c1, c2:

lim
j→∞

n(j)
m(j)

= c1; d(j) ≤ c2; m(j) ↑ +∞;

trace(A(j)>A(j)) ↑ +∞.

(1)

While trace(A(j)>A(j)) ↑ +∞, if it scales more slowly than
√

m(j), the SNR will asymptotically
decrease to zero.

3.2 Key Idea and Main Algorithm

For w ∈ Sm, we define the Robust Variance Estimator (RVE) as V t̂(w) , 1
n

∑t̂
i=1 |w>y|2(i). This

stands for the following statistics: project yi onto the direction w, replace the furthest (from original)
n − t̂ samples by 0, and then compute the variance. Notice that the RVE is always performed on
the original observed set Y.

The main algorithm of HR-PCA is as given below.

Algorithm 1 HR-PCA

Input: Contaminated sample-set Y = {y1, . . . ,yn} ⊂ Rm, d, T , t̂.
Output: w∗

1, . . . ,w
∗
d.

Algorithm:
1. Let ŷi := yi for i = 1, . . . n; s := 0; Opt := 0.
2. While s ≤ T , do

(a) Compute the empirical variance matrix

Σ̂ :=
1

n− s

n−s∑

i=1

ŷiŷ>i .

(b) Perform PCA on Σ̂. Let w1, . . . ,wd be the d principal components of Σ̂.
(c) If

∑d
j=1 V t̂(wj) > Opt, then let Opt :=

∑d
j=1 V t̂(wj) and let w∗

j := wj for
j = 1, · · · , d.

(d) Randomly remove a point from {ŷi}n−s
i=1 according to

Pr(ŷi is removed) ∝
d∑

j=1

(w>
j ŷi)2;

(e) Denote the remaining points by {ŷi}n−s−1
i=1 ;

(f) s := s + 1.
3. Output w∗

1, . . . ,w
∗
d. End.

Intuition on Why The Algorithm Works
On any given iteration, we select candidate directions based on standard PCA – thus directions
chosen are those with largest empirical variance. Now, given a candidate direction, w, our robust
variance estimator measures the variance of the (n− t̂)-smallest points projected in that direction.
If this is large, it means that many of the points have a large variance in this direction – the points
contributing to the robust variance estimator, and the points that led to this direction being selected



by PCA. If the robust variance estimator is small, it is likely that a number of the largest variance
points are corrupted, and thus removing one of them randomly, in proportion to their distance in
the direction w, will remove a corrupted point.

Thus in summary, the algorithm works for the following intuitive reason. If the corrupted points
have a very high variance along a direction with large angle from the span of the principal com-
ponents, then with some probability, our algorithm removes them. If they have a high variance
in a direction “close to” the span of the principal components, then this can only help in finding
the principal components. Finally, if the corrupted points do not have a large variance, then the
distortion they can cause in the output of PCA is necessarily limited.

The remainder of the paper makes this intuition precise, providing lower bounds on the proba-
bility of removing corrupted points, and subsequently upper bounds on the maximum distortion the
corrupted points can cause, i.e., lower bounds on the Expressed Variance of the principal components
our algorithm recovers.

There are two parameters to tune for HR-PCA, namely t̂ and T . Basically, t̂ affects the per-
formance of HR-PCA through Inequality 2, and as a rule of thumb we can set t̂ = t if no a priori
information of µ exists. (Note that our algorithm does assume knowledge of at least a lower bound
on the number of authentic points, or, equivalently, an upper bound on λ, the fraction of corrupted
points.) T does not affect the performance as long as it is large enough, hence we can simply set
T = n− 1, although when λ is small, a smaller T leads to the same solution with less computational
cost.

The correctness of HR-PCA is shown in the following theorems for both the finite-sample bound,
and the asymptotic performance.

Theorem 1 (Finite Sample Performance) Let the algorithm above output {w1, . . . ,wd}. Fix a
κ > 0, and let τ = max(m/n, 1). There exists a universal constant c0 and a constant C which can
possible depend on t̂/t, λ, d, µ and κ, such that for any γ < 1, if n/ log4 n ≥ log6(1/γ), then with
probability 1− γ the following holds

E.V.{w1, . . . ,wd} ≥

V

(
1− λ(1+κ)

(1−λ)κ

)

(1 + κ)


×


V

(
t̂
t − λ

1−λ

)

V
(

t̂
t

)



−

8
√

c0τd

V
(

t̂
t

)

 (trace(AA>))−1/2 −


 2c0τ

V
(

t̂
t

)

 (trace(AA>))−1 − C

log2 n log3(1/γ)√
n

.

The last three terms go to zero as the dimension and number of points scale to infinity, i.e., as
n.m →∞. Therefore, we immediately obtain:

Theorem 2 (Asymptotic Performance) Given a sequence of {Y(j)}, if the asymptotic scaling
in Expression (1) holds, and lim sup λ(j) ≤ λ∗, then the following holds in probability when j ↑ ∞
(i.e., when n,m ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)} ≥ max
κ


V

(
1− λ∗(1+κ)

(1−λ∗)κ

)

(1 + κ)


×


V

(
t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

)

 . (2)

Remark

1. The bounds in the two bracketed terms in the asymptotic bound may be, roughly, explained
as follows. The first term is due to the fact that the removal procedure may well not remove
all large-magnitude corrupted points, while at the same time, some authentic points may be
removed. The second term accounts for the fact that not all the outliers may have large
magnitude. These will likely not be removed, and will have some (small) effect on the principal
component directions reported in the output.

2. The terms in the second line of Theorem 1 go to zero as n,m →∞, and therefore the proving
Theorem 1 immediately implies Theorem 2.

3. If λ(j) ↓ 0, i.e., the number of corrupted points scales sublinearly (in particular, this holds when
there are a fixed number of corrupted points), then the right-hand-side of Inequality (2) equals



1,2 i.e., HR-PCA is asymptotically optimal. This is in contrast to PCA, where the existence
of even a single corrupted point is sufficient to bound the output arbitrarily away from the
optimum.

4. The breakdown point of HR-PCA converges to 50%. Note that since µ has a density function,
V(α) > 0 for any α ∈ (0, 1]. Therefore, for any λ < 1/2, if we set t̂ to any value in (λn, t],
then there exists κ large enough such that the right-hand-side is strictly positive (recall that
t = (1 − λ)n). The breakdown point hence converges to 50%. Thus, HR-PCA achieves the
maximal possible break-down point (note that a breakdown point greater than 50% is never
possible, since then there are more outliers than samples.

The graphs in Figure 1 illustrate the lower-bounds of asymptotic performance if the 1-dimension
marginal of µ is the Gaussian distribution or the Uniform distribution.
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Figure 1: Lower Bounds of Asymptotic Performance.

We briefly discuss kernelizing HR-PCA : given a feature mapping Υ(·) : Rm → H equipped with
a kernel function k(·, ·), we perform the dimensionality reduction in the feature space H without
knowing the explicit form of Υ(·). Notice that HR-PCA involves finding a set of PCs w1, . . . ,wd ∈ H,
and evaluating 〈wq, Υ(·)〉 (Note that RVE is a function of 〈wq, Υ(yi)〉, and random removal depends
on 〈wq, Υ(ŷi)〉). The former can be kernelized by applying Kernel PCA introduced by Schölkopf
et al. (1999), where each of the output PCs admits a representation wq =

∑n−s
j=1 αj(q)Υ(ŷj). Thus,

〈wq, Υ(·)〉 is easily evaluated by 〈wq, Υ(v)〉 =
∑n−s

j=1 αj(q)k(ŷj ,v), for all v ∈ Rm. Thus, HR-PCA
can be kernelized. We leave the details to the full version (Xu et al., 2010). Due to space constraints,
the numerical simulations is also deferred to the full version (Xu et al., 2010).

4 Proof of the Main Result

In this section we provide the main steps of the proof of the finite-sample and asymptotic performance
bounds, including the precise statements and the key ideas in the proof, but deferring some of the
more standard or tedious elements to the full version (Xu et al., 2010). The proof consists of three
steps which we now outline. In what follows, we let d, m/n, λ, t̂/t, and µ be fixed. We can fix a
λ ∈ (0, 0.5) without loss of generality, due to the fact that if a result is shown to hold for λ, then
it holds for λ′ < λ. The letter c is used to represent a constant, and ε is a constant that decreases
to zero as n and m increase to infinity. The values of c and ε can change from line to line, and can
possibly depend on d, m/n, λ, t̂/t, and µ.

1. The blessing of dimensionality, and laws of large numbers: The first step involves two ideas;
the first is the (well-known, e.g., Davidson & Szarek, 2001) fact that even as n and m scale, the
expectation of the covariance of the noise is bounded independently of m. The second involves
appealing to laws of large numbers to show that sample estimates of the covariance of the noise,
n, of the signal, x, and then of the authentic points, z = Ax + n, are uniformly close to their
expectation, with high probability. Specifically, we prove:

2We can take κ(j) =
p

λ(j) and note that since µ has a density, V(·) is continuous.



(a) With high probability, the largest eigenvalue of the variance of noise matrix is bounded.
That is,

sup
w∈Sm

1
n

t∑

i=1

(w>ni)2 ≤ c.

(b) With high probability, both the largest and the smallest eigenvalue of the signals in the
original space converge to 1. That is

sup
w∈Sd

|1
t

t∑

i=1

(w>xi)2 − 1| ≤ ε.

(c) Under 1b, with high probability, RVE is a valid variance estimator for the d−dimensional
signals. That is,

sup
w∈Sd

∣∣1
t

t̂∑

i=1

|w>x|2(i) − V
(

t̂

t

) ∣∣ ≤ ε.

(d) Under 1a and 1c, RVE is a valid estimator of the variance of the authentic samples. That
is, the following holds uniformly over all w ∈ Sm,

(1− ε)‖w>A‖2V
(

t′

t

)
− c‖w>A‖ ≤ 1

t

t′∑

i=1

|w>z|2(i) ≤ (1 + ε)‖w>A‖2V
(

t′

t

)
+ c‖w>A‖.

2. The next step shows that with high probability, the algorithm finds a “good” solution within
a bounded number of steps. In particular, this involves showing that if in a given step the
algorithm has not found a good solution, in the sense that the variance along a principal
component is not mainly due to the authentic points, then the random removal scheme removes
a corrupted point with probability bounded away from zero. We then use martingale arguments
to show that as a consequence of this, there cannot be many steps with the algorithm finding at
least one “good” solution, since in the absence of good solutions, most of the corrupted points
are removed by the algorithm.

3. The previous step shows the existence of a “good” solution. The final step shows two things:
first, that this good solution has performance that is close to that of the optimal solution, and
second, that the final output of the algorithm is close to that of the “good” solution. Combining
these two steps, we derive the finite-sample and asymptotic performance bounds for HR-PCA.

4.1 Step 1
We state the main results for Step 1a and 1b. The proofs are standard and deferred to the full
version (Xu et al., 2010). In a nutshell, they hold by applying Theorem II.13 of Davidson and
Szarek (2001), and Theorem 2.1 of Mendelson and Pajor (2006), respectively.

Theorem 3 There exist universal constants c and c′ such that for any γ > 0, with probability at
least 1− γ, the following holds:

sup
w∈Sm

1
t

t∑

i=1

(w>ni)2 ≤ c +
c′ log 1

γ

n
.

Theorem 4 There exists a constant c that only depends on µ and d, such that for any γ > 0, with
probability at least 1− γ,

sup
w∈Sd

∣∣1
t

t∑

i=1

(w>xi)2 − 1
∣∣ ≤

c log2 n log3 1
γ√

n
.

The next theorem is the main result for Step 1c. Briefly speaking, since d is fixed, the result
holds due to a standard uniform convergence argument. See (Xu et al., 2010) for details.

Theorem 5 Fix η < 1. There exists a constant c that depends on d, µ and η, such that for all
γ < 1, t, the following holds with probability at least 1− γ:

sup
w∈Sd,t≤ηt

∣∣∣∣∣∣
1
t

t∑

i=1

|w>x|2(i) − V
(

t

t

)∣∣∣∣∣∣
≤ c

√
log n + log 1/γ

n
+ c

log5/2 n log7/2(1/γ)
n

.



Recall that zi = Axi + ni. Algebraic manipulation yields Theorem 6, which is the main result
of Step 1d, and Corollary 7.

Theorem 6 Let t′ ≤ t. If there exists ε1, ε2, c such that (I) supw∈Sd

∣∣1
t

∑t′

i=1 |w>x|2(i)−V( t′
t )

∣∣ ≤ ε1;

(II) supw∈Sd

∣∣ 1
t

∑t
i=1 |w>xi|2 − 1

∣∣ ≤ ε2; (III) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤ c, then for all w ∈ Sm

the following holds:

(1− ε1)‖w>A‖2V
(

t′

t

)
− 2‖w>A‖

√
(1 + ε2)c

≤ 1
t

t′∑

i=1

|w>z|2(i) ≤ (1 + ε1)‖w>A‖2V
(

t′

t

)
+ 2‖w>A‖

√
(1 + ε2)c + c.

Corollary 7 Let t′ ≤ t. If there exists ε1, ε2, c such that (I) supw∈Sd

∣∣1
t

∑t′

i=1 |w>x|2(i) − V( t′
t )

∣∣ ≤
ε1; (II) supw∈Sd

∣∣1
t

∑t
i=1 |w>xi|2 − 1

∣∣ ≤ ε2; (III) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤ c, then for any

w1, · · · ,wd ∈ Sm, and let H(w1, · · · ,wd) ,
∑d

j=1 ‖w>
j A‖2, the following holds

(1− ε1)V
(

t′

t

)
H(w1, · · · ,wd)− 2

√
(1 + ε2)cdH(w1, · · · ,wd)

≤
d∑

j=1

1
t

t′∑

i=1

|w>
j z|2(i) ≤ (1 + ε1)V

(
t′

t

)
H(w1, · · · ,wd) + 2

√
(1 + ε2)cdH(w1, · · · ,wd) + c.

Letting t′ = t we immediately have the following corollary.

Corollary 8 If there exists ε, c such that (I) supw∈Sd

∣∣1
t

∑t
i=1 |w>x|2−1

∣∣ ≤ ε; (II) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤

c, then for any w1, · · · ,wd ∈ Sm the following holds:

(1− ε)H(w1, · · · ,wd)− 2
√

(1 + ε)cdH(w1, · · · ,wd)

≤
d∑

j=1

1
t

t∑

i=1

|w>
j zi|2 ≤ (1 + ε)H(w1, · · · ,wd) + 2

√
(1 + ε)cdH(w1, · · · ,wd) + c.

4.2 Step 2
The next step shows that the algorithm finds a good solution in a small number of steps. Proving this
involves showing that at any given step, either the algorithm finds a good solution, or the random
removal eliminates one of the corrupted points with high probability (i.e., probability bounded away
from zero). The intuition then, is that there cannot be too many steps without finding a good
solution, since too many of the corrupted points will have been removed. This section makes this
intuition precise.

Let us fix a κ > 0. Let Z(s) and O(s) be the set of remaining authentic samples and the set
of remaining corrupted points after the sth stage, respectively. Then with this notation, Y(s) =
Z(s)

⋃O(s). Observe that |Y(s)| = n − s. Let r(s) = Y(s − 1)\Y(s), i.e., the point removed at
stage s. Let w1(s), . . . ,wd(s) be the d PCs found in the sth stage — these points are the output of
standard PCA on Y(s− 1). These points are a good solution if the variance of the points projected
onto their span is mainly due to the authentic samples rather than the corrupted points. We denote
this “good output event at step s” by E(s), defined as follows:

E(s) = {
d∑

j=1

∑

zi∈Z(s−1)

(wj(s)>zi)2 ≥ 1
κ

d∑

j=1

∑

oi∈O(s−1)

(wj(s)>oi)2}.

We show in the next theorem that with high probability, E(s) is true for at least one “small” s, by
showing that at every s where it is not true, the random removal procedure removes a corrupted
point with probability at least κ/(1 + κ).

Theorem 9 With probability at least 1− γ, event E(s) is true for some 1 ≤ s ≤ s0, where

s0 , (1 + ε)
(1 + κ)λn

κ
; ε =

16(1 + κ) log(1/γ)
κλn

+ 4

√
(1 + κ) log(1/γ)

κλn
.



Remark: When κ and λ are fixed, we have s0/n → (1 + κ)λ/κ. Therefore, s0 ≤ t for (1 + κ)λ <
κ(1− λ) and n large.

When s0 ≥ n, Theorem 9 holds trivially. Hence we focus on the case where s0 < n. En route to
proving this theorem, we first prove that when E(s) is not true, our procedure removes a corrupted
point with high probability. To this end, let Fs be the filtration generated by the set of events until
stage s. Observe that O(s),Z(s),Y(s) ∈ Fs. Furthermore, since given Y(s), performing a PCA is
deterministic, E(s + 1) ∈ Fs.

Theorem 10 If Ec(s) is true, then

Pr({r(s) ∈ O(s− 1)}|Fs−1) >
κ

1 + κ
.

Proof: If Ec(s) is true, then
d∑

j=1

∑

zi∈Z(s−1)

(wj(s)>zi)2 <
1
κ

d∑

j=1

∑

oi∈O(s−1)

(wj(s)>oi)2,

which is equivalent to

κ

1 + κ

[ ∑

zi∈Z(s−1)

d∑

j=1

(wj(s)>zi)2 +
∑

oi∈O(s−1)

d∑

j=1

(wj(s)>oi)2
]

<
∑

oi∈O(s−1)

d∑

j=1

(wj(s)>oi)2.

Note that
Pr({r(s) ∈ O(s− 1)}|Fs−1)

=
∑

oi∈O(s−1)

Pr(r(s) = oi|Fs−1)

=
∑

oi∈O(s−1)

∑d
j=1(wj(s)>oi)2∑

zi∈Z(s−1)

∑d
j=1(wj(s)>zi)2 +

∑
oi∈O(s−1)

∑d
j=1(wj(s)>oi)2

>
κ

1 + κ
.

Here, the second equality follows from the definition of the algorithm, and in particular, that in
stage s, we remove a point y with probability proportional to

∑d
j=1(wj(s)>y)2, and independent

to other events.

As a consequence of this theorem, we can now prove Theorem 9. The intuition is rather straight-
forward: if the events were independent from one step to the next, then since “expected corrupted
points removed” is at least κ/(1 + κ), then after s0 = (1 + ε)(1 + κ)λn/κ steps, with exponentially
high probability all the outliers would be removed, and hence we would have a good event with
high probability, for some s ≤ s0. Since subsequent steps are not independent, we have to rely on
martingale arguments.

Let T = min{s|E(s) is true}. Note that since E(s) ∈ Fs−1, we have {T > s} ∈ Fs−1. Define the
following random variable

Xs =
{
|O(T − 1)|+ κ(T−1)

1+κ , if T ≤ s;
|O(s)|+ κs

1+κ , if T > s.

Lemma 11 {Xs,Fs} is a supermartingale.

Proof: The proof essentially follows from the definition of Xs, and the fact that if E(s) is true,
then |O(s)| decreases by one with probability κ/(1 + κ). The full details are deferred to the full
version (Xu et al., 2010).

From here, the proof of Theorem 9 follows fairly quickly.
Proof: Note that

Pr

(
s0⋂

s=1

E(s)c

)
= Pr (T > s0) ≤ Pr

(
Xs0 ≥

κs0

1 + κ

)
= Pr (Xs0 ≥ (1 + ε)λn) , (3)

where the inequality is due to |O(s)| being non-negative. Recall that X0 = λn. Thus the probability
that no good events occur before step s0 is at most the probability that a supermartingale with
bounded incremements increases in value by a constant factor of (1 + ε), from λn to (1 + ε)λn. An
appeal to Azuma’s inequality shows that this is exponentially unlikely. The details are left to the
long version (Xu et al., 2010).



4.3 Step 3
Let w1, . . . ,wd be the eigenvectors corresponding to the d largest eigenvalues of AA>, i.e., the
optimal solution. Let w∗

1, . . . ,w
∗
d be the output of the algorithm. Let w1(s), . . . ,wd(s) be the

candidate solution at stage s. Recall that H(w1, · · · ,wd) ,
∑d

j=1 ‖w>
j A‖2, and for notational

simplification, let H , H(w1, · · · ,wd), Hs , H(w1(s), . . . ,wd(s)), and H∗ , H(w∗
1, . . . ,w

∗
d).

The statement of the finite-sample and asymptotic theorems (Theorems 1 and 2, respectively)
lower bound the expressed variance, E.V., which is the ratio H∗/H. The final part of the proof
accomplishes this in two main steps. First, Lemma 12 lower bounds Hs in terms of H, where s is
some step for which E(s) is true, i.e., the principal components found by the sth step of the algorithm
are “good.” By Theorem 9, we know that there is a “small” such s, with high probability. The final
output of the algorithm, however, is only guaranteed to have a high value of the robust variance
estimator, V — that is, even if there is a “good” solution at some intermediate step s, we do not
necessarily have a way of identifying it. Thus, the next step, Lemma 13, lower bounds the value of
H∗ in terms of the value H of any output w′

1, . . . ,w
′
d that has a smaller value of the robust variance

estimator.
We give the statement of all the intermediate results, leaving the details to the gull version (Xu

et al., 2010).

Lemma 12 If E(s) is true for some s ≤ s0, and there exists ε1, ε2, c such that (I) supw∈Sd

∣∣1
t

∑t−s0
i=1 |w>x|2(i)−

V (
t−s0

t

) ∣∣ ≤ ε1; (II) supw∈Sd

∣∣1
t

∑t
i=1 |w>xi|2 − 1

∣∣ ≤ ε2; (III) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤ c, then

1
1 + κ

[
(1− ε1)V

(
t− s0

t

)
H − 2

√
(1 + ε2)cdH

]
≤ (1 + ε2)Hs + 2

√
(1 + ε2)cdHs + c.

Lemma 13 Fix a t̂ ≤ t. If
∑d

j=1 V t̂(wj) ≥
∑d

j=1 V t̂(w
′
j), and there exists ε1, ε2, c such that (I)

supw∈Sd

∣∣1
t

∑t̂
i=1 |w>x|2(i)−V( t̂

t )
∣∣ ≤ ε1; (II) supw∈Sd

∣∣ 1
t

∑t̂− λt
1−λ

i=1 |w>x|2(i)−V
(

t̂
t − λ

1−λ

) ∣∣ ≤ ε1; (III)

supw∈Sd

∣∣1
t

∑t
i=1 |w>xi|2 − 1

∣∣ ≤ ε2; (IV) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤ c, then

(1− ε1)V
(

t̂

t
− λ

1− λ

)
H(w′

1 · · · ,w′
d)− 2

√
(1 + ε2)cdH(w′

1 · · · ,w′
d)

≤(1 + ε1)H(w1 · · · ,wd)V
(

t̂

t

)
+ 2

√
(1 + ε2)cdH(w1 · · · ,wd) + c.

Theorem 14 If
⋃s0

s=1 E(s) is true, and there exists ε1 < 1, ε2, c such that (I) supw∈Sd

∣∣1
t

∑t−s0
i=1 |w>x|2(i)−

V( t−s0
t )

∣∣ ≤ ε1; (II) supw∈Sd

∣∣1
t

∑t̂
i=1 |w>x|2(i) − V( t̂

t )
∣∣ ≤ ε1; (III) supw∈Sd

∣∣1
t

∑t̂− λt
1−λ

i=1 |w>x|2(i) −
V

(
t̂
t − λ

1−λ

) ∣∣ ≤ ε1; (IV) supw∈Sd

∣∣ 1
t

∑t
i=1 |w>xi|2 − 1

∣∣ ≤ ε2; (V) supw∈Sm

1
t

∑t
i=1 |w>ni|2 ≤ c,

then

H∗

H
≥

(1− ε1)2V
(

t̂
t − λ

1−λ

)
V (

t−s0
t

)

(1 + ε1)(1 + ε2)(1 + κ)V
(

t̂
t

)

−

 (2κ + 4)(1− ε1)V

(
t̂
t − λ

1−λ

) √
(1 + ε2)cd + 4(1 + κ)(1 + ε2)

√
(1 + ε2)cd

(1 + ε1)(1 + ε2)(1 + κ)V
(

t̂
t

)

 (H)−1/2

−

 (1− ε1)V

(
t̂
t − λ

1−λ

)
c + (1 + ε2)c

(1 + ε1)(1 + ε2)V
(

t̂
t

)

 (H)−1.

(4)

By bounding all diminishing terms in the r.h.s. of (4), it reduces to Theorem 1. Theorem 2
follows immediately.

5 Concluding Remarks

In this paper, we investigated the dimensionality-reduction problem in the case where the number
and the dimensionality of samples are of the same magnitude, and a constant fraction of the points are



arbitrarily corrupted (perhaps maliciously so). We proposed a High-dimensional Robust Principal
Component Analysis algorithm that is tractable, robust to corrupted points, easily kernelizable
and asymptotically optimal. The algorithm iteratively finds a set of PCs using standard PCA and
subsequently remove a point randomly with a probability proportional to its expressed variance. We
provided both theoretical guarantees and favorable simulation results about the performance of the
proposed algorithm.

To the best of our knowledge, previous efforts to extend existing robust PCA algorithms into
the high-dimensional case remain unsuccessful. Such algorithms are designed for low dimensional
data sets where the observations significantly outnumber the variables of each dimension. When
applied to high-dimensional data sets, they either lose statistical consistency due to lack of sufficient
observations, or become highly intractable. This motivates our work of proposing a new robust PCA
algorithm that takes into account the inherent difficulty in analyzing high-dimensional data.
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