
Network Forensics:
Random Infection vs Spreading Epidemic

Chris Milling
The University of Texas at

Austin
Austin, TX 78712, USA

cmilling@mail.utexas.edu

Constantine Caramanis
The University of Texas at

Austin
Austin, TX 78712, USA

caramanis@mail.utexas.edu

Shie Mannor
Technion, Israel Institute of

Technology
Haifa 32000, Israel

shie@ee.technion.ac.il

Sanjay Shakkottai
The University of Texas at

Austin
Austin, TX 78712, USA

shakkott@mail.utexas.edu

ABSTRACT
Computer (and human) networks have long had to contend
with spreading viruses. Effectively controlling or curbing an
outbreak requires understanding the dynamics of the spread.
A virus that spreads by taking advantage of physical links
or user-acquaintance links on a social network can grow ex-
plosively if it spreads beyond a critical radius. On the other
hand, random infections (that do not take advantage of net-
work structure) have very different propagation characteris-
tics.

If too many machines (or humans) are infected, network
structure becomes essentially irrelevant, and the different
spreading modes appear identical. When can we distinguish
between mechanics of infection? Further, how can this be
done efficiently? This paper studies these two questions.
We provide sufficient conditions for different graph topolo-
gies, for when it is possible to distinguish between a random
model of infection and a spreading epidemic model, with
probability of misclassification going to zero. We further
provide efficient algorithms that are guaranteed to work in
different regimes.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic Processes

Keywords
epidemic process, network inference

1. INTRODUCTION
The degree of interconnection in communication and so-

cial networks is unprecedented, and by now, well-documented.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06 ...$10.00.

While interconnection speeds the spread of information and
ideas — another exhaustively studied research topic — it
inevitably contributes to the spread of viruses. This is true
not only because of (what we might now call) old-fashioned
contact networks, but increasingly true thanks to social net-
works, and the fact that many computer (and human) viruses
exploit the relaxed filters we all employ when in virtual or
physical contact with friends and acquaintances – neighbors
on our social network. The prevalence of (thus far, appar-
ently relatively harmless) Facebook spam [1] is but one tes-
tament to this fact. Yet, while many viruses can spread in
various manners through social networks, it is not difficult
with only minor sophistication, for a virus to disguise its
path, namely, how it arrived at a particular machine, and
where it spread from there. To make matters worse, anal-
ogous to the setting where not all sick people immediately
go to a doctor for diagnosis, for a variety of reasons we may
not even have access to the identity of all infected nodes, let
alone be able to determine the spreading mechanism. Nev-
ertheless, distinguishing between an infection that spreads
through a particular network, and one that affects nodes
without the help of that network, can be critical: it offers
opportunities to react accordingly, including quarantining
portions of the network, as well as possibly predicting the
extent of the spread.

This motivates us to study this basic problem in social-
network-forensics, in the most dire setting: suppose that at
a single snapshot in time, we are informed that a given sub-
set of nodes has a particular virus. Initial sickness times are
not available, nor are we able to observe the evolution of
the sick-reporting process. Given (for now) complete knowl-
edge of the network topology, the problem is to determine if
the virus is an epidemic, spreading through the network, or
if nodes have become infected via an independent infection
mechanism that is external to the network being consid-
ered, and not propagated through the edges of the graph.
These issues apply not only to “sickness” spreading in hu-
man/online social networks, but more generally as well. As
a concrete example of these two different modes of“sickness”,
consider a computer network that undergoes cascaded fail-
ures due to to virus/worm propagation (the epidemic) vs.
random failures due to misconfiguration whose stochastic
behavior is external to the network itself (independent in-

fections). When a small subset of nodes report failure, the
objective is to determine which of these two modes has oc-
curred.

We study this problem in four regimes: for a d-dimensional
grid, for uniformly branching tree, and critically and also
highly connected Erdös-Renyi graphs. Grids are in a sense
local connectivity models, lacking long-range edges. They
model contact networks that are very correlated with ge-
ography. They are characterized by slow spreading and
small neighborhood growth. Trees model explosive (expo-
nential) neighborhood growth. Also, while contact networks
are rarely trees, they are often (locally) tree-like. Erdös-
Renyi graphs are on the opposite extreme to grid graphs:
there is no notion of near and far when it comes to an edge,
as all edges are equally likely. They model contact networks
with large neighborhoods, and small diameter.

As is to be expected, if too many nodes are infected, then
the effect of network structure is washed away: it is effec-
tively impossible to distinguish between a random infection
model independent of the network, and a network-spread
epidemic. Also, from a practical perspective, we are inter-
ested in detecting if there is an epidemic at an early-stage
where only “few” nodes are infected, so that appropriate in-
tervention strategies can be deployed to quell the epidemic.
An interesting general finding is that the results are quite
delicate, depending both on the topology of the graph, and
the level of infection. What is meant by “too many infected
nodes” crucially depends on both the topology of the net-
work, as well as the algorithm used. Thus using carefully
designed algorithms with performance guarantees in terms
of their detection capability, is critical.

The intuition behind distinguishing the infection mecha-
nism is simple: if the sick nodes are uniformly spread out
on the network, a random infection is likely at work, while
if they are “clustered” in some appropriate sense, then it
is more likely that we have an infection on our hands. As
we see, not all measures of “clustering” are equally powerful.
Thus, finding efficiently computable and maximally discrim-
inating measures of clustering is, in a sense, the heart of the
problem. The main contribution of this paper is to provide
the analysis of this problem for several different regimes,
and to provide two efficiently implementable algorithms that
each compute a particular measure of“spread.” We call them
the “Ball Algorithm”and the“Tree Algorithm” (they are de-
scribed explicitly below). The Ball Algorithm considers the
smallest ball that contains all the reporting sick nodes, and
the Tree Algorithm considers the smallest tree connecting all
reporting sick nodes (the Steiner tree). Both algorithms then
declare “infection” or “random sickness” based on a thresh-
old test. We analyze both algorithms, showing analytically
and empirically where each is strongest. Figure 1 shows ex-
amples of this problem on a grid and an Erdös-Renyi graph.

Related Work
The infection model we consider here is the susceptible-
infected (SI) model [3]. Most of the work on this model
has focused on the analytic side, characterizing the spread
of the infection in different settings, e.g., for graphs with
multiple mixing distances (that is, local and global spread-
ing) [4], and where the infected nodes are mobile [5]. There
are other approaches to modeling infection, and while inter-
esting to extend the current ideas and analysis there, we do
not consider these in the present work.

Figure 1: This figure shows infection (left) vs ran-
dom sickness (right) on the grid and the Erdös-
Renyi graph. The figures have been generated using
NetworkX [2].

On the inference side, work in [6] provides a Bayesian in-
ference approach for estimating the transmission rates of the
infection. Alternatively, one can use MCMC methods to es-
timate the model parameters [7], [8]. A similar problem is
considered in [9, 10], where, given a set of infected nodes,
one seeks to determine which node is most likely to be the
original source of the infection. These results typically in-
volve approximation, at least for general graphs, due to the
difficulty of exact inference for infections.

Several of our results here are related to first-passage per-
colation [11]. In the first-passage percolation basic formula-
tion, there is a (lattice) graph of infinite size. For each edge,
an independent random variable is generated that represents
the time taken to traverse that edge. Some node is denoted
the source, and the time taken to reach another node is the
minimum of the total time to traverse a path over all paths
between the source and that destination. This is equivalent
to an infection traveling through the network as considered
here. Work has been done to analyze interesting properties
of this percolation, such as the shape of the infection and
the rate at which it spreads. In particular, there are strong
results on trees [12] and lattices [11] which we leverage.

Outline of the Paper and Notation
The remainder of the paper is organized as follows. In Sec-
tion 2, we precisely define the statement of the problem, and
the two infection models which we later attempt to distin-
guish. We also give the Ball and Tree Algorithms whose
performance we analyze in the sequel. Section 3 considers
infections and node sickness in a grid topology. Section 4
then analyzes trees. Section 5 considers Erdös-Renyi graphs,
where we find more complex behavior exhibited. Finally, we
numerically illustrate our results and the performance of our
algorithms on different graph topologies, in Section 6. Fig-
ure 1 shows examples of the infection on these graphs.

2. PROBLEM STATEMENT
This paper considers the spread of a virus or an infection

among interconnected agents, that might represent comput-
ers, or perhaps humans. We model the interconnections via
edges in a graph, with an edge representing interaction be-

tween two nodes. This could be physical interaction as in
a contact model, or it might denote an acquaintance re-
lationship as in a social network. The setting we have in
mind is when the interaction represented by these nodes has
the potential to spread certain types of viruses. In contact
networks this might be due to direct infection, while in a
social network this might be because the virus exploits the
implicit trust represented by links (e.g., click-through more
likely for a malicious link sent from a friend’s account than
from a stranger’s).

We note that while this paper uses the language of infec-
tion and virus, our results could equally well be understood
in the context of information or some other abstract qual-
ity (e.g., owns an iPhone), where the mechanism of spread
or acquisition is of interest (e.g., television commercials, or
word-of-mouth). While we do not consider weighted graphs
here, the related questions are clearly relevant, and are nat-
ural extensions of the work we present.

Node Sickness Models
As discussed, we assume there are two possible causes of
the sickness: Random sickness, where the sickness spreads
randomly and uniformly over the network and in particular
the network plays no role in spreading the sickness; and
Infectious spread, where the sickness is caused through a
contagion that spreads through the network, with one node
infecting its neighbors with some probability. We wish to
distinguish between these two modes of sickness, when only
a small sub-collection of nodes report sick. More precisely,
we have:

Random Sickness: Each node becomes sick with prob-
ability q̂1, independently of all other nodes. At a fixed
time t each sick node reports sickness to a central au-
thority with probability q̂2, again independently of all
other nodes. Thus on average, a fraction q̂ of the net-
work reports sick, where we let q̂ = q̂1 · q̂2.

Infectious Spread: At time 0, a randomly selected node
in the network becomes infected. When a node be-
comes infected, we start a clock for each outgoing edge
attached to an adjacent node that is not already in-
fected, with expiration time exponentially distributed
with unit mean (independent of any other event). Upon
expiration of a edge’s clock, the corresponding node
becomes infected (if by then it is not already infected
through some other neighbor), and in-turn begins in-
fecting its neighbors. Alternatively, the infection can
be said to travel at rate 1 along the edges of the graph.
In this way, the infection spreads through the graph
for time t. At this time, as in the network-free sick-
ness model, sick nodes report the sickness indepen-
dently with probability q. For q = 1, the reporting
sick nodes form a connected component, making the
detection problem trivial. For small values of q < 1,
however, reporting nodes need not be adjacent, and
can in fact be far from other reporting sick nodes.

Naturally, the problem is of most interest when the probabil-
ities of sickness, reporting, and also time that the sicknesses
are collectively reported/discovered in the spreading model,
are such that the expected numbers of sick nodes and report-
ing sick nodes are equal under both models, as this is when
the discrimination problem is most challenging. We refer to

“infected nodes,” denoted by I , when the model is an infec-
tion, and “sick nodes,” denoted by S, when the model is a
random sickness. We use Ir and Sr to denote the subset of
reporting sick nodes in each setting. The case of most inter-
est is thus when E[Sr] = E[Ir]. When only a few (say, two
or three) nodes report sick, distinguishing between the two
models is easy. On the other extreme, when all or nearly all
of the network is infected, distinguishing the two modes of
sickness is impossible. Thus one way to talk about the power
of a given algorithm on a given graph topology, is according
to how many nodes can report sick and still have success-
ful discrimination between the two models. Equivalently, we
talk about the“time” t, and normalize such that at this fixed
time t, E[St] = E[It]. While we explicitly use the knowledge
of t in the algorithms and results, we note that it is possible
to estimate this parameter t using only the number of sick
people reporting, and knowledge of spreading and reporting
rates. It turns out, this does not materially change the con-
vergence results up to poly-log factors (i.e., the estimates
appropriately concentrates to the true value in the large n
setting). However, in this paper, we simply assume that t is
known for ease of discussion.

Accordingly, in our analysis below, we seek to provide
bounds on precisely this: what is the maximum number of
reporting sick nodes we can have, while still maintaining
correct detection with probability one (asymptotically). We
assume that the a priori probabilities of each type of sickness
are equal, and define the event error as incorrectly identi-
fying the type of sickness. Then using this notation, we
would like upper bounds on t, or equivalently E[Sr] (which
scales with graph size), for which we can guarantee that
if the sickness is discovered before time t, or before E[Sr]
nodes are infected, then we can discriminate between the
two spreading mechanisms, i.e., P (error) → 0 as n → ∞.
We note again that we consider the problem where we have
no knowledge of the evolution of the sick-reporting process.
This is an interesting direction, which would surely enable
more powerful algorithms that can exploit this additional
time-evolution information.

The Ball and Tree Algorithms
We consider two algorithms for solving this problem. We
compare their error rates analytically in Sections 3, 4 and 5,
and then empirically in Section 6. These algorithms examine
the set of reporting sick nodes and calculate a ‘score’ that
rates in their respective ways how clustered the sick nodes
are. They take as a parameter a threshold m and if the
score is no more than that threshold, they report that the
sick nodes appear to come from an infection. The threshold
parameter m is topology-dependent, and we provide values
for it in each relevant section below. We denote the distance
between nodes u and v by dist(u, v).

We term the first algorithm the ‘Ball Algorithm’. We find
the center of the reporting sick nodes, and then compute the
radius of the ball containing all reporting sick nodes. If this
distance is no more than m, we call the sickness an infection
because it appears clustered. Otherwise, we call it a random
sickness.

The second algorithm is called the ‘Tree Algorithm.’ We
find a tree with the smallest number of nodes that connects
each reporting node – this is called the Steiner tree [13].
If the number of nodes in the tree is less than the (again
topology-dependent) threshold m, we call the sickness an

Algorithm 1 Ball Algorithm

Input: Set of reporting sick nodes S; Threshold m
Output: INFECTION or RANDOM

k ←∞
for all v ∈ V do

d← 0
for all u ∈ S do

if dist(u, v) > d then
d← dist(u, v)

end if
end for
if d < k then

k ← d
end if

end for
if k ≤ m then

return INFECTION
else

return RANDOM
end if

infection. Otherwise, we call it a random sickness. Finding
the minimum Steiner tree is an NP-hard problem, though
there are efficient algorithms that give approximate solu-
tions, guaranteeing no more than twice the optimum number
of nodes or better [14].

We analyze this inference problem and in particular the
performance of our two algorithms, on three types of graphs.
First, we consider an infection on a d-dimensional grid. In
this case, both our algorithms are able to (asymptotically)
eliminate Type I and Type II error, for up to a constant
fraction of sick nodes, even when only a logarithmic fraction
report sick. Orderwise, this is the best any algorithm (re-
gardless of computational complexity) can hope to achieve.
Our empirical results verify this performance, and also show
that the Ball Algorithm outperforms the Tree Algorithm on
the grid.

Algorithm 2 Tree Algorithm

Input: Set of reporting sick nodes S; Threshold m
Output: INFECTION or RANDOM

T = SteinerT ree(G,S)
k = card(T)
if k ≤ m then

return INFECTION
else

return RANDOM
end if

Next we consider tree graphs. Here we show that the Tree
Algorithm can correctly discriminate between infections and
random sickness for larger numbers of reporting sick nodes
than the Ball Algorithm is able to handle. Finally, we an-
alyze Erdös-Renyi graphs under two different connectivity
regimes: a low-connectivity with edge probability close to
the regime when the giant component emerges; and a high
connectivity regime the produces densely connected graphs.
Again, we show that each algorithm can identify an infection
with probabilities of error that decay to 0 as the network size

goes to infinity, for appropriate ranges of parameters. Not
surprisingly, the more densely connected, the more difficult
it becomes to obtain a good measure of ‘clustering.’ Con-
sequently, in these latter regimes, we find that one needs
to intercept the sickness much earlier, i.e., with many fewer
reporting sick nodes, in order to hope to accurately discrim-
inate between the two potential sickness mechanisms. In
the Erdös-Renyi setting, we are unable to find direct ana-
lytic results to compare our two algorithms. However, in
Section 6 we evaluate them empirically and find that the
Ball Algorithm tends to perform better, despite its relative
algorithmic simplicity.

3. MULTIDIMENSIONAL GRIDS
The phenomenon of a sickness that is “going around” the

office, the neighborhood, the school, is an instance of a con-
tact network that is geographic – distance on the graph is
closely related to geographic distance, and thus there are no
‘long hops’ in the graph. A canonical graph from this family
is the d-dimensional grid, and we consider this first. Thus,
let the graph G be such a grid network with n nodes and
side length n1/d. To avoid edge effects, we let the opposite
edges of the grid connect, so that the graph forms a torus.
Now due to the symmetrical structure of the grid, the initial
source of an infection does not change the behavior of the
infection.

Now we establish that both our algorithms work very well
on this graph, even in the case of very low reporting rates.
First we consider the Ball Algorithm. It turns out this per-
forms very well on this very structured graph, in part be-
cause it matches well with the expected shape of an infection
on a grid. The Tree Algorithm can also be shown to work on
this graph for smaller infections, though this proof has been
omitted for brevity and because it is heavily outperformed
by the Ball Algorithm in this setting.

The next theorem gives conditions on the performance
of the Ball algorithm, when time t has elapsed (recall that
this is equivalent to fixing the expected size of the infection,
and we assume for now that this is known). The number of
reporting nodes can be arbitrary, but must be above log n.
Note that this requirement, along with the time t, implicitly
constrains the underlying parameters of the problem setup,
namely q. We use µ to denote the expected rate that an
infection travels along an axis on the grid, which is only a
function of the dimension of the graph, since we assume the
spreading rate to be normalized. We have the following.

Theorem 1. Consider the Ball algorithm (Algorithm 1)
with threshold m = 1.1dµt. Suppose that the expected num-
ber of reporting nodes scales at least as log n. Then there
exists constant C1 such that for sufficiently large n, if the
expected number of infected nodes is less than C1n,

P (error)→ 0.

In other words, an infection can be identified with probability
approaching 1 as n tends to infinity.

To prove this theorem, we use a previous result that char-
acterizes the spread of an infection. Since we model the time
it takes the infection to traverse an edge as an independent
exponentially distributed random variable, the time a node
is infected is the minimum sum of these random variables
over all paths between the infection origin and that node.

This simply phrases the infection process in terms of first-
passage percolation on this graph. This allows us to use
a result characterizing the ‘shape’ of an infection on this
graph (see [11]). Let I(t) be the set of infected nodes at
time t. Imagining the graph as the integer lattice embed-
ded in R

d with the infection starting at the origin, let us
put a small ℓ∞-ball around each infected node. This allows
us to simply state inner and outer bounds for the shape
of the infection. To this end, define this expanded set as
B(t) = I(t) + [−1/2, 1/2]d.

Lemma 1 ([11]). There exists a set B0 and constants
C1 to C5 such that for x ≤

√
t,

P{(B(t)/t ⊂ (1 + x/
√
t)B0)} ≥ 1− C1t

2de−C2x

and

P{(1−C3t
−1/(2d+4)(log t)1/(d+2))B0 ⊂ B(t)/t}

≥ 1− C4t
d exp (−C5t

(d+1)/(2d+4)(log t)1/(d+2)).

That is, the shape of the infected set B(t) can be well-
approximated by the region tB0.

Moreover, one can show that this set B0 is regular in that
it contains an ℓ1-ball and is contained in an ℓ∞ ball: {x :

‖x‖1 ≤ µ} ⊂ B0 ⊂ [−µ, µ]d, where µ
△
= supx{(x, 0, ..., 0) ∈

B0}, effectively the rate the infection spreads along an axis
[11]. Note that µ does not depend on the realization. This
result says that the expected shape of the infection is“nearly”
a ball, in the sense described above. Therefore it is not sur-
prising that our Ball Algorithm should do well.

Now we turn back to the finite grid with side length n1/d

to present the proof our theorem.

Proof of Theorem 1. To prove this theorem, we prove
the following more general statement. Let m be the thresh-
old for the Ball Algorithm and suppose (2m/d+ 1) < n1/d.
If for some ǫ > 0,

t <
m

dµ(1 + ǫ)
,

the Type II error probability decreases to 0 as t, m, and
n increase. In addition, the Type I error probability also
decreases to 0 in the limit if

tdq

(

n1/d − 2m/d − 1

n1/d

)

= ω(logn).

We begin with the Type II error probability, which we
denote by EII : the probability we mistake an infection pro-
cess for a random sickness. As long as m is chosen as in
the statement of the theorem, we are guaranteed that if the
sickness is in fact from an infection, then using the above
lemma, the spread of the infection is limited to the sub-
grid [−m/d,m/d]d with high probability, where the origin
is set to be the original infected node. Consequently, all
nodes must be within m steps of the origin since the grid is
d-dimensional. That is, we have

EII < 1− P{B(t) ⊂ [−m/d,m/d]d}

< C1t
2de−C2t

−1/2(m/(dµ)−t),

from Lemma 1, where we use x = min (t−1/2(m/(dµ)− t), t1/2).
Therefore, given ǫ > 0, t < m

dµ(1+ǫ)
, indeed the error goes to

0 as t and n increase.

Next, we consider Type I error, EI : the probability we
mistake a random sickness for an infection process. This
happens if all the reporting sick nodes happen to fall inside
the ball of radius m/d. Recall that our problem is only of
interest if the two processes yield roughly the same number
of sick nodes reporting. We can get a lower bound on this
number for the infection process (and hence for the random
sickness process) this time using the inner bound on B0. For
the infection process, the second part of Lemma 1 asserts
that the infected region contains all nodes within the l1-
ball of radius w = (1 − C3t

−1/(2d+4)(log t)1/(d+2))µt with
probability at least 1− P1, where

P1 = C4t
d exp (−C5t

(d+1)/(2d+4)(log t)1/(d+2)).

Therefore at least 2 ⌊w⌋d nodes will be sick with that prob-

ability, and hence there will be on average, at least 2q ⌊w⌋d
sick nodes reporting. What is the probability that the ran-
dom sickness model with (at least) this many sick nodes will
have all reporting nodes inside the sub grid [−m/d,m/d]d?
There are L = (2m/d + 1)d nodes in that region. Evi-
dently, any given sick node satisfies that property with prob-
ability L/n, so they all satisfy it with probability at most

(L/n)2qw
d

. Note that any dependence between sick nodes
only reduces the probability. After this, we use a union
bound to find that the probability no such region contains

all sick nodes is at most P2 = n(L/n)2qw
d

.
Putting it all together, we have,

EI < 1− (1− P1)(1− P2) < P1 + P2

< C4t
d exp

(

−C5t
(d+1)/(2d+4)(log t)1/(d+2)

)

+ n

(

(

2m/d + 1

n1/d

)d
)2qwd

.

and

2wd ≥ 2µdtd(1− dC3t
−1/(2d+4)(log t)1/(d+2)).

Note that P2 dominates as n increases. We want to find
the regime when this probability tends to 0. That is, we
want

n exp(2µdtdqd ln

(

1− n1/d − 2m/d − 1

n1/d

)

(1− dC3t
−1/(2d+4)(log t)1/(d+2)))→ 0.

Using a Taylor expansion and some simplification, we find
a sufficient condition for this is that

tdq

(

n1/d − 2m/d− 1

n1/d

)

= ω(logn).

This completes the proof of the general statement. In ad-
dition, the Type I error can be shown to dominate in the
range of interest. Theorem 1 follows immediately using the
threshold provided.

4. TREES
We now turn to the problem on tree graphs. Trees have

different (exponential) spreading rates from grids, and hence
manifest fundamentally different behavior. Indeed, while
simple, tree graphs convey the key conceptual point of this
section: the difficulty of distinguishing an epidemic from

a random sickness on graphs where the infection spreads
quickly. In addition, while the results do not immediately
carry over, the behavior on a tree provides an intuition for
the behavior of an infection on an Erdös-Renyi graph, which
we cover in the next section.

Thus, let G be a balanced tree with n nodes, constant
branching ratio c, and a single root node a. In the case of
an infection, instead of choosing a node at random to be
the original source of the infection, we always choose the
root of the tree. This is the most interesting case, since
otherwise a constant fraction of the nodes are very far from
the infection source and bottlenecked by the root node. Also,
this precisely models the scenario for locally tree-like graphs,
such as Erdös-Renyi graphs.

First we examine the performance of the Ball Algorithm
on this graph. Again recall the meaning of t: it is the time
at which the sicknesses are reported, and also a proxy for
the expected number of infected nodes.

Theorem 2. Consider the Ball algorithm (Algorithm 1).
Suppose that the expected number of reporting nodes scales
at least as log n. Then there exist constants b, β such that if
the threshold m = 1.1bt and the expected number of infected
nodes is less than nβ ,

P (error)→ 0.

In other words, an infection can be identified with probability
approaching 1 as n tends to infinity.

Proof. To prove this theorem, we prove the following
more general statement:

For some constant β < 1, if qE[I] = ω(1) and E[I] <
nbeta, then the Type I error probability tends to 0. Next,
there exists a constant b such that if b0 > b and the thresh-
old m > b0t for all n, then the Type II error probability
converges to 0 asymptotically, as the tree size scales.

The Type II error bound follows from results in first pas-
sage percolation [15]. In particular, one can compute the
fastest-sustainable transit rate. This quantity is basically
the time from the root to the leaves, normalized for depth,
as the size of the tree scales. Formally (again, see [15] for
details), let us consider a limiting process of trees whose size
grows to infinity, with Γn denoting the balanced tree on n
nodes, and δ(Γn) denoting the set of paths from the root to
the leaves, and for a node v ∈ p for some path p ∈ δ(Γn),
let Xv denote the time it takes the infection to reach node
v. Then the fastest-sustainable transit rate is defined as:
limn infp∈δ(Γn) lim supv∈p

Xv
depth(v)

. Basic results [15] show

that this quantity exists, and thus shows that the rate at
which an infection travels, defined as the maximum distance
of the infection from the root over time, converges to a con-
stant b that depends on the branching ratio. The probability
that an infection travels at a faster rate converges to 0 in
the size of the tree. This establishes the Type II result.

The Type I error result follows simply as well. Given the

branching ratio, c, there are cm+1
−1

c−1
nodes within a distance

m from the root. Again letting Sr denote the number of
reporting sick nodes, the probability of a Type I error is
(approximately) (c

m

n
)Sr – the probability that the randomly

sick nodes are closer than the threshold m to the root. Then
if cm is o(n), it is sufficient that the probability that Sr = 0
goes to 0. This occurs if the expected number of reporting
sick nodes is ω(1). That is, we need qE[I] = qe(c−1)t =
ω(1), calculating E[I] with a simple differential equation.

Alternatively, if cm = αn for some constant α < 1, then we
require Sr to increase with n with probability 1. The same
condition as before is sufficient for this to be true. This
completes the Type I result.

Using both these results, there is a choice of m such that
both error types become rare as long as cb0t < αn, so ct <
(αn)1/b0 . The theorem follows using a particular threshold.

Next, we consider the Tree Algorithm on this graph. The
threshold here depends on E[I] instead of depending explic-
itly on t, but as discussed previously, these are essentially
equivalent.

Theorem 3. Consider the Tree algorithm (Algorithm 2)
with reporting probability q > log log n/ log n and threshold
m = E[I] log log n. Suppose that the expected number of re-
porting nodes scales at least as log n. Then for any constant
α < 1, if the expected number of infected nodes scales as less
than nα,

P (error)→ 0.

In other words, an infection can be identified with probability
approaching 1 as n tends to infinity.

Proof. We prove the following generalization of the the-
orem: The Type I error probability converges to 0 for any
choice of the threshold m = o(qE[I] log n) with qE[I] =
O(nα) for some α < 1. In addition, the Type II error prob-
ability converges to 0 if m = ω(E[I]).

To prove the Type II error result (mistaking an infection
for a random sickness), note that the size of the infection

is E[S] ≤ e(c−1)t. Since the Steiner tree containing the re-
porting nodes can be no larger than the infection itself, the
Type II error converges to 0 as long as we use a threshold
m = ω(E[I]) from Markov’s inequality. Next, we evaluate
the Type I error probability (mistaking a random sickness
for an infection). This requires estimating the size of the
Steiner tree containing the reporting sick nodes. Suppose
there is an α < 1 such that E[Sr] = O(nα). Since the
number of sick nodes increases with n, the probability that
there are sick nodes on at least two subtrees of the root node
goes to 1, hence the root of the tree is in the Steiner tree
connecting the randomly sick nodes with high probability.
Given this, we see that a node is in the Steiner tree if and
only if it is infected or a node below it in the tree is infected.
Let N = Sr. Since E[Sr] is ω(1), N is ω(1) with high prob-
ability. Choose the first level in the tree that has at least
N/c nodes. Then there are between N/c and N subtrees be-
low that level. It is straightforward to show that each sick
node in the tree has at least a 1/2 probability of being a leaf
node since c ≥ 2. Since at least N nodes are sick, at least
N/4 of the leaf nodes are sick and distributed independently
among the at most N subtrees. Therefore, the total number
of subtrees with sick nodes at the bottom is at least N/(8c).
In addition, each leaf node in a separate subtree requires a
path at least up to the aforementioned level in the Steiner
tree. This gives us the following high probability bound on
the Steiner tree size.

Steiner Tree Size >
N

8c
(logc n− logc N)

> N
(1− α) logc n

8c

= Sr
(1− α) logc n

8c
.

For any w = o(E[Sr]), we know that Sr > w with probability
approaching 1, since E[Sr] = E[Ir]. Also, if E[Sr] = O(nα),
then Sr = O(nα) with high probability. Therefore, if m =
o(qw logc n), which is equivalent to m = o(E[Sr] log n), the
Type I error probability tends to 0.

Note that the Ball Algorithm succeeds until the farthest
infected node reaches the edge of the graph. At this point,
the ball radius can increase no further, thus there is no hope
of distinguishing an infection from a random sickness. Since
this farthest point travels at a faster rate than the bulk
of the infection, the Ball Algorithm can only work up to
some time logc n/b. However, the Tree Algorithm can still
correctly identify an infection with high probability nearly to
the point where Θ(n) nodes are sick. This includes infection
times close to logc n, the time it takes for every node to be
infected. From this, we see that the Tree Algorithm works
for a wider range of times compared to the Ball Algorithm.
This is demonstrated by simulations in Section 6.

5. ERDÖS-RENYI GRAPHS
In this section, we consider Erdös-Renyi graphs. A no-

table difference in the topology of Erdös-Renyi graphs and
grids is that the diameter of the former scales much more
slowly (logarithmically) with graph size. That is, Erdös-
Renyi graphs are more highly connected, in the sense that
no two nodes are too far apart. These model contact graphs
that are not tightly correlated to geographic proximity. For
example, one might consider physical proximity forced by an
event (a concert) attended by neighbors and non-neighbors
alike, or a virtual network where edges are formed indepen-
dent of geography.

We consider two connectivity regimes: the regime where
the giant component first emerges, and each node has a
constant expected number of edges, and then a much more
highly connected regime, where the graph demonstrates dif-
ferent local properties, and discrimination between random
sickness and infection is harder still.

5.1 Detection with Constant Average Degree
We first consider Erdös-Renyi graphs with constant aver-

age degree. Define the graph G = G(n, p) to be the graph
with n nodes and for each pair of nodes, there is an edge
between them with probability p. In the section above, we
used c to denote the branching ratio. We overload notation
and use it again to measure the spread of the graph, but
here as the expected degree: let p = c/n with c > 1. In this
regime, the graph is almost surely disconnected, but there is
a giant component. Since this problem would be trivial on a
disconnected graph, we limit both the infection and random
sick nodes to the giant component. We show that unlike
the case of trees, we are unable to distinguish infection from
random sickness for close to a constant fraction of nodes.
Instead, we consider infections that cover only o(n) nodes.
As is well-known (e.g., [16]) in this connectivity regime, the
graph is locally tree-like, and hence tree-like in the infected
region. This allows us to leverage some results from the
previous section, although direct translation is not possible,
particularly in the analysis of our second algorithm.

Again we note that in the next two theorems, the thresh-
old depends on t and E[I], respectively. As discussed, these
are essentially equivalent, and the choice amounts to ease of
notation and exposition.

Theorem 4. Consider the Ball algorithm (Algorithm 1).
Suppose that the expected number of reporting nodes scales
at least as log n. Then there exist constants b, β such that if
the threshold m = 1.1bt and the expected number of infected
nodes is less than nβ ,

P (error)→ 0.

In other words, an infection can be identified with probability
approaching 1 as n tends to infinity.

Proof. The proof follows similar lines as in the previous
section, so we omit most details. In particular, we show
the following: Using a threshold m < log n

2 log c
and qE[I] =

ω(1), the probability of a Type I error is at most o(n−1). In
addition, the probability of a Type II error converges to 0
as long as m > bt for a constant b specified in the proof.

To control the probability of a Type I error, we have
to bound the probability that all randomly sick nodes are
within a ball of radius m on the graph. A sufficient condi-
tion for this is that all nodes are within distance 2m from
a given sick node, or there are 0 nodes sick. The latter
probability is simply (1 − q)n which decays exponentially.
Also, with probability 1 − o(n−1), the number of nodes
within a distance 2m from a given sick node is no more than
16m3c2m log n [17]. Then the error probability in this case

is at most
(

1− 16m3c2m log n
n

)n

. Then this decays exponen-

tially as long as c2m = o(n), which occurs when m < log n
2 log c

.

Thus we find in total, the Type I error probability is o(n−1).
We bound the probability of a Type II error again using

the notion of the fastest sustainable transit rate from first-
passage percolation [15]. As in Theorem 2, the constant b
comes from the calculation of the infection spreading rate,
and the results follow similarly.

The Tree Algorithm is more complex to analyze for this
graph. The more delicate analysis comes from the challenge
of bounding the size of the Steiner tree for the random sick-
ness process, needed to control Type I error.

Theorem 5. Consider the Tree algorithm (Algorithm 2)
with reporting probability q > log log n/ log n and threshold
m = E[I] log log n. Suppose that the expected number of re-
porting nodes scales at least as log n. Then for any constant
α < 1/2, if the expected number of infected nodes scales as
less than nα,

P (error)→ 0.

In other words, an infection can be identified with probability
approaching 1 as n tends to infinity.

Proof. We show the following more general statement:
The Type II error probability decays to 0 if the threshold is
chosen as m = ω(E[I]) and E[I] = o(n). The Type I error
probability goes to 0 when m < kqE[I] for some constant
k = o(log(n/(qE[I])2)) and qE[I] = o(

√
n).

First, if the sickness is from an infection, the smallest tree
connecting the reporting sick nodes must have size no more
than the actual number of sick nodes. Hence, to bound
the Type II error, it is sufficient to bound the probability
the number of infected nodes is over a certain size. This
probability decreases to 0 as long as m is ω(E[I]) when
E[I] = o(n). To see this, recall that in this regime, the
graph looks locally tree-like. Consequently, we can bound

the maximum number of infected nodes using bounds on
the distance an infection can travel (e.g., see [15]). Again,
Markov’s inequality provides the exact error bound in the
theorem statement.

To control Type I error probability, that a random sickness
is mistaken for an infection, we must lower bound the size
of the Steiner tree of a random sickness. Call this minimum
value r. Again, let S denote the number of sick nodes, and S
the set of sick nodes. For A ∈ S , let dA denote the distance
from that node to the nearest other sick node. First we
show that

∑

A∈S
dA ≤ 2r. Note that the bound is attained

for some graphs, such as a star graph with the central node
uninfected.

Consider the Steiner tree subgraph, and duplicate all edges
on it. Since the degree of each node in the subgraph is even,
there is a cycle that connects all these nodes. Naturally, the
length of this cycle, which is twice the size of the Steiner
tree, is larger than the length of the smallest cycle connect-
ing all sick nodes. In addition, the length of this cycle is
at least

∑

A∈S
dA, since the distance from one sick node to

the next sick node in the cycle is clearly no smaller than the
distance from that sick node to the closest sick node. This
establishes that

∑

A∈S
dA ≤ 2r.

Now we simply need to bound dA. To do this, we need an
understanding of the neighborhood sizes in a G(n, p) graph.
We provide an interesting way to visualize the distance dis-
tribution f(d) – the distribution for the number of nodes at
distance d. Then, using a CLT result, we provide a lower
bound on the distance between one random node and the
nearest sick node. To do this, we leverage concentration re-
sults for spreading processes on graphs. In order to not con-
fuse this process with the sickness/infections we have been
discussing, we follow standard terminology (e.g., [16]) and
call a node “checked” if it has been reached by the infec-
tion, and “active” if it is checked but its neighbors are not
all checked. Our process evolves as follows. At each time
slot, we pick an active node at random, add its unchecked
neighbors to the set of active nodes, and remove it from
the active node set. If the set of active nodes ever becomes
empty before the entire graph has been checked, we pick an
unchecked node at random and make it active. This process
continues until the whole graph is checked. Thus, at any
time t we have checked nodes Ct, active nodes At, and the
remaining nodes Ut.

The following CLT result for this process is established
in [16]. Define ρ to be the solution to ρ = exp(c(ρ − 1)).
For any constant α such that αn is an integer, define uαn =
card(Uαn). Then, for 0 < α < ρ, uαn converges to ne−αc.
In particular,

(uαn − ne−αc)/
√
n

d−→ N(0, e−αc − c−2αc).

Now we illustrate how to use this result to determine the
distance distribution for this graph. First, note that we can
replace the random selection of an active node by always
picking the closest node to the original node at each step in
the process, and the CLT result remains unchanged. Thus,
the process effectively performs a breadth first search of the
graph. Eventually, we reach a state where the set Ct of
checked nodes contains all nodes at distance at most d from
the original node, A. Label the time this occurs td. Note
that the number of nodes at distance d + 1 is the set of
active nodes, and card(Atd) = n− utd − td. Then the time
that we check all nodes within distance d + 1 will be at

Figure 2: Diagram illustrating how the limiting
curve of this process can be used to determine the
distance distribution.

td + (n− utd − td) = n− utd . This can be used to calculate
the distance distribution. Letting time go to infinity and
plotting on the graph with spacing 1/t, we can think of ut as
a curve. Using the above CLT result, the curve y = n − ut

can be approximated by y = ct for small t. That is, the
distance distribution is close to that of a tree graph with
the same branching ratio, c. Now we can calculate f(d), the
number of nodes at distance d. Let ǫ > 0. It is simple to
calculate by comparison of the two curves above, that with
this branching process, f(d + 1) < (1 + ǫ)cf(d). Therefore,

there are no more than ((1 + ǫ)c)d nodes within distance d
when the process is close to its limit, which occurs with high
probability provided that d = ω(1). Figure 2 illustrates how
f(d) is determined from these curves.

Now assume the number of sick nodes satisfies S = o(
√
n).

Let ǫ > 0 andm = ǫn/S2. We let k be a distance from an ar-
bitrarily chosen sick node, A, within which there are at most
m nodes. Using the distance distribution calculation above,
we find k = o(log(n/S2)) is sufficient for this condition. As
the sick nodes are randomly selected, the probability that
none of these are within a distance k from A is approxi-
mately (1 − S/n)m → e−ǫ/S → 1− ǫ/S. Thus the distance
to the closest sick node to A is at least k, i.e., dA > k,
with high probability, and using a simple union bound, the
same is true, simultaneously, for all sick nodes. Hence the
Steiner tree joining the set of reporting sick nodes will be
of size at least r ≥ (1/2)

∑

dA = (1/2)kqE[I], with prob-
ability decaying to zero. Again we have used the fact that
E[I] = E[S]. Therefore, the Type I error probability tends
to 0 as long as the threshold satisfies m < kqE[I], for k =
o(log(n/(qE[I])2)). Using this result, we find that the Tree
Algorithm can succeed so long as q log(n/(qE[T])2) = ω(1).
This is a complex condition, though the conditions given in
the theorem are sufficient for it to be true.

5.2 Detection on Dense Graphs
Now we consider the case of an Erdös-Renyi graph with

a denser set of edges. Higher connectivity means the in-
fection spreads faster, making it more difficult to distin-
guish between spreading mechanisms. The performance de-
pends critically on the exact scaling regime. We consider the
regime where there exists d ∈ Z and constants ǫ, h ∈ R such
that ǫ < nd−1pd < h holds for all n as n→∞ (see also [18]
for further discussion of this scaling regime and properties
of these dense graphs). The next result bounds the size of

the Steiner tree on a random collection of nodes, and is the
key result for bounding of Type I error.

Lemma 2. Suppose nodes are independently sick, with prob-
ability n1/d/n, so that the expected number of reporting sick

nodes is qn1/d. Further suppose our graph is a G(n, p) whose
parameters satisfy ǫ < nd−1pd < h for d > 4. Let Z be the
size of the minimum Steiner tree connecting the reporting
sick nodes. Also, let m < (d−3)qn1/d/2 be the threshold for
the Steiner tree size in the Tree Algorithm. Then Z satisfies
the following probabilistic limit: limn→∞ Pr(Z < m) = 0.

Proof. Using precisely the same argument as above, we
can lower-bound the size of the Steiner tree by

∑

dA ≤ 2Z,
where the sum is over all reporting sick nodes, and as before,
dA denotes the minimum distance from a reporting sick node
A to the nearest other reporting sick node. To lower bound
the size of this sum, we rely on a result from [18] that shows
that in this scaling regime, the asymptotic distribution of
the distance between two random nodes is positive on only
d and d+1. That is, almost all nodes are either at distance d
or d+1 from any given source node A, and thus the function
f(d) defined previously, concentrates around d. To put this
another way, let F (d) be the probability that a random node

is at distance more than d from A. Then for any d̂ > 1, if

nd̂−1pd̂ < h, we have

limFd̂ = exp−nd̂−1pd̂ .

Now we condition on the number of sick nodes, S. Note
E[S] = n1/d and the number of reporting sick nodes is
just q times this. We can compute the probability that
the closest node is at distance more than d̂ from A sim-

ply as F I
d̂
→ exp−(I/n)(np)d̂ . Using our scaling regime, we

know that (ǫn)1/d < np < (hn)1/d. To simplify notation, let

h′ = h1/d. We have

F I
d−3 → 1− I/n(np)d−3

> 1− I/h′nn(d−3)/d.

Using a simple union bound, we find that the probability
that some reporting sick node is within distance d − 3 of
another reporting sick node is at most S2/h′nn(d−3)/d. Since
S is a binomial random variable, it concentrates about its
mean: for any ǫ′ > 0,Pr((1− ǫ′)E[S] < S < (1+ ǫ′)E[S])→
1. Within this range, we find that

∑

dA > (d−3)(1−ǫ′)E[S]

with probability at least 1 − (1 + ǫ′)2h′E[S]2n−3/d > 1 −
Cn−1/d for some constant C. This converges to 1 for large
enough n. Thus, we have shown the desired result.

Now the probability of error calculations and hence the
proof of correctness for the Tree Algorithm follows directly
from the above.

Theorem 6. For G as above, suppose the expected num-
ber of reporting sick nodes in either model is qn1/d. Then
the Tree Algorithm with threshold m, the probability of a
Type I error converges to 0, as long as the threshold satisfies
m < (d− 3)qn1/d/2. The probability of a Type II error up-
per bounded by 2/(d−3−ǫ) as long as the threshold satisfies

m > (d − 3 − ǫ)qn1/d/2, for any value of ǫ > 0 such that
ǫ+ 3 < d. This bound converges to 0 as d→∞.

Proof. Consider first the probability of a Type I error.
This is the probability that a random sickness has a Steiner

tree of size less than m. From Theorem 2, this probability
converges to 0 if E[I] = O(n1/d).

Second, consider the probability of a Type II error. As
we have argued before, the size of this tree is no more than
the total number of infected nodes, so it is sufficient to find
the probability there are more than m infected nodes. Using
Markov’s Inequality, this goes to zero when m is an increas-
ing factor greater than the mean number of infected nodes.

6. SIMULATIONS
In this section we provide simulation-based evidence of

the theoretical results of the previous sections. The simu-
lations aim to demonstrate, in particular, two facts. First,
the thresholds specified in the previous sections do actually
work empirically, and as the graph size increases, the prob-
ability of both types of error decrease to zero. In addition,
this provides insight into how quickly the probability of er-
ror decays. While our results include rate estimates given as
part of the proof of correctness, we have not made an effort
to optimize these in this work. Next, we seek to describe
the relative performance of each algorithm, and show that
it is as described above. Thus, we show that the Ball Algo-
rithm outperforms the Tree Algorithm on a grid; the Tree
Algorithm performs better than the Ball Algorithm on a bal-
anced tree; and on an Erdos-Renyi graph, the performances
are similar, with the Ball Algorithm performing slightly bet-
ter. We accomplish this by determining the probability of
error for a range of infection times. We call an algorithm
superior if it works in a wider range of times.

We note that to perform our simulations, it was necessary
to use an approximate Steiner tree algorithm to perform the
Tree Algorithm in a reasonable time frame. Naturally, since
the exact problem is NP-hard, this would be required in any
practical use of this algorithm at the moment. However,
as a consequence, the empirical results may differ from the
true theoretical result that would be obtained by employing
an exact algorithm. Nevertheless, approximation algorithms
typically have reasonable performance and we do not expect
significant deviation from the correct results. The approx-
imation algorithm we use is the Mehlhorn 2-approximation
algorithm provided by the Goblin library [19]. This algo-
rithm is an efficient algorithm which produces a Steiner tree
with no more than twice the optimal number of edges.

Each of the points in these results represents the average
of 10, 000 runs. The average infection size, which is used to
normalize the expected infection size in a random sickness,
was determined by averaging the results of 10, 000 infections.
For each simulation, we use a reporting probability q = 0.25,
and other parameters (n, t and m) as specified in each sec-
tion below. Finally, the graphs are plotted with error bars
at 95% confidence.

6.1 Error Rate Versus Graph Size
Though our theoretical results have characterized the range

for which each algorithm works, naturally we wish to see em-
pirically the error probability for each algorithm and the rate
at which the error decreases as graph size increases. Both
Type I and Type II error probabilities were determined for
each algorithm and graph topology. For this section, we
have chosen time to keep the fraction of infected nodes at a
consistent scaling. In particular, t = 0.2

√
n for the grid, and

t = 0.5 log(0.5n) with p = 2/n for the Erdös-Renyi graph.

Figure 3: Empirical Type I and Type II error proba-
bility vs graph size for grid graphs. The sample size
is 10, 000 and infection size scales linearly with n.

The exact constants for these scalings were chosen empiri-
cally so that the problem was tractable, and the Type I and
Type II errors were as balanced as possible. The thresholds
m were also chosen with the same scaling, according to our
theoretical results. To be exact, for the grid, the Ball algo-
rithm used threshold m = 0.75

√
n and the Tree algorithm

used threshold m = 0.28n. For the Erdös-Renyi graphs, the
Ball algorithm used threshold m = 0.69 log(4.33n) and the
Tree algorithm used threshold m = 0.03

√
n log n log n.

Figure 3 presents our results for grid graphs. The er-
ror probability of the Ball Algorithm on a grid is very low,
while the tree algorithm performs relatively poorly. This
is expected since the Ball Algorithm is closely aligned with
the true shape of an infection on this graph. The Tree Al-
gorithm has a much higher error probability which decays
slowly with n, in particular Type II error.

Next, the results for Erdös-Renyi graphs are in Figure 4.
Here we see again that the Ball Algorithm performs better
than the Tree Algorithm, at least for larger n, and that the
error probability also seems to be decreasing faster for the
Ball Algorithm as well. Though a tree more closely matches
the infection shape on an Erdös-Renyi graph, it is also easier
for a random sickness to mimic a small tree, especially for
small world graphs like Erdös-Renyi graphs. This causes the
Ball Algorithm to be ultimately superior. The Tree Algo-
rithm is superior for larger infection sizes on bottle necked
graphs (such as trees) where the random sickness can be
easily distinguished, as we see in Section 6.2.

Figure 4: Empirical Type I error probability vs
graph size for graphs G(n, 2/n). The sample size is
10, 000 and infection size scales orderwise as

√
n.

6.2 Error Rate Versus Infection Time
Next, we examine empirically how the infection duration

affects the probability of error for each of our algorithms.
Since we are comparing the two algorithms by the range
of infection sizes for which they work, we say an algorithm
is superior if it maintains a lower probability of error for a
wider time frame. We use thresholds that empirically min-
imize the overall probability of error. That is, the sickness
was chosen to be either an infection or simply random with
equal probability, and the threshold with minimum proba-
bility of error from the simulations was chosen.

These results are presented in Figure 5 for grids, trees,
and Erdös-Renyi graphs. For each of the graph topologies,
we used a graph size of n = 1600. The error probability is
plotted against the average infection size from the simulation
for a variety of infection times. This choice better conveys
how infection size affects the error rate, which is the chief
question of interest.

These charts allow us to compare the performance of the
algorithms. It is clear that the error probability of the Ball
Algorithm is less than that of the Tree Algorithm on both
the grid and Erdös-Renyi graphs. On these graphs, the
Ball Algorithm performs uniformly better at all timescales.
However, the results on a tree are more complex. For low
time scales where the infection is small, the Ball Algorithm
has superior performance. However, for higher time scales,
the Tree Algorithm has better performance. The larger
timescales represent a larger infection, which would gener-
ally be considered a harder problem, especially since the

Figure 5: This figure shows the overall error prob-
ability for each algorithm, for each of the three
topologies we consider.

infection is likely to have reached some of the leaves by this
time. Then the Tree Algorithm is superior for this graph
under this viewpoint. In addition, the Tree Algorithm main-
tains a fairly low error for a wider range of infection times.
However, many practical applications of these algorithms
would occur when the infection is still of limited size, in
which case the Ball Algorithm would perform better. The
best algorithm would depend on the circumstances.

It is particularly interesting to ask how these results ex-
tend to real-world graphs, as opposed to random (or highly
regular) graphs that we have constructed. To this end, we
used the call-graph from an Asian telecom network. In this
graph, each node is a cell customer, and there is an edge
between two users if they contacted each other over this
network during a certain range of time. Since the original

Figure 6: This figure shows the overall error proba-
bility for each algorithm on a real world graph.

graph was too large for practical simulation times, we cut
out a partial subset. We chose a random node and all nodes
with a distance 9 and used the induced subgraph generated
by these nodes. The resulting graph had size n = 13189.
The probability of error for a range of times are present in
Figure 6. We see that the results are similar to those for
a Tree graph, where the Ball algorithm performs better on
small infections, but it is out performed by the Tree algo-
rithm at larger times. In particular, we see that the Ball
algorithm performs particularly poorly for larger values of
the infected fraction of nodes. This is to be expected, as the
intuition for the Ball algorithm stems from the geometry of
spatial grid-like networks. The call-graph here is very much
tree-like (however, with very small diameter and high de-
gree), and infections are unlikely to propagate to the same
depth across various leaves. This will result in poor Ball
“fits”, especially as the infected fraction of nodes grow. This
intuition is indeed borne out in the simulations.

The exact parameters for each point in the plots in Figure
5 and 6 are as follows.

Grid graph: (% infected, time (t), Ball threshold (m), Tree
threshold (m)) – (2%, 2, 10, 40), (11%, 4, 21, 137), (26%,
6, 27, 267), (49%, 8, 31, 400), (78%, 10, 34, 525), (95%, 12,
35, 594), (99%, 14, 36, 631), (100%, 16, 37, 625).
Tree graph: (2%, 3, 4, 24), (6%, 4, 5, 48), (11%, 5, 5, 96),
(19%, 6, 5, 160), (30%, 7, 5, 228), (42%, 8, 5, 296), (54%,
9, 5, 359), (64%, 10, 5, 425), (74%, 11, 5, 468), (82%, 12, 5,
508).
Erdös-Renyi graph: (4%, 3, 7, 35), (8%, 4, 8, 80), (18%, 5,
9, 156), (32%, 6, 10, 245), (48%, 7, 11, 337), (63%, 8, 11,
400), (75%, 9, 11, 459), (83%, 10, 12, 496), (89%, 11, 12,
513), (93%, 12, 12, 533).
Real world graph: (0.1%, 3, 7, 25), (0.3%, 4, 8, 87), (0.7%,
5, 8, 180), (1.4%, 6, 8, 350), (2.9%, 7, 8, 591), (5.4%, 8, 8,
959), (9.6%, 9, 8, 1396), (15.6%, 10, 8, 1896).

7. CONCLUSIONS
In this paper, we seek to answer the question: given a

set of people reporting a sickness, how can you distinguish
between a sickness spreading like an epidemic, or simply a
illness that is occurring at random? To answer this question,
we develop two natural algorithms which rate the likelihood
a sickness is an infection by either the size of smallest ball or
smallest tree containing the reporting sick nodes. We pro-

vide theoretical guarantees on the range of infection times
and other parameters for which these algorithms succeed
for several standard graph topologies. These have been sup-
ported by simulation data that provide insight into the true
probability of error. As a high-level summary of our results,
our work demonstrates both theoretically and empirically
that the ball algorithm is superior on a grid, and the tree
algorithm is superior on a tree graph.

There are several directions in which this work could be
extended in the future. One natural direction is to ask the
question, if you see the infection over a range of times, can
you better estimate whether the sickness is a spreading epi-
demic or a simple random infection over the nodes? In
particular, what is the best way to use the new informa-
tion gained in this way? Another extension is considering
that the sickness is spreading on one of two different net-
works (with potentially different epidemic models on each
network), and we wish to determine which network the in-
fection is traveling on.

8. ACKNOWLEDGMENTS
This work was partially supported by NSF Grants CNS-

1017525, CNS-0721380, EFRI-0735905, EECS-1056028, DTRA
grant HDTRA 1-08-0029 and Army Research Office Grant
W911NF-11-1-0265. We also gratefully acknowledge Profs.
Sujay Sanghavi and Sriram Vishwanath at The University
of Texas at Austin for providing access to the (anonymized)
call-graph data.

9. REFERENCES
[1] G. Brown, T. Howe, M. Ihbe, A. Prakash, and

K. Borders, “Social networks and context-aware
spam,” in Proceedings of the 2008 ACM conference on
Computer supported cooperative work, ser. CSCW ’08.
ACM, 2008, pp. 403–412.

[2] NetworkX: http://networkx.lanl.gov.

[3] A. J. Ganesh, L. Massoulié, and D. F. Towsley, “The
effect of network topology on the spread of epidemics,”
in INFOCOM, 2005, pp. 1455–1466.

[4] F. Ball and P. Neal, “Poisson approximation for
epidemics with two levels of mixing,” The Annals of
Probability, vol. 32, no. 1B, pp. 1168–1200, 2004.

[5] A. Gopalan, S. Banerjee, A. K. Das, and
S. Shakkottai, “Random mobility and the spread of
infection,” in INFOCOM 2011, 2011, pp. 999–1007.

[6] N. Demiris and P. D. O’Neill, “Bayesian inference for
epidemics with two levels of mixing,” Scandinavian
Journal of Statistics, vol. 32, pp. 265–280, 2005.

[7] G. Streftaris and G. J. Gibson, “Statistical inference
for stochatic epidemic models,” in Proc. 17th
International Workshop on Statistical Modeling, 2002,
pp. 609–616.

[8] N. Demiris and P. D. O’Neill, “Bayesian inference for
stochastic multitype epidemics in structured
populations via random graphs,” Journal of the Royal
Statistical Society Series B, vol. 67, no. 5, pp.
731–745, 2005.

[9] D. Shah and T. Zaman, “Detecting sources of
computer viruses in networks: Theory and
experiment,” SIGMETRICS Perform. Eval. Rev.,
vol. 86, pp. 203–214, 2010.

[10] ——, “Rumors in a network: Who’s the culprit?”
IEEE Transactions on Information Theory, vol. 57,
August 2011.

[11] H. Kesten, “On the speed of convergence in
first-passage percolation,” The Annals of Applied
Probability, vol. 3, no. 2, pp. 296–338, 1993.

[12] R. Lyons and R. Pemantle, “Random walk in a
random environment and first-passage percolation on
trees,” The Annals of Probability, vol. 20, no. 1, pp.
125–136, 1992.

[13] F. K. Hwang and D. S. Richards, “Steiner tree
problems,”Networks, vol. 22, no. 1, pp. 55–89, 1992.

[14] C. Gröpl, S. Hougardy, T. NierHoff, and H. J.
Proömel, Approximation Algorithms for the Steiner
Tree Problem in Graphs. Kluwer Academic
Publishers, 2000, pp. 235–279.

[15] I. Benjamini and Y. Peres, “Tree-indexed random
walks on groups and first passage percolation,”
Probability Theory and Related Fields, vol. 98, pp.
91–112, 1994.

[16] R. Durrett, Random Graph Dynamics. Cambridge
University Press, 2007.

[17] F. Chung and L. Lu, “The diameter of sparse random
graphs,”Adv. in Appl. Math, vol. 26, pp. 257–279,
2001.

[18] V. D. Blondel, J.-L. Guillaume, J. M. Hendrickx, and
R. M. Jungers, “Distance distribution in random
graphs and application to network exploration,”
Physical Review, vol. 76, no. 066101, 2007.

[19] K. Mehlhorn, “A faster approximation algorithm for
the steiner problem in graphs,” Information Processing
Letters, vol. 27, pp. 125–128, 1988.

