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Robust PCA via Outlier Pursuit
Huan Xu, Constantine Caramanis, Member, and Sujay Sanghavi, Member

Abstract

Singular Value Decomposition (and Principal Component Analysis) is one of the most widely used techniques
for dimensionality reduction: successful and efficiently computable, it is nevertheless plagued by a well-known,
well-documented sensitivity to outliers. Recent work has considered the setting where each point has a few arbitrarily
corrupted components. Yet, in applications of SVD or PCA such as robust collaborative filtering or bioinformatics,
malicious agents, defective genes, or simply corrupted or contaminated experiments may effectively yield entire
points that are completely corrupted.

We present an efficient convex optimization-based algorithm we call Outlier Pursuit, that under some mild
assumptions on the uncorrupted points (satisfied, e.g., by the standard generative assumption in PCA problems)
recovers the exact optimal low-dimensional subspace, and identifies the corrupted points. Such identification of
corrupted points that do not conform to the low-dimensional approximation, is of paramount interest in bioin-
formatics, financial applications, and beyond. Our techniques involve matrix decomposition using nuclear norm
minimization, however, our results, setup, and approach, necessarily differ considerably from the existing line of
work in matrix completion and matrix decomposition, since we develop an approach to recover the correct column
space of the uncorrupted matrix, rather than the exact matrix itself. In any problem where one seeks to recover a
structure rather than the exact initial matrices, techniques developed thus far relying on certificates of optimality,
will fail. We present an important extension of these methods, that allows the treatment of such problems.

I. INTRODUCTION

This paper is about the following problem: suppose we are given a large data matrix M , and we know
it can be decomposed as

M = L0 + C0,

where L0 is a low-rank matrix, and C0 is non-zero in only a fraction of the columns. Aside from these
broad restrictions, both components are arbitrary. In particular we do not know the rank (or the row/column
space) of L0, or the number and positions of the non-zero columns of C0. Can we recover the column-space
of the low-rank matrix L0, and the identities of the non-zero columns of C0, exactly and efficiently?

We are primarily motivated by Principal Component Analysis (PCA), arguably the most widely used
technique for dimensionality reduction in statistical data analysis. The canonical PCA problem [2], seeks to
find the best (in the least-square-error sense) low-dimensional subspace approximation to high-dimensional
points. Using the Singular Value Decomposition (SVD), PCA finds the lower-dimensional approximating
subspace by forming a low-rank approximation to the data matrix, formed by considering each point as
a column; the output of PCA is the (low-dimensional) column space of this low-rank approximation.

It is well known (e.g., [3]–[6]) that standard PCA is extremely fragile to the presence of outliers: even
a single corrupted point can arbitrarily alter the quality of the approximation. Such non-probabilistic or
persistent data corruption may stem from sensor failures, malicious tampering, or the simple fact that
some of the available data may not conform to the presumed low-dimensional source / model. In terms
of the data matrix, this means that most of the column vectors will lie in a low-dimensional space – and
hence the corresponding matrix L0 will be low-rank – while the remaining columns will be outliers –
corresponding to the column-sparse matrix C0. The natural question in this setting is to ask if we can
still (exactly or near-exactly) recover the column space of the uncorrupted points, and the identities of
the outliers. This is precisely our problem.
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Our results: We consider a novel but natural convex optimization approach to the recovery problem
above. The main result of this paper is to establish that, under certain natural conditions, the optimum of
this convex program will yield the column space of L0 and the identities of the outliers (i.e., the non-zero
columns of C0). Our conditions depend on the fraction of points that are outliers (which can otherwise
be completely arbitrary), and incoherence of the row space of L0. The latter condition essentially requires
that each direction in the column space of L0 be represented in a sufficient number of non-outlier points;
we discuss in more detail below. We note that our results do not require incoherence of the column
space, as is done, e.g., in the papers [5], [6].
alternative convex formulation, and the fact that their objective is exact recovery. We elaborate on this
in Section I-A below. We note that our analytical approach that focuses only on recovery of the column
space, instead of “exact recovery” of the entire L0 matrix. This also means our method’s performance is
rotation invariant – in particular, applying the same rotation to all given points (i.e., columns) will not
change its performance. Finally, we extend our analysis to the noisy case when all points – outliers or
otherwise – are additionally corrupted by noise.

A. Related Work
Robust PCA has a long history (e.g., [4], [7]–[13]). Each of these algorithms either performs standard

PCA on a robust estimate of the covariance matrix, or finds directions that maximize a robust estimate of
the variance of the projected data. These algorithms seek to approximately recover the column space, and
moreover, no existing approach attempts to identify the set of outliers. This outlier identification, while
outside the scope of traditional PCA algorithms, is important in a variety of applications such as finance,
bio-informatics, and more.

Many existing robust PCA algorithms suffer two pitfalls: performance degradation with dimension
increase, and computational intractability. To wit, [14] shows that several robust PCA algorithms includ-
ing M-estimator [15], Convex Peeling [16], Ellipsoidal Peeling [17], Classical Outlier Rejection [18],
Iterative Deletion [19] and Iterative Trimming [20] have breakdown points proportional to the inverse of
dimensionality, and hence are useless in the high dimensional regime we consider.

Algorithms with non-diminishing breakdown point, such as Projection-Pursuit [21] are non-convex or
even combinatorial, and hence computationally difficult as the size of the problem scales (e.g., [22]).
Indeed, to the best of our knowledge, there is no algorithm that exactly solves Projection Pursuit in
polynomial time. In contrast to these, the performance of Outlier Pursuit does not depend on the dimension,
p, and its running time scales gracefully in problem size (in particular, it can be solved in polynomial
time).

Algorithms based on nuclear norm minimization to recover low rank matrices are now standard, since
the seminal work [23], [24]. Recent work [5], [6] has taken the nuclear norm minimization approach to
the decomposition of a low-rank matrix and an overall sparse matrix.
close in spirit to ours, as all look to recover a low-rank matrix from corruptions. However, there are
critical differences in (a) the corruption model: in our paper, a few columns are completely corrupted,
while in [5], [6] every column is partially corrupted, (b) the objective: the model in [5], [6] allows for
exact recovery, as we still have enough information about every row and column, while in our paper
this is impossible for the corrupted columns, and we focus on identifying which columns are corrupted,
and (c) the optimization problem: our corruption matrix is “block sparse” (entire columns) and hence we
use the `1,2 norm [25] to capture our corruption structure, while [5], [6] have simply sparse corruptions,
and hence use the `1 norm. These differences allow us to impose weaker conditions – we do not need
incoherence of the column space, making our results rotation invariant: applying the same rotation to all
points will not affect the performance of our method, while it significantly affects that in [5], [6].

Beyond this, our approach differs in key analysis techniques, which we believe will prove much more
broadly applicable and thus of general interest. In particular, our work requires a significant extension of
existing techniques for matrix decomposition, precisely because the goal is to recover the column space
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of L0 (the principal components, in PCA), as opposed to the exact matrices. Indeed, the above works
investigate exact signal recovery — the intended outcome is known ahead of time, and one just needs
to investigate the conditions needed for success. In our setting, however, the convex optimization cannot
recover L0 itself exactly. We introduce the use of an oracle problem, defined by the structures we seek to
recover (here, the true column space and the column support). This enables us to show that our convex
optimization-based algorithm recovers the correct (or nearly correct, in the presence of noise) column
space, as well as the identity of the corrupted points, or outliers.

We believe that this line of analysis will prove to be much more broadly applicable. Often times,
exact recovery simply does not make sense under strong corruption models (such as complete column
corruption) and the best one can hope for is to capture exactly or approximately, some structural aspect
of the problem. In such settings, it may be impossible to follow the proof recipes laid out in works such
as [5], [6], [24], [26], that essentially obtain exact recovery from their convex optimization formulations.
Thus, in addition to our algorithm and our results, we consider the particular proof technique a contribution
of potentially general interest.

II. PROBLEM SETUP

The precise PCA with outlier problem that we consider is as follows: we are given n points in p-
dimensional space. A fraction 1 − γ of the points lie on a r-dimensional true subspace of the ambient
Rp, while the remaining γn points are arbitrarily located – we call these outliers/corrupted points. We
do not have any prior information about the true subspace or its dimension r. Given the set of points, we
would like to learn (a) the true subspace and (b) the identities of the outliers.

As is common practice, we collate the points into a p× n data matrix M , each of whose columns is
one of the points, and each of whose rows is one of the p coordinates. It is then clear that the data matrix
can be decomposed as

M = L0 + C0.

Here C0 is the column-sparse matrix ((1 − γ)n columns are zero) corresponding to the outliers, and
L0 is the matrix corresponding to the non-outliers. Thus, rank(L0) = r, and we assume its columns
corresponding to non-zero columns of C0 are identically zero (whatever those columns were cannot
possibly be recovered). Consider its Singular Value Decomposition (SVD)

L0 = U0Σ0V
>

0 . (1)

The columns of U0 form an orthonormal basis for the r-dimensional subspace we wish to recover. C0 is
the matrix corresponding to the outliers; we will denote the set of non-zero columns of C0 by I0, with
|I0| = γn. These non-zero columns are completely arbitrary.

With this notation, out intent is to exactly recover the column space of L0, and the set of outliers I0.
All we are given is the matrix M . Clearly, exact recovery is not always going to be possible (regardless
of the algorithm used) and thus we need to impose a few weak additional assumptions. We develop these
in Section II-A below.

We are also interested in the noisy case, where

M = L0 + C0 +N,

and N corresponds to any additional noise. In this case we are interested in approximate identification of
both the true subspace and the outliers.
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A. Incoherence: When can the column space be recovered ?
In general, our objective of recovering the “true” column-space of a low-rank matrix that is corrupted

with a column-sparse matrix is not always well defined. As an extreme example, consider the case where
the data matrix M is non-zero in only one column. Such a matrix is both low-rank and column-sparse,
thus the problem is unidentifiable. To make the problem meaningful, we need to impose that the low-rank
matrix L0 cannot itself be column-sparse as well. This is done via the following incoherence condition.

Definition: A matrix L ∈ Rp×n with SVD L = UΣV >, and (1− γ)n of whose columns are non-zero,
is said to be column-incoherent with parameter µ if

max
i
‖V >ei‖2 ≤ µr

(1− γ)n
,

where {ei} are the coordinate unit vectors.
Thus if V has a column aligned with a coordinate axis, then µ = (1−γ)n/r. Similarly, if V is perfectly

incoherent (e.g., if r = 1 and every non-zero entry of V has magnitude 1/
√

(1− γ)n) then µ = 1.
In the standard PCA setup, if the points are generated by some low-dimensional isometric (e.g., Gaus-

sian) distribution, then with high probability, one will have µ = O(max(1, log(n)/r)) [27]. Alternatively,
if the points are generated by a uniform distribution over a bounded set, then µ = Θ(1).

A small incoherence parameter µ essentially enforces that the matrix L0 will have column support that
is spread out. Note that this is quite natural from the application perspective. Indeed, if the left hand
side is as big as 1, it essentially means that one of the directions of the column space which we wish
to recover, is defined by only a single observation. Given the regime of a constant fraction of arbitrarily
chosen and arbitrarily corrupted points, such a setting is not meaningful. Having a small incoherence µ
is an assumption made in all methods based on nuclear norm minimization up-to-date [5], [6], [27], [28].
Also unidentifiable is the setting where a corrupted point lies in the true subspace. Thus, in matrix terms,
we require that every column of C0 does not lie in the column space of L0.

We note that this condition is slightly different from the incoherence conditions required for matrix
completion in e.g. [27]. In particular, matrix completion requires row-incoherence (a condition on U of
the SVD) and joint-incoherence (a condition on the product UV ) in addition to the above condition. We
do not require these extra conditions because we have a more relaxed objective from our convex program
– namely, we only want to recover the column space.

The parameters µ and γ are not required for the execution of the algorithm, and do not need to be
known a priori. They only arise in the analysis of our algorithm’s performance.

Other Notation and Preliminaries: Capital letters such as A are used to represent matrices, and
accordingly, Ai denotes the ith column vector. Letters U , V , I and their variants (complements, subscripts,
etc.) are reserved for column space, row space and column support respectively. There are four associated
projection operators we use throughout. The projection onto the column space, U , is denoted by PU
and given by PU(A) = UU>A, and similarly for the row-space PV (A) = AV V >. The matrix PI(A) is
obtained from A by setting column Ai to zero for all i 6∈ I. Finally, PT is the projection to the space
spanned by U and V , and given by PT (·) = PU(·) +PV (·)−PUPV (·). Note that PT depends on U and
V , and we suppress this notation wherever it is clear which U and V we are using. The complementary
operators, PU⊥ ,PV ⊥ , PT⊥ and PIc are defined as usual. The notation S is used to represent the invariant
subspace (of matrices) of a projection operator: e.g., we write A ∈ SU for any matrix A that satisfies
PU(A) = A. Five matrix norms are used: ‖A‖∗ is the nuclear norm, ‖A‖ is the spectral norm, ‖A‖1,2 is
the sum of `2 norm of the columns Ai, ‖A‖∞,2 is the largest `2 norm of the columns, and ‖A‖F is the
Frobenius norm. The only vector norm used is ‖ · ‖2, the `2 norm. Depending on the context, I is either
the unit matrix, or the identity operator; ei is the ith standard basis vector. The SVD of L0 is U0Σ0V0.Through out this paper, SVD always refer to rank-reduced (this) SVD. We use r to denote the rank of

L0, and γ , |I0|/n the fraction of outliers.
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III. MAIN RESULTS AND CONSEQUENCES

While we do not recover the matrix L0, we show that the goal of PCA can be attained: even under
our strong corruption model, with a constant fraction of points corrupted, we show that we can – under
mild assumptions – exactly recover both the column space of L0 (i.e., the low-dimensional space the
uncorrupted points lie on) and the column support of C0 (i.e. the identities of the outliers), from M . If
there is additional noise corrupting the data matrix, i.e. if we have M = L0 + C0 + N , a natural variant
of our approach finds a good approximation. In the absence of noise, an easy post-processing step is in
fact able to exactly recover the original matrix L0. We emphasize, however, that the inability to do this
simply via the convex optimization step, poses significant technical challenges, as we detail below.

A. Algorithm
Given the data matrix M , our algorithm, called Outlier Pursuit, generates (a) a matrix U∗, with

orthonormal rows, that spans the low-dimensional true subspace we want to recover, and (b) a set of
column indices I∗ corresponding to the outlier points.

Algorithm 1 Outlier Pursuit
Find (L∗, C∗), the optimum of the following convex optimization program

Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: M = L+ C
(2)

Compute SVD L∗ = U1Σ1V
>

1 and output U∗ = U1.
Output the set of non-zero columns of C∗, i.e. I∗ = {j : c∗ij 6= 0 for some i}

While in the noiseless case there are simple algorithms with similar performance1, the benefit of the
algorithm, and of the analysis, is extension to more realistic and interesting situations where in addition
to gross corruption of some samples, there is additional noise. Adapting the Outlier Pursuit algorithm, we
have the following variant for the noisy case.

Noisy Outlier Pursuit: Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: ‖M − (L+ C)‖F ≤ ε
(3)

Outlier Pursuit (and its noisy variant) is a convex surrogate for the following natural (but combinatorial
and intractable) first approach to the recovery problem:

Minimize: rank(L) + λ‖C‖0,c

Subject to: M = L+ C
(4)

where ‖ · ‖0,c stands for the number of non-zero columns of a matrix.

B. Performance
We show that under rather weak assumptions, Outlier Pursuit exactly recovers the column space of the

low-rank matrix L0, and the identities of the non-zero columns of outlier matrix C0. The formal statement
appears below.

Theorem 1 (Noiseless Case): Suppose we observe M = L0 +C0, where L0 has rank r and incoherence
parameter µ. Suppose further that C0 is supported on at most γn columns. Any output to Outlier Pursuit

1
For example, one method is to find a maximal linear independent set of the samples, and remove it from the sample set. Repeat this

process. Since the number of outliers is relatively small, eventually they all get removed, and the column space of true samples is recovered.
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recovers the column space exactly, and identifies exactly the indices of columns corresponding to outliers
not lying in the recovered column space, as long as the fraction of corrupted points, γ, satisfies

γ

1− γ
≤ c1

µr
, (5)

where c1 = 9
121

. This can be achieved by setting the parameter λ in the Outlier Pursuit algorithm to be
3

7
√
γn

– in fact it holds for any λ in a specific range which we provide below.
Note that we only need to know an upper bound on the number of outliers. This is because the success

of Outlier Pursuit is monotonic: if it can recover the column space of L0 with a certain set of outliers, it
will also recover it when an arbitrary subset of these points are converted to non-outliers (i.e., they are
replaced by points in the column space of L0).

For the case where in addition to the corrupted points, we have noisy observations, M̃ = M +N , we
have the following result.

Theorem 2 (Noisy Case): Suppose we observe M̃ = M +N = L0 + C0 +N , where
γ

1− γ
≤ c2

µr
, (6)

with c2 = 9
1024

, and ‖N‖F ≤ ε. Let the output of Noisy Outlier Pursuit be L′, C ′. Then there exists L̃, C̃
such that M = L̃+ C̃, L̃ has the correct column space, and C̃ the correct column support, and

‖L′ − L̃‖F ≤ 20
√
nε; ‖C ′ − C̃‖F ≤ 18

√
nε.

The conditions in this theorem are essentially tight in the following scaling sense (i.e., up to universal
constants). If there is no additional structure imposed beyond what we have stated above, then up to
scaling, in the noiseless case, Outlier Pursuit can recover from as many outliers (i.e., the same fraction)
as any algorithm of possibly arbitrary complexity. In particular, it is easy to see that if the rank of the
matrix L0 is r, and the fraction of outliers satisfies γ ≥ 1/(r + 1), then the problem is not identifiable,
i.e., no algorithm can separate authentic and corrupted points. In the presence of stronger assumptions
(e.g., isometric distribution) on the authentic points, better recovery guarantees are possible [29].

C. Novelty in Analysis
The main new ingredient in our analysis of the algorithm, is the introduction of an oracle problem.

Past matrix recovery papers, including [5], [6], [27], seek exact recovery of the ground truth, in our case
(L0, C0). As such, the generic (and successful) roadmap for the proof technique identifies the first-order
necessary and sufficient conditions for the ground truth to be optimal, and then shows that a subgradient
certifying optimality of the desired solution exists under the given assumptions. In our setting this is not
possible, as the optimum L∗ of (2) will be non-zero in every column of C0 that is not orthogonal to L0’s
column space. Thus a dual certificate certifying optimality of (L0, C0) cannot exist. In terms of recovering
the pair (L0, C0), this is irrelevant: all we require is for C∗ to have the correct column support; given
this, recovery of (L0, C0) from (L∗, C∗) is immediate – we simply extract the offending columns. Thus,
all we need is a dual certificate of optimality for any feasible pair (L̂, Ĉ) where Ĉ has the the correct
column support. The challenge is that we do not know, a priori, what that pair will be.

We identify this pair using a so-called oracle problem, characterizing the pair as the solution to an
optimization problem with two additional side constraints: that L have the same column space as L0,
and C have the same column support as C0. The idea of using an oracle problem appeared previously in
analyzing support-recovery property of Lasso and basis-pursuit (see, e.g., [30]–[32]). There, the authors
consider an optimal solution directly requiring that it have the correct signed support. There are some
significant challenges in our matrix setting that are not present in the support-recovery problem. Indeed,
in the case of support recovery, analysis of the solution is straightforward, because of a special property
of the structure being recovered (namely, the support): when the signed support is fixed, regardless of the
exact value of the solution, the sub-gradient (of the `1 norm) is known. This is not true for recovery of
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more general structures, and in particular, in our setting: the subgradients of both the ‖ · ‖∗ and ‖ · ‖1,2

norms critically depend on the exact value of the solution to the oracle problem. While the consequence
is that more delicate technical analysis is required, one message of this paper is that oracle problems can
be broadly useful whenever exact recovery of the ground truth is impossible (or not sought for), and one
is only interested in recovering special structures, such as support, block support, spectral properties, and
beyond.

IV. PROOF OF THEOREM 1
In this section and the next section, we prove Theorem 1 and Theorem 2.

A. Proof Outline
The detailed proof, provided in subsequent sections, contains a number of cumbersome calculations.

To facilitate the flow and highlight the intuition of the proof, we give an outline, emphasizing the novel
aspects we introduce, and skip over steps that are largely similar to techniques developed and used in
standard literature.

Step 1: Our first step is to construct an Oracle problem. Recall that we want the optimum of (2) to satisfy
PU0(L

∗) = L∗ (correct column space) and PI0(C∗) = C∗ (correct column support, i.e., identification of
the outliers). The oracle problem arises by imposing these as additional constraints in (2):

Oracle Problem: Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: M = L+ C; PU0(L) = L; PI0(C) = C.

Let (L̂, Ĉ) be an optimal solution to the oracle problem. To show Outlier Pursuit succeeds, it thus suffices
to show that (L̂, Ĉ) is also an optimal solution to Outlier Pursuit.

Step 2: The second step is standard. We write down the properties a dual certificate must satisfy to
guarantee that (L̂, Ĉ) is optimal to Outlier Pursuit. While the step itself is standard, there is a central
challenge arising from the Oracle Problem. As with all results involving low-rank matrix recovery, the
left and right singular vectors are a central object of study, critically involved in optimality conditions,
etc. Evidently, the side constraints of the oracle problem are not enough to guarantee that L0 and L̂ have
the same singular vectors. This forces us to introduce quantities that can relate the two, and understand
how these interact with the various projection operators required to describe the subdifferentials. As an
important example of this, Lemma 5 defines V as the matrix satisfying Û V̂ > = U0V

>
, and Lemma 6

establishes that U0PI0(V
>

) = λPU0(Ĥ), for Ĥ an element of the subdifferential of the `1,2 norm at Ĉ.
With these considerations, we can write down the conditions that a dual certificate Q must satisfy:

(a) PU0(Q) = U0V
>

;

(b) PV (Q) = U0V
>

;

(c) PI0(Q) = λĤ;

(d) ‖PT̂⊥(Q)‖ < 1;

(e) ‖PIc0(Q)‖∞,2 < λ.

Step 3: The third step is to construct such a Q. A first guess would be to use Q0 = U0V
>

+ λĤ .
Indeed, this works in the special case where each corrupted column is orthogonal to each authentic one,
but fails otherwise. Specifically, we have that

PU0(Q0)− U0V
>

= λPU0(Ĥ); PI0(Q0)− λĤ = U0PI0(V
>

).

Recall that U0PI0(V
>

) = λPU0(Ĥ), we correct Q0 by

∆1 , λPU0(Ĥ) = U0PI0(V
>

).
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Notice that

PV (Q0 −∆1) = PVPU⊥0 (λĤ).

Hence we want to further correct Q0 by ∆2 such that ∆2 ∈ SU⊥0 , ∆2 ∈ SIc0 , and PV (∆2) = PVPU⊥0 (λĤ).
Such ∆2 can be constructed using the least-square dual-certificate approach introduced in [27], which
gives

∆2 , PIc0PV [PVPIc0PV ]−1PVPU⊥0 (λĤ).

Lemma 7 and Lemma 8 show that this definition (i.e., the inverse) indeed is meaningful.
Finally, we check that Q , Q0−∆1−∆2 satisfies (a) - (e). Most computation involved is standard, with

the exception that we require an incoherence property w.r.t. V whereas we only assume an incoherence
property w.r.t. V0. Interestingly, Lemma 10 shows that the latter implies the former, and hence completes
the proof.

B. Oracle Problem and Optimality Conditions
We now provide a detailed proof.

Appendix II for the convenience of the readers. We first list some technical preliminaries that we use
multiple times in the sequel. The following lemma is well-known, and gives the subgradient of the norms
we consider.

Lemma 1: For any column space U , row space V and column support I:
1) Let the SVD of a matrix A be UΣV >. Then the subgradient to ‖ · ‖∗ at A is {UV >+W |PT (W ) =

0, ‖W‖ ≤ 1} [33].
2) Let the column support of a matrix A be I. Then the subgradient to ‖·‖1,2 at A is {H+Z|PI(H) =

H,Hi = Ai/‖Ai‖2; PI(Z) = 0, ‖Z‖∞,2 ≤ 1}.
3) For any A, B, we have PI(AB) = API(B); for any A, PUPI(A) = PIPU(A).

Lemma 2: If a matrix H̃ satisfies ‖H̃‖∞,2 ≤ 1 and is supported on I, then ‖H̃‖ ≤
√
|I|.

Proof: Using the variational form of the operator norm, we have

‖H̃‖ = max
‖x‖2≤1,‖y‖2≤1

x>H̃y

= max
‖x‖2≤1

‖x>H̃‖2 = max
‖x‖2≤1

√√√√ n∑
i=1

(x>H̃i)2 ≤
√∑

i∈I

1 =
√
|I|.

The inequality holds because ‖H̃i‖2 = 1 when i ∈ I, and equals zero otherwise.

Lemma 3: Given a matrix U ∈ Rr×n with orthonormal columns, and any matrix Ṽ ∈ Rr×n, we have
that ‖UṼ >‖∞,2 = maxi ‖Ṽ >ei‖2.

Proof: By definition we have

‖UṼ >‖∞,2 = max
i
‖UṼ >i ‖2

(a)
= max

i
‖Ṽ >i ‖2 = max

i
‖Ṽ >ei‖2.

Here (a) holds since U has orthonormal columns.
As discussed, in general Outlier Pursuit will not recover the true solution (L0, C0), and hence it is not

possible to construct a subgradient certifying optimality of (L0, C0). Instead, our goal is to recover any
pair (L̂, Ĉ) so that L̂ has the correct column space, and Ĉ the correct column support. Thus we need only
construct a dual certificate for some such pair. We develop our candidate solution (L̂, Ĉ) by imposing
precisely these constraints on the original optimization problem (2): the solution L̂ should have the correct
column space, and Ĉ should have the correct column support.
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Let the SVD of the true L0 be L0 = U0Σ0V
>

0 , and recall that the projection of any matrix X onto
the space of all matrices with column space contained in U0 is given by PU0(X) := U0U

>
0 X . Similarly

for the column support I0 of the true C0, the projection PI0(X) is the matrix that results when all the
columns in Ic0 are set to 0.

Note that U0 and I0 above correspond to the truth. Thus, with this notation, we would like L∗, C∗ the
optimum of (2) to satisfy PU0(L

∗) = L∗, as this is nothing but the fact that L∗ has recovered the true
subspace. Similarly, having C∗ satisfy PI0(C∗) = C∗ means that we have succeeded in identifying the
outliers. The oracle problem arises by imposing these as additional constraints in (2):

Oracle Problem: Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: M = L+ C; PU0(L) = L; PI0(C) = C.
(7)

The problem is of course bounded (by zero), and is feasible, as (L0, C0) is a feasible solution. Thus, an
optimal solution, denoted as L̂, Ĉ exists. We now show that the solution (L̂, Ĉ) to the oracle problem, is
also an optimal solution to Outlier Pursuit. Unlike the original pair (L0, C0), we can certify the optimality
of (L̂, Ĉ) by constructing the appropriate subgradient witness.

The next lemma and definition, are key to the development of our optimality conditions.

Lemma 4: Let the pair (L′, C ′) satsify L′ + C ′ = M , PU0(L
′) = L′, and PI0(C ′) = C ′. Denote the

SVD of L′ as L′ = U ′ΣV ′>, and the column support of C ′ as I ′. Then U ′U ′> = U0U
>
0 , and I ′ ⊆ I0.

Proof: The only thing we need to prove is that L′ has a rank no smaller than U0. However, since
PI0(C ′) = C ′, we must have PIc0(L′) = PIc0(M), and thus the rank of L′ is at least as large as PIc0(M),
hence L′ has a rank no smaller than U0.

Next we define two operators that are closely related to the subgradient of ‖L′‖∗ and ‖C ′‖1,2.
Definition 1: Let (L′, C ′) satisfy L′ + C ′ = M , PU0(L

′) = L′, and PI0(C ′) = C ′. We define the
following:

N(L′) , U ′V ′>;

G(C ′) ,

{
H ∈ Rm×n

∣∣∣∣PIc0(H) = 0; ∀i ∈ I ′ : Hi =
C ′i
‖C ′i‖2

; ∀i ∈ I0 ∩ (I ′)c : ‖Hi‖2 ≤ 1

}
,

where the SVD of L′ is L′ = U ′ΣV ′>, and the column support of C ′ is I ′. Further define the operator
PT (L′)(·) : Rm×n → Rm×n as

PT (L′)(X) = PU ′(X) + PV ′(X)− PU ′PV ′(X).
Now we present and prove the optimality condition (to Outlier Pursuit) for solutions (L,C) that have

the correct column space and support for L and C, respectively.
Theorem 3: Let (L′, C ′) satisfy L′ + C ′ = M , PU0(L

′) = L′, and PI0(C ′) = C ′. Then (L′, C ′) is an
optimal solution of Outlier Pursuit if there exists a matrix Q ∈ Rm×n that satisfies

(a) PT (L′)(Q) = N(L′);

(b) ‖PT (L′)⊥(Q)‖ ≤ 1;

(c) PI0(Q)/λ ∈ G(C ′);

(d) ‖PIc0(Q)‖∞,2 ≤ λ.

(8)

If both inequalities are strict (dubbed Q strictly satisfies (8)), and SI0 ∩ SV ′ = {0}, then any optimal
solution will have the right column space, and column support.

Proof: By standard convexity arguments [34], a feasible pair (L′, C ′) is an optimal solution of Outlier
Pursuit, if there exists a Q′ such that

Q′ ∈ ∂‖L′‖∗; Q′ ∈ λ∂‖C ′‖1,2.
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Note that (a) and (b) imply that Q ∈ ∂‖L′‖∗. Furthermore, letting I ′ be the support of C ′, then by Lemma
4, I ′ ⊆ I0. Therefore (c) and (d) imply that

Qi =
λC ′i
‖C ′i‖2

; ∀i ∈ I ′;

and
‖Qi‖2 ≤ λ; ∀i 6∈ I ′,

which implies that Q ∈ λ∂‖C ′‖1,2. Thus, (L′, C ′) is an optimal solution.
The rest of the proof establishes that when (b) and (d) are strict, then any optimal solution (L′′, C ′′)

satisfies PU0(L
′′) = L′′, and PI0(C ′′) = C ′′. We show that for any fixed ∆ 6= 0, (L′+∆, C ′−∆) is strictly

worse than (L′, C ′), unless ∆ ∈ PU0∩PI0 . Let W be such that ‖W‖ = 1, 〈W,PT (L′)⊥(∆)〉 = ‖PT (L′)⊥∆‖∗,
and PT (L′)W = 0. Let F be such that

Fi =

{ −∆i

‖∆i‖2 if i 6∈ I0, and ∆i 6= 0

0 otherwise.

Then PT (L′)(Q) +W is a subgradient of ‖L′‖∗ and PI0(Q)/λ+ F is a subgradient of ‖C ′‖1,2. Then we
have

‖L′ + ∆‖∗ + λ‖C ′ −∆‖1,2

≥‖L′‖∗ + λ‖C ′‖1,2+ < PT (L′)(Q) +W,∆ > −λ < PI0(Q)/λ+ F,∆ >

=‖L′‖∗ + λ‖C ′‖1,2 + ‖PT (L′)⊥(∆)‖∗ + λ‖PIc0(∆)‖1,2+ < PT (L′)(Q)− PI0(Q),∆ >

=‖L′‖∗ + λ‖C ′‖1,2 + ‖PT (L′)⊥(∆)‖∗ + λ‖PIc0(∆)‖1,2+ < Q− PT (L′)⊥(Q)− (Q− PIc0(Q)),∆ >

=‖L′‖∗ + λ‖C ′‖1,2 + ‖PT (L′)⊥(∆)‖∗ + λ‖PIc0(∆)‖1,2+ < −PT (L′)⊥(Q),∆ > + < PIc0(Q),∆ >

≥‖L′‖∗ + λ‖C ′‖1,2 + (1− ‖PT (L′)⊥(Q)‖)‖PT (L′)⊥(∆)‖∗ + (λ− ‖PIc0(Q)‖∞,2)‖PIc0(∆)‖1,2

≥‖L′‖∗ + λ‖C ′‖1,2,

where the last inequality is strict unless

‖PT (L′)⊥(∆)‖∗ = ‖PIc0(∆)‖1,2 = 0. (9)

Note that (9) implies that PT (L′)(∆) = ∆ and PI0(∆) = ∆. Furthermore

PI0(∆) = ∆ = PT (L′)(∆) = PU ′(∆) + PV ′PU ′⊥(∆) = PI0PU ′(∆) + PV ′PU ′⊥(∆),

where the last equality holds because we can write PI0(∆) = ∆. This leads to

PI0PU ′⊥(∆) = PV ′PU ′⊥(∆).

Lemma 4 implies PU ′(·) = PU0(·), which means PU⊥0 (∆) ∈ SI0 ∩SV ′ , and hence equal 0. Thus, ∆ ∈ SU0 .
Recall that Equation (9) implies ∆ ∈ SI0 , we then have ∆ ∈ SI0 ∩ SU0 , which completes the proof.

Thus, the oracle problem determines a solution pair, (L̂, Ĉ), and then using this, Theorem 3 above,
gives the conditions a dual certificate must satisfy. The rest of the proof seeks to build a dual certificate
for the pair (L̂, Ĉ). To this end, The following two results are quite helpful in what follows. For the
remainder of the paper, we use (L̂, Ĉ) to denote the solution pair that is the output of the oracle problem,
and we assume that the SVD of L̂ is given as L̂ = ÛΣ̂V̂ >.

Lemma 5: There exists an orthonormal matrix V ∈ Rn×r such that

Û V̂ > = U0V
>
.

In addition,
PT̂ (·) , PÛ(·) + PV̂ (·)− PÛPV̂ (·) = PU0(·) + PV (·)− PU0PV (·).



11

Proof: Due to Lemma 4, we have U0U
>
0 = Û Û>, hence U0 = Û Û>U0. Letting V = V̂ Û>U0, we have

Û V̂ > = U0V
>

, and V V
>

= V̂ V̂ >. Note that U0U
>
0 = Û Û> leads to PU(·) = PÛ(·), and V V

>
= V̂ V̂ >

leads to PV (·) = PV̂ (·), so the second claim follows.
Since L̂, Ĉ is an optimal solution to Oracle Problem (7), there exists Q1, Q2, A′ and B′ such that

Q1 + PU⊥0 (A′) = Q2 + PIc0(B′),

where Q1, Q2 are subgradients to ‖L̂‖∗ and to λ‖Ĉ‖1,2, respectively. This means that Q1 = U0V
>

+ W
for some orthonormal V and W such that PT̂ (W ) = 0, and Q2 = λ(Ĥ + Z) for some Ĥ ∈ G(Ĉ), and
Z such that PI0(Z) = 0. Letting A = W + A′, B = λZ +B′, we have

U0V
>

+ PU⊥0 (A) = λĤ + PIc0(B). (10)

Recall that Ĥ ∈ G(Ĉ) means PI0(Ĥ) = Ĥ and ‖Ĥ‖∞,2 ≤ 1.
Lemma 6: We have

U0PI0(V
>

) = λPU0(Ĥ).
Proof: We have

PU0PI0(U0V
>

+ PU⊥0 (A)) = PU0PI0(U0V
>

) + PU0PI0(PU⊥0 (A))

= U0PI0(V
>

) + PU0PU⊥0 PI0(A)

= U0PI0(V
>

).

Furthermore, we have
PU0PI0(λĤ + PIc0(B)) = λPU0(Ĥ).

The lemma follows from (10).

C. Obtaining Dual Certificates for Outlier Pursuit
In this section, we complete the proof of Theorem 1 by constructing a dual certificate for (L̂, Ĉ) –

the solution to the oracle problem – showing it is also the solution to Outlier Pursuit. The conditions the
dual certificate must satisfy are spelled out in Theorem 3. It is helpful to first consider the simpler case
where the corrupted columns are assumed to be orthogonal to the column space of L0 which we seek
to recover. Indeed, in that setting, we have V0 = V̂ = V , and moreover, straightforward algebra shows
that we automatically satisfy the condition SI0 ∩ SV0 = {0}. (In the general case, however, we require an
additional condition to be satisfied, in order to recover the same property.) Since the columns of H0 are
either zero, or defined as normalizations of the columns of matrix C0 (i.e., normalizations of outliers),
we immediately conclude that PU0(H) = PV0(H) = PT (H) = 0, and also PI0(U0V

>
0 ) = 0. As a result,

it is not hard to verify that the dual certificate for the orthogonal case is:

Q0 = U0V
>

0 + λH0.

While not required for the proof of our main results, we include the proof of the orthogonal case in
Appendix I, as there we get a stronger necessary and sufficient condition for recovery.

For the general, non-orthogonal case, however, this certificate does not satisfy the conditions of Theorem
3. For instance, PV0(H0) need no longer be zero, and hence the condition PT (Q0) = U0V

>
0 may no longer

hold. We correct for the effect of the non-orthogonality by modifying Q0 with matrices ∆1 and ∆2, which
we define below.

Recalling the definition of V from Lemma 5, define matrix G ∈ Rr×r as

G , PI0(V
>

)(PI0(V
>

))>. (11)
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Then we have

G =
∑
i∈I0

[(V
>

)i][(V
>

)i]
> �

n∑
i=1

[(V
>

)i][(V
>

)i]
> = V

>
V = I,

where � is the generalized inequality induced by the positive semi-definite cone. Hence, ‖G‖ ≤ 1. The
following lemma bounds ‖G‖ away from 1.

Lemma 7: Let ψ = ‖G‖. Then ψ ≤ λ2γn. In particular, for λ ≤ 3
7
√
γn

, we have ψ < 1
4
.

Proof: We have

ψ = ‖U0PI0(V
>

)(PI0(V
>

))>U>0 ‖ = ‖[U0PI0(V
>

)][U0PI0(V
>

)]>‖,

due to the fact that U0 is orthonormal. By Lemma 6, this implies

ψ = ‖[λPU0(Ĥ)][λPU0(Ĥ)]>‖
= λ2‖

∑
i∈I0

PU0(Ĥi)PU0(Ĥi)
>‖

≤ λ2|I0|
= λ2γn.

The inequality holds because ‖PU0(Ĥi)‖2 ≤ 1 implies ‖PU0(Ĥi)PU0(Ĥi)
>‖ ≤ 1.

Lemma 8: If ψ < 1, then the following operation PVPIc0PV is an injection from PV to PV , and its
inverse operation is I +

∑∞
i=1(PVPI0PV )i.

Proof: Fix matrix X ∈ Rp×n such that ‖X‖ = 1, we have that

PVPI0PV (X) = PVPI0(XV V
>

)

= PV (XV PI0(V
>

))

= XV PI0(V
>

)V V
>

= XV (PI0(V
>

)V )V
>

= XVGV
>
,

which leads to ‖PVPI0PV (X)‖ ≤ ψ. Since ψ < 1, [I +
∑∞

i=1(PVPI0PV )i](X) is well defined, and has
a spectral norm not larger than 1/(1− ψ).

Note that we have
PVPIc0PV = PV (I − PVPI0PV ),

thus for any X ∈ PV the following holds

PVPIc0PV [I +
∞∑
i=1

(PVPI0PV )i](X) = PV (I − PVPI0PV )[I +
∞∑
i=1

(PVPI0PV )i](X)

= PV (X) = X,

which establishes the lemma.

Now we define the matrices ∆1 and ∆2 used to construct the dual certificate. As the proof reveals,
they are designed precisely as “corrections” to guarantee that the dual certificate satisfies the required
constraints of Theorem 3.
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Define ∆1 and ∆2 as follows:

∆1 , λPU0(Ĥ) = U0PI0(V
>

); (12)

∆2 , PU⊥0 PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PV (λĤ)

= PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PVPU⊥0 (λĤ). (13)

The equality holds since PV ,PI0 ,PIc0 are all given by right matrix multiplication, while PU⊥0 is given by
left matrix multiplication.

Theorem 4: Assume ψ < 1. Let

Q , U0V
>

+ λĤ −∆1 −∆2.

If
γ

1− γ
≤ (1− ψ)2

(3− ψ)2µr
,

and
(1− ψ)

√
µr

1−γ
√
n(1− ψ −

√
γ

1−γµr)
≤ λ ≤ 1− ψ

(2− ψ)
√
nγ
,

then Q satisfies Condition (8) (i.e., it is the dual certificate). If all inequalities hold strictly, then Q strictly
satisfies (8).

Proof: Note that ψ < 1 implies SV ∩ SI0 = {0}. Hence it suffices to show that Q simultaneously
satisfies

(1) PÛ(Q) = Û V̂ >;

(2) PV̂ (Q) = Û V̂ >;

(3) PI0(Q) = λĤ;

(4) ‖PT̂⊥(Q)‖ ≤ 1;

(5) ‖PIc0(Q)‖∞,2 ≤ λ.

We prove that each of these five conditions holds, in Steps 1-5. Then in Step 6, we show that the condition
on λ is not vacuous, i.e., the lower bound is strictly less than then upper bound (and in fact, we then
show that λ = 3

7
√
γn

is in the specified range).
Step 1: We have

PÛ(Q) = PU0(Q)

= PU0(U0V
>

+ λĤ −∆1 −∆2)

= U0V
>

+ λPU0(Ĥ)− PU0(∆1)− PU0(∆2)

= U0V
>

= Û V̂ >.
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Step 2: We have

PV̂ (Q) = PV (Q) = PV (U0V
>

+ λĤ −∆1 −∆2)

= U0V
>

+ PV (λĤ)− PV (λPU0(Ĥ))− PV {PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PVPU⊥0 (λĤ)}

= U0V
>

+ PV (PU⊥0 (λĤ))− PVPIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PVPU⊥0 (λĤ)

(a)
= U0V

>
+ PV (PU⊥0 (λĤ))− PV (PU⊥0 (λĤ))

= U0V
>

= Û V̂ >.

Here, (a) holds since on PV , [I +
∑∞

i=1(PVPI0PV )i] is the inverse operation of PVPIc0PV .
Step 3: We have

PI0(Q) = PI0(U0V
>

+ λĤ −∆1 −∆2)

= U0PI0(V
>

) + λĤ − PI0(U0PI0(V
>

))− PI0PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PVPU⊥0 (λĤ)

= λĤ.

Step 4: We need a lemma first.
Lemma 9: Given X ∈ Rp×n such that ‖X‖ = 1, we have ‖PIc0PV (X)‖ ≤ 1.

Proof: By definition,
PIc0PV (X) = XV PIc0(V

>
).

For any z ∈ Rn such that ‖z‖2 = 1, we have

‖XV PIc0(V
>

)z‖2 = ‖XV V >PIc0(z)‖2 ≤ ‖X‖‖V V
>‖‖PIc0(z)‖2 ≤ 1,

where we use PIc0(z) to represent the vector whose coordinates i ∈ I0 are set to zero. The last inequality
follows from the fact that ‖X‖ = 1. Note that this holds for any z, hence by the definition of spectral
norm (as the `2 operator norm), the lemma follows.

Now we continue with Step 4. We have

PT̂⊥(Q) = PT̂⊥(U0V
>

+ λĤ −∆1 −∆2)

= P
V
⊥PU⊥0 (λĤ)− P

V
⊥PU⊥0 (PIc0PV [I +

∞∑
i=1

(PVPI0PV )i]PVPU⊥0 (λĤ))

= P
V
⊥PU⊥0 (λĤ)− PU⊥0 PV ⊥PIc0PV [I +

∞∑
i=1

(PVPI0PV )i]PV (λĤ).
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Notice that ‖P
V
⊥PU⊥0 (λĤ)‖ ≤ ‖λĤ‖. Furthermore, we have the following:

‖PU⊥0 PV ⊥PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PV (λĤ)‖

≤ ‖PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PV (λĤ)‖

≤ ‖[I +
∞∑
i=1

(PVPI0PV )i]PV (λĤ)‖

≤ ‖PV (λĤ)‖/(1− ψ)

≤ ‖λĤ‖/(1− ψ).

Recall that we have shown ‖λĤ‖ ≤ λ
√
|I0|. Thus we have that

‖PT̂⊥(Q)‖ ≤ 2− ψ
1− ψ

λ
√
|I0|.

From the assumptions of the theorem, we have

λ ≤ 1− ψ
(2− ψ)

√
nγ
,

and hence
‖PT̂⊥(Q)‖ ≤ 1.

The inequality will be strict if

λ <
1− ψ

(2− ψ)
√
nγ
.

Step 5: We first need a lemma that shows that the incoherence parameter for the matrix V is no larger
than the incoherence parameter of the original matrix V0.

Lemma 10: Define the incoherence of V as follows:

µ = max
i∈Ic0

|Ic0|
r
‖PIc0(V

>
)ei‖2.

Then µ ≤ µ.
Proof: Recall that L0 = U0Σ0V

>
0 , and

µ = max
i∈Ic0

|Ic0|
r
‖PIc0(V >0 )ei‖2.

Thus it suffices to show that for fixed i ∈ I0, the following holds:

‖PIc0(V
>

)ei‖ ≤ ‖PIc0(V >0 )ei‖.

Note that PIc0(V
>

) and PIc0(V >0 ) span the same row space. Thus, due to the fact that PIc0(V >0 ) is
orthonormal, we conclude that PIc0(V

>
) is row-wise full rank. Since 0 � PIc0(V

>
)PIc0(V

>
)> = I − G,

and G � 0, there exists a symmetric, invertible matrix Y ∈ Rr×r, such that

‖Y ‖ ≤ 1; and Y 2 = PIc0(V
>

)PIc0(V
>

)>.

This in turn implies that Y −1PIc0(V
>

) is orthonormal and spans the same row space as PIc0(V
>

), and
hence spans the same row space as PIc0(V >0 ). Note that PIc0(V >0 ) is also orthonormal, which implies there
exists an orthonormal matrix Z ∈ Rr×r, such that

ZY −1PIc0(V
>

) = PIc0(V >0 ).
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We have

‖PIc0(V
>

)ei‖2 = ‖Y Z>PIc0(V >0 )ei‖2 ≤ ‖Y ‖‖Z>‖‖PIc0(V >0 )ei‖2 ≤ ‖PIc0(V >0 )ei‖2.

This concludes the proof of the lemma.
Now, recall from the proof of Lemma 8 that

PVPI0PV (X) = XVGV
>
.

Hence, noting that (PVPI0PV )i = (PVPI0PV )(PVPI0PV )i−1 and V
>
V = I , by induction we have

(PVPI0PV )i(X) = XVGiV
>
.

We use this to expand ∆2:

∆2 = PU⊥PIc0PV [I +
∞∑
i=1

(PVPI0PV )i]PV (λĤ)

= (I − U0U
>
0 )(λĤ)V V

>
[1 +

∞∑
i=1

V GiV
>

]V PIc0(V
>

).

Thus, we have

‖∆2ei‖2 ≤ ‖(I − U0U
>
0 )‖‖(λH)‖‖V V >‖‖1 +

∞∑
i=1

V GiV
>‖‖V ‖‖PIc0(V

>
)ei‖2

≤ ‖λH‖ 1

1− ψ

√
µr

n− |I0|

≤
λ
√
|I0|
√

µr
n−|I0|

1− ψ
,

where we have used Lemma 10 in the last inequality. This now implies

‖∆2‖∞,2 ≤
λ
√
|I0|
√

µr
n−|I0|

1− ψ
.

Notice that

‖PIc0(Q)‖∞,2 =‖PIc0(U0V
>

+ λĤ −∆1 −∆2)‖∞,2
=‖U0PIc0(V

>
)−∆2‖∞,2

≤‖U0PIc0(V
>

)‖∞,2 + ‖∆2‖∞,2

≤
√

µr

n− |I0|
+
λ
√
|I0|
√

µr
n−|I0|

1− ψ
.

Therefore, showing that ‖PIc0(Q)‖∞,2 ≤ λ is equivalent to showing
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√
µr

n− |I0|
+
λ
√
|I0|
√

µr
n−|I0|

1− ψ
≤ λ

⇐⇒ λ

1−

√
γ

1−γµr

1− ψ

 ≥√ µr

n(1− γ)

⇐⇒ λ ≥
(1− ψ)

√
µr

1−γ
√
n(1− ψ −

√
γ

1−γµr)
,

as long as 1− ψ −
√

γ
1−γµr > 0 (which is proved in Step 6).

Step 6: We have shown that each of the 5 conditions holds. Finally, we show that the theorem’s
conditions on λ can be satisfied. But this amounts to a condition on γ. Indeed, we have:

(1− ψ)
√

µr
1−γ

√
n(1− ψ −

√
γ

1−γµr)
≤ 1− ψ

(2− ψ)
√
nγ

⇐⇒ (2− ψ)

√
γ

1− γ
µr ≤ 1− ψ −

√
γ

1− γ
µr

⇐⇒ γ

1− γ
≤ (1− ψ)2

(3− ψ)2µr
,

which can certainly be satisfied, since the right hand side does not depend on γ. Moreover, observe that
under this condition, 1 − ψ −

√
γ

1−γµr > 0 holds. Note that if the last inequality holds strictly, then so
does the first.

We have thus shown that as long as ψ < 1, then for λ within the given bounds, we can construct a
dual certificate. From here, the following corollary immediately establishes our main result, Theorem 1.

Corollary 1: Let γ ≤ γ∗. λ = 3
7
√
γ∗n

, identifies the correct
column space and support of outlier, as long as

γ∗

1− γ∗
≤ 9

121µr
.

Proof: First note that λ = 3
7
√
γ∗n

and γ ≤ γ∗ together imply that

λ ≤ 3

7
√
γn
,

which by Lemma 7 leads to

ψ ≤ λ2γn <
1

4
.

Thus, it suffices to check that γ and λ satisfy the conditions of Theorem 4, namely

γ

1− γ
<

(1− ψ)2

(3− ψ)2µr
,

and
(1− ψ)

√
µr

1−γ
√
n(1− ψ −

√
γ

1−γµr)
< λ <

1− ψ
(2− ψ)

√
nγ
.
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Since ψ < 1/4, we have

γ

1− γ
≤ γ∗

1− γ∗
≤ 9

121µr
=

(1− 1/4)2

(3− 1/4)2µr
<

(1− ψ)2

(3− ψ)2µr
,

which proves the first condition.

Next, observe that
(1−ψ)
√

µr
1−γ√

n(1−ψ−
√

γ
1−γ µr)

, as a function of ψ, γ, (µr) is strictly increasing in ψ, (µr), and γ.

Moreover, µr ≤ (1−ψ)2(1−γ)
(3−ψ)2γ

, and thus

(1− ψ)
√

µr
1−γ

√
n(1− ψ −

√
γ

1−γµr)
<

(1− ψ)
√

(1−ψ)2

(3−ψ)2γ
√
n(1− ψ − 1−ψ

3−ψ )
=

3
√

1 + γ/(1− γ)

7
√
n

≤
3
√

1 + γ∗/(1− γ∗)
7
√
n

= λ.

Similarly, 1−ψ
(2−ψ)

√
nγ

is strictly decreasing in ψ and γ, which implies that

1− ψ
(2− ψ)

√
nγ

>
1− 1/4

(2− 1/4)
√
nγ∗

= λ.

V. PROOF OF THEOREM 2: THE CASE OF NOISE

In practice, the observed matrix may be a noisy copy of M . In this section, we investigate this noisy
case and show that the proposed method, with minor modification, is robust to noise. Specifically, we
observe M ′ = M+N for some unknown N , and we want to approximately recover U0 and I0. This leads
to the following formulation that replaces the equality constraint M = L+ C with a norm inequality.

Minimize: ‖L‖∗ + λ‖C‖1,2

Subject to: ‖M ′ − L− C‖F ≤ ε.
(14)

In fact, we show in this section that under the essentially equivalent conditions as that of the noiseless case,
Noisy Outlier Pursuit succeeds. Here, we say that the algorithm “succeeds” if the optimal solution of (14)
is “close” to a pair that has the correct column space and column support. To this end, we first establish
the next theorem – a counterpart in the noisy case of Theorem 3 – that states that Noisy Outlier Pursuit
succeeds if there exists a dual certificate (with slightly stronger requirements than the noiseless case)
for decomposing the noiseless matrix M . Then, applying our results on constructing the dual certificate
from the previous section, we have that Noisy Outlier Pursuit succeeds under the essentially equivalent
conditions as that of the noiseless case.

Theorem 5: Let L′, C ′ be an optimal solution of (14). Suppose ‖N‖F ≤ ε, λ < 1, and ψ < 1/4. Let
M = L̂+ Ĉ where PU(L̂) = L̂ and PI0(Ĉ) = Ĉ. If there exists a Q such that

PT (L̂)(Q) = N(L̂); ‖PT (L̂)⊥(Q)‖ ≤ 1/2; PI0(Q)/λ ∈ G(Ĉ); ‖PIc0(Q)‖∞,2 ≤ λ/2, (15)

then there exists a pair (L̃, C̃) such that M = L̃+ C̃, L̃ ∈ PU0 , C̃ ∈ PI0 and

‖L′ − L̃‖F ≤ 20
√
nε; ‖C ′ − C̃‖F ≤ 18

√
nε.

Proof: Let V be as defined before. We establish the following lemma first.
Lemma 11: Recall that ψ = ‖G‖ where G = PI0(V

>
)PI0(V

>
)>. We have

‖PI0PVPI0(X)‖F ≤ ψ‖X‖F .
Proof: Let T ∈ Rn×n be such that

Tij =

{
1 if i = j, i ∈ I;
0 otherwise.
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We then expand PI0PVPI0(X), which equals

XTV V
>
T = XTV V

>
T> = X(TV )(TV )> = XPI0(V

>
)>PI0(V

>
).

The last equality follows from (TV )> = PI0(V
>

). Since ψ = ‖G‖ where G = PI0(V
>

)PI0(V
>

)>, we
have

‖PI0(V
>

)>PI0(V
>

)‖ = ‖PI0(V
>

)PI0(V
>

)>‖ = ψ.

Now consider the ith row of X , denoted as xi. Since ‖PI0(V
>

)>PI0(V
>

)‖ = ψ, we have

‖xiPI0(V
>

)>PI0(V
>

)‖2
2 ≤ ψ2‖xi‖2

2.

The lemma holds from the following inequality.

‖PI0PVPI0(X)‖2
F = ‖XPI0(V

>
)>PI0(V

>
)‖2
F =

∑
i

‖xiPI0(V
>

)>PI0(V
>

)‖2
2 ≤ ψ2

∑
‖xi‖2

2 = ψ2‖X‖2
F .

Let NL = L′ − L̂, NC = C ′ − Ĉ and E = NC +NL. Then

‖E‖F ≤ ‖L′ + C ′ −M‖F ≤ ‖L′ + C ′ − (M ′ −N)‖F ≤ ‖L′ + C ′ −M ′‖F + ‖N‖F ≤ 2ε.

Further, define N+
L = NL−PI0PU0(NL), N+

C = NC −PI0PU0(NC), and E+ = E−PI0PU0(E). Observe
that for any A, ‖(I − PI0PU0)(A)‖F ≤ ‖A‖F .

Choosing the same W and F as in the proof of Theorem 3, we have

‖L̂‖∗ + λ‖Ĉ‖1,2 ≥ ‖L′‖∗ + λ‖C ′‖1,2

≥‖L̂‖∗ + λ‖Ĉ‖1,2 + 〈PT (L̂)(Q) +W,NL〉+ λ〈PI0(Q)/λ+ F,NC〉
=‖L̂‖∗ + λ‖Ĉ‖1,2 + ‖PT (L̂)⊥(NL)‖∗ + λ‖PIc0(NC)‖1,2 + 〈PT (L̂)(Q), NL〉+ 〈PI0(Q), NC〉
=‖L̂‖∗ + λ‖Ĉ‖1,2 + ‖P

T (L̂)
⊥(NL)‖∗ + λ‖PIc0(NC)‖1,2 − 〈PT (L̂)

⊥(Q), NL〉 − 〈PIc0(Q), NC〉+ 〈Q,NL +NC〉

≥‖L̂‖∗ + λ‖Ĉ‖1,2 + (1− ‖P
T (L̂)

⊥(Q)‖)‖P
T (L̂)

⊥(NL)‖∗ + (λ− ‖PIc0(Q)‖∞,2)‖PIc0(NC)‖1,2 + 〈Q,E〉

≥‖L̂‖∗ + λ‖Ĉ‖1,2 + (1/2)‖P
T (L̂)

⊥(NL)‖∗ + (λ/2)‖PIc0(NC)‖1,2 − 2ε‖Q‖F .

Note that ‖Q‖∞,2 ≤ λ, hence ‖Q‖F ≤
√
nλ. Thus we have

‖P
T (L̂)

⊥(NL)‖F ≤ ‖PT (L̂)
⊥(NL)‖∗ ≤ 4λ

√
nε;

‖PIc0(NC)‖F ≤ ‖PIc0(NC)‖1,2 ≤ 4
√
nε.

(16)

Furthermore,

PI0(N+
C ) =PI0(NC)− PI0PU0PI0(NC)

=PI0(E)− PI0PT (L̂)
⊥(NL)− PI0PT (L̂)(NL)− PI0PU0PI0(NC)

=PI0(E)− PI0PT (L̂)
⊥(NL)− PI0PT (L̂)(E) + PI0PT (L̂)(NC)− PI0PU0PI0(NC)

=PI0(E)− PI0PT (L̂)
⊥(NL)− PI0PT (L̂)(E) + PI0PT (L̂)PIc0(NC)

+ PI0PT (L̂)PI0(NC)− PI0PU0PI0(NC)

(a)
=PI0(E)− PI0PT (L̂)

⊥(NL)− PI0PT (L̂)(E) + PI0PT (L̂)PIc0(NC) + PI0PT (L̂)PI0(N
+
C )

(b)
=PI0(E)− PI0PT (L̂)

⊥(NL)− PI0PT (L̂)(E) + PI0PT (L̂)PIc0(NC) + PI0PVPI0(N+
C ).

(17)

Here (a) holds due to the following

PI0PT (L̂)PI0(N
+
C ) = PI0PT (L̂)PI0(NC)−PI0PT (L̂)PI0(PI0PU0(NC)) = PI0PT (L̂)PI0(NC)−PI0PU0PI0(NC),
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and (b) holds since by definition, each column of N+
C is orthogonal to U0, hence PU0PI0(N+

C ) = 0. Thus,
Equation (17) leads to

‖PI0(N+
C )‖F

≤‖PI0(E)− PI0PT (L̂)(E)‖F + ‖PI0PT (L̂)
⊥(NL)‖F + ‖PI0PT (L̂)PIc0(NC)‖F + ‖PI0PVPI0(N+

C )‖F
≤‖E‖F + ‖P

T (L̂)
⊥(NL)‖F + ‖PIc0(NC)‖F + ψ‖PI0(N+

C )‖F
≤(2 + 4λ

√
n+ 4

√
n)ε+ ψ‖PI0(N+

C )‖F .
This implies that

‖PI0(N+
C )‖F ≤ (2 + 4λ

√
n+ 4

√
n)ε/(1− ψ).

Now using the fact that λ < 1, and ψ < 1/4, we have

‖N+
C ‖F = ‖PIc0(NC) + PI0(N+

C )‖F ≤ ‖PIc0(NC)‖F + ‖PI0(N+
C )‖F ≤ 18

√
nε.

Note that N+
C = (I −PI0PU0)(C

′− Ĉ) = C ′− [Ĉ +PI0PU0(C
′− Ĉ)]. Letting C̃ = Ĉ +PI0PU0(C

′− Ĉ),
we have C̃ ∈ PI0 and ‖C ′ − C̃‖F ≤ 18

√
nε. Letting L̃ = L̂ − PI0PU0(C

′ − Ĉ), we have that L̃, C̃ is a
successful decomposition, and

‖L′ − L̃‖F ≤ ‖L′ − L̂+ PI0PU0(C
′ − Ĉ)‖F = ‖L′ − L̂+ C̃ − Ĉ‖F

= ‖(L′ − L̂+ C ′ − Ĉ) + C̃ − C ′‖F ≤ ‖E‖F + ‖C ′ − C̃‖F ≤ 20
√
nε.

Remark: From the proof of Theorem 4, we have that Condition (15) holds when

γ

1− γ
≤ (1− ψ)2

(9− 4ψ)2µ0r

and
2(1− ψ)

√
µ0r
1−γ

√
n(1− ψ −

√
γ

1−γµ0r)
≤ λ ≤ 1− ψ

2(2− ψ)
√
nγ
.

For example, one can take

λ =

√
9 + 1024µ0r

14
√
n

,

and all conditions of Theorem 5 hold when
γ

1− γ
≤ 9

1024µ0r
.

This establishes Theorem 2.
Remark: Notice that the subspace of the singular vectors corresponding to the r largest singular values

of L′, denoted SU ′ , can not deviate far away from the original column space SU0 . Indeed, applying a result
from [35] (see for example Theorem 4 of [36], also [37]), we have that the Canonical Angle matrix Θ
(see for example [36], [37] for a definition) between SU ′ and SU0 satisfies

‖ sin(Θ)‖F ≤
√

2‖L′ − L̃‖F
σr(L̃)

≤ 20
√

2nε

σr(L0)
,

where σr(·) represents the r-th largest singular value of a matrix. Here the last inequality holds since
PI0(L̃) = PI0(L̃0) and PI(L̃0) = 0, hence the singular value for the former is always larger than or equal
to the latter.
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VI. IMPLEMENTATION ISSUES AND NUMERICAL EXPERIMENTS

While minimizing the nuclear norm is known to be a semi-definite program, and can be solved using
a general purpose SDP solver such as SDPT3 or SeDuMi, such a method does not scale well to large
data-sets. In fact, the computational time becomes prohibitive even for modest problem sizes as small
as hundreds of variables. Recently, a family of optimization algorithms known as proximal gradient
algorithms have been proposed to solve optimization problems of the form

minimize: g(x), subject to: A(x) = b,

of which Outlier Pursuit is a special case. It is known that such algorithms converge with a rate of O(k−2)
where k is the number of variables, and significantly outperform interior point methods for solving SDPs
in practice. Following this paradigm, we solve Outlier Pursuit with the following algorithm. The validity
of the algorithm follows easily from [38], [39]. See also [40].

Input: M ∈ Rm×n, λ, δ := 10−5, η := 0.9, µ0 := 0.99‖M‖F .
1) L−1, L0 := 0m×n; C−1, C0 := 0m×n, t−1, t0 := 1; µ̄ = δµ;
2) while not converged do
3) Y L

k := Lk + tk−1−1

tk
(Lk − Lk−1), Y C

k := Ck + tk−1−1

tk
(Ck − Ck−1);

4) GL
k := Y L

k − 1
2

(
Y L
k + Y C

k −M
)
; GC

k := Y C
k − 1

2

(
Y L
k + Y C

k −M
)
;

5) (U, S, V ) := svd(GL
k ); Lk+1 := ULµk

2
(S)V ;

6) Ck+1 := Cλµk
2

(GC
k );

7) tk+1 :=
1+
√

4t2k+1

2
; µk+1 := max(ηµk.µ̄); k + +;

8) end while
Output: L := Lk, C = Ck.

Here, Lε(S) is the diagonal soft-thresholding operator: if |Sii| ≤ ε, then it is set to zero, otherwise, we
set Sii := Sii − ε · sgn(Sii). Similarly, Cε(C) is the column-wise thresholding operator: set Ci to zero if
‖Ci‖2 ≤ ε, otherwise set Ci := Ci − εCi/‖Ci‖2.

We explore the performance of Outlier Pursuit on some synthetic and real-world data, and find that
its performance is quite promising.2 Our first experiment investigates the phase-transition property of
Outlier Pursuit, using randomly generated synthetic data. Fix n = p = 400. For different r and number
of outliers γn, we generated matrices A ∈ Rp×r and B ∈ R(n−γn)×r where each entry is an independent
N (0, 1) random variable, and then set L∗ := A×B> (the “clean” part of M ). Outliers, C∗ ∈ Rγn×p are
generated either neutrally, where each entry of C∗ is iid N (0, 1), or adversarially, where every column
is an identical copy of a random Gaussian vector. Ĉ ∈ PI , and L̂ ∈ PU with
a tolerance of 0.1%, i.e., if ‖PIc0(Ĉ)‖F ≤ 0.001‖PIc0(L0)‖F , and the r+ 1-th singular value of L̂ is small
than 0.001 times the r-th singular value. The parameter value λ is set using cross-validation with the
information of the correct rank and the number of outliers. We initialize λ as in Theorem 1 and perform
a bisection. If the resulting L̂ has more ranks than we expect, we decrease λ; similarly, if the number of
non-zero columns of Ĉ is larger than we expect, we increase λ. At most 5 different λ are selected, before
the algorithm claims failure.

Figure 1 shows the phase transition property. We represent success in gray scale, with white denoting
success, and black failure. When outliers are random (easier case) Outlier Pursuit succeeds even when
r = 20 with 100 outliers. In the adversarial case, Outlier Pursuit succeeds when r × γ ≤ c, and fails
otherwise, consistent with our theory’s predictions. We then fix r = γn = 5 and examine the outlier
identification ability of Outlier Pursuit with noisy observations. We scale each outlier so that the `2

distance of the outlier to the span of true samples equals a pre-determined value s. Each true sample is

2We have learned that [41] has also performed some numerical experiments minimizing ‖ · ‖∗ + λ‖ · ‖1,2, and found promising results.
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(a) Random Outlier (b) Identical Outlier (c) Noisy Outlier Detection
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Fig. 1. This figure shows the performance of our algorithm in the case of complete observation (compare the next figure). The results
shown represent an average over 10 trials.

thus corrupted with a Gaussian random vector with an `2 magnitude σ. We perform (noiseless) Outlier
Pursuit on this noisy observation matrix, and claim that the algorithm successfully identifies outliers if
for the resulting Ĉ matrix, ‖Ĉj‖2 < ‖Ĉi‖2 for all j 6∈ I and i ∈ I, i.e., there exists a threshold value to
separate out outliers. Figure 1 (c) shows the result: when σ/s ≤ 0.3 for the identical outlier case, and
σ/s ≤ 0.7 for the random outlier case, Outlier Pursuit correctly identifies the outliers.

We further study the case of decomposing M under incomplete observation, which is motivated by robust
collaborative filtering: we generate M as before, but only observe each entry with a given probability
(independently). Letting Ω be the set of observed entries, we solve

Minimize: ‖L‖∗ + λ‖C‖1,2; Subject to: PΩ(L+ C) = PΩ(M). (18)

The same success condition is used. Figure 2 shows a very promising result: the successful decomposition
rate under incomplete observation is close the the complete observation case even only 30% of entries are
observed. Given this empirical result, a natural direction of future research is to understand theoretical
guarantee of (18) in the incomplete observation case.

(a) 30% entries observed (b) 80% entries observed (c) success rate vs observation ratio
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Fig. 2. This figure shows the case of partial observation, where only a fraction of the entries, sampled uniformly at random, are observed.

Next we report some experimental results on the USPS digit data-set. The goal of this experiment is
to show that Outlier Pursuit can be used to identify anomalies within the dataset. We use the data from
[42], and construct the observation matrix M as containing the first 220 samples of digit “1” and the last
11 samples of “7”. The learning objective is to correctly identify all the “7’s”. Note that throughout the
experiment, label information is unavailable to the algorithm, i.e., there is no training stage. Since the
columns of digit “1” are not exactly low rank, an exact decomposition is not possible. Hence, we use
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the `2 norm of each column in the resulting C matrix to identify the outliers: a larger `2 norm means
that the sample is more likely to be an outlier — essentially, we apply thresholding after C is obtained.
Figure 3(a) shows the `2 norm of each column of the resulting C matrix. We see that all “7’s” are indeed
identified. However, two “1” samples (columns 71 and 137) are also identified as outliers, due to the
fact that these two samples are written in a way that is different from the rest of the “1’s” as shown in
Figure 4. Under the same setup, we also simulate the case where only 80% of entries are observed. As
Figure 3 (b) and (c) show, similar results as that of the complete observation case are obtained, i.e., all
true “7’s” and also “1’s” No 71, No 177 are identified.

(a) Complete Observation (b) Partial Obs. (one run) (c) Partial Obs. (average)
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Fig. 3. This figure shows the `2 norm of each of the 220 columns of C. Large norm indicates that the algorithm believes that column is
an outlier. All “7’s” and two “1’s” are identified as outliers.

“1” “7” No 71 No 177
Fig. 4. This figure shows the typical “1’s”, the typical “7’s” and also the two abnormal “1’s” identified by the algorithm as outliers.

VII. CONCLUSION AND FUTURE DIRECTION

This paper considers robust PCA from a matrix decomposition approach, and develops the Outlier
Pursuit algorithm. Under some mild conditions that are quite natural in most PCA settings, we show
that Outlier Pursuit can exactly recover the column support, and exactly identify outliers. This result is
new, differing both from results in Robust PCA, and also from results using nuclear-norm approaches for
matrix completion and matrix reconstruction. One central innovation we introduce is the use of an oracle
problem. Whenever the recovery concept (in this case, column space) does not uniquely correspond to a
single matrix (we believe many, if not most cases of interest, fit this description), the use of such a tool will
be quite useful. Immediate goals for future work include considering specific applications, in particular,
robust collaborative filtering (here, the goal is to decompose a partially observed column-corrupted matrix)
and also obtaining tight bounds for outlier identification in the noisy case.
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APPENDIX I
ORTHOGONAL CASE

This section investigates the special case where each outlier is orthogonal to the span of true samples,
as stated in the following assumption.

Assumption 1: For i ∈ I0, j 6∈ I0, we have M>
i Mj = 0.

In the orthogonal case, we are able to derive a necessary and sufficient condition of Outlier Pursuit
to succeed. Such condition is of course a necessary condition for Outlier Pursuit to succeed in the more
general (non-orthogonal) case. Let

H0 =

{
(C0)i
‖(C0)i‖2 , if i ∈ I0;

0 otherwise.

Theorem 6: Under Assumption 1, there exists a solution to Outlier Pursuit that correctly identifies the
column space and outlier support, if and only if

‖H0‖ ≤ 1/λ; ‖U0V
>

0 ‖∞,2 ≤ λ. (19)

If both inequalities hold strictly, then any solution to Outlier Pursuit correctly identifies the column space
and outlier support.

Corollary 2: If the outliers are generated adversarial, and Assumption 1 holds, then Outlier Pursuit
succeeds (for some λ∗) if and only if

γ

1− γ
≤ 1

µr
.

Specifically, we can choose λ∗ =
√

µr+1
n

.

A. Proof of Theorem 6
The proof consists of three steps. We first show that if Outlier Pursuit succeeds, then (L0, C0) must be

an optimal solution to Outlier Pursuit. Then using subgradient condition of optimal solutions to convex
programming, we show that the necessary and sufficient condition for (L0, C0) being optimal solution is the
existence of a dual certificate Q. Finally, we show that the existence of Q is equivalent to Condition (19)
holds. We devote a subsection for each step.

1) Step 1: We need a technical lemma first.
Lemma 12: Given A ∈ Rm×n, we have

‖PIc0(A)‖∗ ≤ ‖A‖∗.
Proof: Fix r ≥ rank(A). It is known that ‖A‖∗ has the following variational form (Lemma 5.1

of [24]):

‖A‖∗ = Minimize:X∈Rm×r,Y ∈Rn×r
1

2
(‖X‖2

F + ‖Y ‖2
F )

Subject to: XY > = A.
(20)

Note that for any XY > = A, we have

XY
>

= X(PIc0(Y >)) = PIc(A),

where Y is the matrix resulted by setting all rows of Y in I to zero. Thus, by variational form of
‖PIc0(A)‖∗, and note that rank(PIc0(A)) ≤ r, we have

‖PIc0(A)‖∗ ≤
1

2
[‖X‖2

F + ‖Y ‖2
F ] ≤ 1

2
[‖X‖2

F + ‖Y ‖2
F ].

Note this holds for any X, Y such that XY > = A, the lemma follows from (20).
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Theorem 7: Under Assumption 1, for any L′, C ′ such that L′+C ′ = M , PI0(C ′) = C ′, and PU0(L
′) =

L′, we have
‖L0‖∗ + λ‖C0‖1,2 ≤ ‖L′‖∗ + λ‖C ′‖1,2,

with the equality holds only when L′ = L0 and C ′ = C0.
Proof: Write L′ = L0 + ∆ and C ′ = C0 − ∆. Since PU0(L

′) = L′, we have that for i ∈ I0,
PU0(∆i) = ∆i, which implies that for i ∈ I0

C>0i∆i = (C>0iU0)U>0 ∆i = 0× U>0 ∆i,

where the last equality holds from Assumption 1 and the definition of C0 (recall that C0i is the ith column
of C0). Thus, ‖C0‖1,2 =

∑
i∈I ‖C0i‖2 ≤

∑
i∈I0 ‖C0i + ∆i‖2 ≤

∑n
i=1 ‖C0i + ∆i‖2 = ‖C ′‖1,2, with equality

only holds when ∆ = 0.
Further note that PI0(C ′) = C ′ implies that PI0(∆) = ∆, which by definition of L0 leads to

L0 = PIc0(L′).

Thus, Lemma 12 implies ‖L0‖∗ ≤ ‖L′‖∗. The theorem thus follows.
Note that Theorem 7 essentially says that in the orthogonal case, if Outlier Pursuit succeeds, i.e., it outputs
a pair (L′, C ′) such that L′ has the correct column space, and C ′ has the correct column support, then
(L0, C0) must be the output. This makes it possible to restrict out attention to investigate when the solution
to Outlier Pursuit is (L0, C0).

2) Step 2:
Theorem 8: Under Assumption 1, (L0, C0) is an optimal solution to Outlier Pursuit if and only if there

exists Q such that

(a) PT0(Q) = U0V
>

0 ;

(b) ‖PT⊥0 (Q)‖ ≤ 1;

(c) PI0(Q) = λH0;

(d) ‖PIc0(Q)‖∞,2 ≤ λ.

(21)

Here PT0(·) , PT (L0)(·). In addition, if both inequalities are strict, then (L0, C0) is the unique optimal
solution.

Proof: Standard convex analysis yields that (L0, C0) is an optimal solution to Outlier Pursuit if and
only if there exists a dual matrix Q such that

Q ∈ ∂‖L0‖∗; Q ∈ ∂λ‖C0‖1,2.

Note that a matrix Q is a subgradient of ‖ · ‖∗ evaluated at L0 if and only if it satisfies

PT0(Q) = U0V
>

0 ; and ‖PT⊥0 (Q)‖ ≤ 1.

Similarly, Q is a subgradient of λ‖ · ‖1,2 evaluated at C0 if and only if

PI0(Q) = λH0; and ‖PIc0(Q)‖∞,2 ≤ λ.

Thus, we conclude the proof of the first part of the theorem, i.e., the necessary and sufficient condition
of (L0, C0) being an optimal solution.

Next we show that if both inequalities are strict, then (L0, C0) is the unique optimal solution. Fix
∆ 6= 0, we show that (L0 + ∆, C0 −∆) is strictly worse than (L0, C0). Let W be such that ‖W‖ = 1,
〈W,PT⊥0 (∆)〉 = ‖PT⊥0 ∆‖∗, and PT0W = 0. Let F be such that such that

Fi =

{ −∆i

‖∆i‖2 if i 6∈ I0, and ∆i 6= 0

0 otherwise.
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Then U0V
>

0 +W is a subgradient of ‖ · ‖∗ at L0 and H0 + F is a subgradient of ‖ · ‖1,2 at C0. Then we
have

‖L0 + ∆‖∗ + λ‖C0 −∆‖1,2

≥ ‖L0‖∗ + λ‖C0‖1,2+ < U0V
>

0 +W,∆ > −λ < H0 + F,∆ >

= ‖L0‖∗ + λ‖C0‖1,2 + ‖PT⊥0 (∆)‖∗ + λ‖PIc0(∆)‖1,2+ < U0V
>

0 − λH0,∆ >

= ‖L0‖∗ + λ‖C0‖1,2 + ‖PT⊥0 (∆)‖∗ + λ‖PIc0(∆)‖1,2+ < Q− PT⊥0 (Q)− (Q− PIc0(Q)),∆ >

= ‖L0‖∗ + λ‖C0‖1,2 + ‖PT⊥0 (∆)‖∗ + λ‖PIc0(∆)‖1,2+ < −PT⊥0 (Q),∆ > + < PIc0(Q),∆ >

≥ ‖L0‖∗ + λ‖C0‖1,2 + (1− ‖PT⊥0 (Q)‖)‖PT⊥0 (∆)‖∗ + (λ− ‖PIc0(Q)‖∞,2)‖PIc0(∆)‖1,2

≥ ‖L0‖∗ + λ‖C0‖1,2,

where the last inequality is strict unless

‖PT⊥0 (∆)‖∗ = ‖PIc0(∆)‖1,2 = 0. (22)

We next show that Condition (22) also implies a strict increase of the objective function to complete the
proof. Note that Equation (22) is equivalent to ∆ = PT0(∆) = PI0(∆), and note that

PU0(∆) = PT0(∆)− PV0(∆) + PU0PV0(∆) = ∆− (I − PU0)PV0∆.

Since PI0(V >0 ) = 0, PI0(∆) = ∆ implies that PV0(∆) = 0, which means

∆ = PU0(∆) = PI0(∆).

Thus, PU0(L0 + ∆) = L0 + ∆, and PI0(C0−∆) = C0−∆. By Theorem 7, ‖L0 + ∆‖∗+λ‖C0−∆‖1,2 >
‖L0‖∗ + λ‖C0‖1,2, which completes the proof.

3) Step 3:
Theorem 9: Under Assumption 1, if there exists any matrix Q that satisfies Condition (21), then U0V

>
0 +

λH0 satisfies (21).
Proof: Denote Q0 , U0V

>
0 + λH0. We first show that the two equalities of Condition (21) hold.

Note that

PT0(Q0) = PT0(U0V
>

0 ) + λPT0(H0) = U0V
>

0 + λ[PU0(H0) + PV0(H0)− PU0PV0(H0)].

Further note that PU0(H0) = U0(U>0 H0) = 0 due to Assumption 1, and PV0(H0) = 0 because PI0(H0) =
H0 and PI0(V >0 ) = 0 lead to H0V0 = 0. Hence

PT0(Q0) = U0V
>

0 .

Furthermore,
PI0(Q0) = PI0(U0V

>
0 ) + λPI0(H0) = U0PI0(V >0 ) + λH0 = λH0.

Here, the last equality holds because PI0(V >0 ) = 0. Note that this also implies that

PT⊥0 (H0) = H0; PIc0(U0V
>

0 ) = U0V
>

0 . (23)

Now consider any matrix Q that also satisfies the two equalities. Let Q = U0V
>

0 + λH0 + ∆, note that
Q satisfies PI0(Q) = λH0 and PT0(Q) = U0V

>
0 , which leads to

PI0(∆) = 0; and PT0(∆) = 0.

Thus,
PIc0(Q) = U0V

>
0 + ∆; and PT ⊥0 (Q) = λH0 + ∆.
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Note that

‖U0V
>

0 + ∆‖∞,2 = max
i
‖U0(V >0 )i + ∆i‖2

≥max
i
‖U0(V >0 )i‖2 = ‖U0V

>
0 ‖∞,2.

Here, the inequality holds because PT0(∆) = 0 implies that ∆i are orthogonal to the span of U0. Note
that the inequality is strict when ∆ 6= 0.

On the other hand

‖λH0‖ = max
‖x‖≤1,‖y‖≤1

x>(λH0)y
(a)
= max
‖x‖≤1,‖y‖≤1,PIc0 (y>)=0

x>(λH0)y

(b)
= max
‖x‖≤1,‖y‖≤1,PIc0 (y>)=0

x>(λH0 + ∆)y ≤ max
‖x‖≤1,‖y‖≤1

x>(λH0 + ∆)y = ‖λH0 + ∆‖.

Here, (a) holds because PI0H0 = H0, thus for any y, set all yi = 0 for i 6∈ I0 does not change x>(λH0)y;
while (b) holds since PIc0∆ = ∆.

Thus, if Q satisfies the two inequalities, then so does Q0, which completes the proof.
Note that by Equation (23) we have

PT⊥0 (H0) = H0; PIc0(U0V
>

0 ) = U0V
>

0 .

Thus, Theorem 7, Theorem 8 and Theorem 9 together establish Theorem 6.

B. Proof of Corollary 2
Corollary 2 holds due to the following lemma that tightly bounds ‖H0‖ and ‖U0V

>
0 ‖∞,2.

Lemma 13: We have (I) ‖H0‖ ≤
√
γn, and the inequality is tight. (II) ‖U0V

>
0 ‖∞,2 = maxi ‖V >0 ei‖2 =√

µr
(1−γ)n

.
Proof: Following the variational form of the operator norm, we have

‖H0‖ = max
‖x‖2≤1,‖y‖2≤1

x>H0y = max
‖x‖2≤1

‖x>H0‖2 = max
‖x‖2≤1

√√√√ n∑
i=1

(x>Hi)2 ≤
√∑

i∈I0

1 =
√
|I0| =

√
γn.

The inequality holds because ‖(H0)i‖2 = 1 when i ∈ I0, and equals zero otherwise. Note that if we let
(H0)i all be the same, such as taking identical outliers, the inequality is tight.

By definition we have ‖U0V
>

0 ‖∞,2 = maxi ‖U0(V >0 )i‖2
(a)
= maxi ‖(V >0 )i‖2 = maxi ‖V >0 ei‖2. Here (a)

holds since U0 is orthonormal. The second claim hence follows from definition of µ.
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APPENDIX II
LIST OF NOTATIONS

M The observed matrix.
p The number of rows of M .
n The number of columns of M .

L0, C0 The ground truth.
I0 The index of outliers (non-zero columns of C0).
γ Fraction of outliers, which equals |I0|/n.

U0, V0 The left and right singular vectors of L0.
µ Incoherence parameter of V0

L̂, Ĉ The optimal solution of the Oracle Problem.
Û , V̂ The left and right singular vectors of L̂.
V An auxiliary matrix, introduced in Lemma 5, which satisfies Û V̂ > = U0V

>
.

µ Incoherence parameter of V .
Ĥ An auxiliary matrix, introduced in Lemma 5, which satisfies Ĥ ∈ G(Ĉ).

N(·) G(·) Operators defined in Definition 1.
G Auxiliary matrix defined in Equation (11), as G , PI0(V

>
)(PI0(V

>
))>.

ψ Defined in Lemma 7 as ψ = ‖G‖.


