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Abstract

We consider optimization problems whose
parameters are known only approximately,
based on noisy samples. Of particular in-
terest is the high-dimensional regime, where
the number of samples is roughly equal to
the dimensionality of the problem, and the
noise magnitude may greatly exceed the mag-
nitude of the signal itself. This setup falls far
outside the traditional scope of Robust and
Stochastic optimization. We propose three
algorithms to address this setting, combin-
ing ideas from statistics, machine learning,
and robust optimization. In the important
case where noise artificially increases the di-
mensionality of the parameters, we show that
combining robust optimization and dimen-
sionality reduction can result in high-quality
solutions at greatly reduced computational
cost.

1 Introduction

Optimization has become a cornerstone of machine
learning research and practice. Indeed, the machine
learning community has benefited from theory (in
particular convex duality, e.g. Candès & Tao, 2007;
Tropp, 2006; Shalev-Shwartz & Singer, 2007), algo-
rithms (e.g., Shalev-Shwartz & Srebro, 2008; Li &
Zhang, 2009; Cai et al., 2008), and software (Grant
& Boyd, 2011; Sturm, 1999), for optimization. On
the other hand, insights and algorithms from machine
learning have yet to make commensurate impact on
optimization. This paper pursues precisely this av-
enue, harnessing recent advances in machine learning
and high-dimensional statistics.
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We consider solving an optimization problem where
its parameters are known only through potentially
noisy observations. Many problems fall under this
general setting, particularly as optimization is increas-
ingly used to deal with large-scale problems with data-
driven constraints. A large class of such problems
arises from user satisfaction tasks, where an objective
is maximized subject to the constraints of keeping as
many users’ perceived performance above a threshold,
as possible. User preferences are typically observed
through very noisy processes, such as user surveys or
collaborative filtering, and while typically soft con-
straints, they are often modeled as hard constraints in
optimization problems. Many problems in engineering
share similar qualities. Of particular relevance is the
vast family of problems where the system behaviors,
and hence optimization constraints, are only learned
via observation through many noisy or potentially un-
reliable sensors. Environmental monitoring, multiple-
object tracking, and related problems all fall under
this general umbrella. This paper attempts to bring
to the table tools from statistics and machine learning,
to study precisely this problem: how can we approach
an optimization problem whose constraints are highly
corrupted or noisy.

Optimization with noisy or corrupted parameters tra-
ditionally falls under the purview of stochastic and
robust optimization (Prékopa, 1995; Ben-Tal et al.,
2009; Bertsimas et al., 2011; Birge & Louveaux, 1997).
Consequently, techniques from both fields of optimiza-
tion have seen significant impact in statistics and ma-
chine learning (Ben-Tal et al., 2009). On the other
hand, the focus of machine learning on over-fitting,
and the arsenal of tools developed, have not seen com-
mensurate influence on optimization. Indeed, robust
optimization takes an uncertainty set as a primitive,
essentially overlooking the issue of data altogether;
stochastic optimization often assumes (partial) knowl-
edge of the distribution (e.g., the distribution itself, or
perhaps some of its moments), and thus has not ex-
plored issues of sample complexity to the degree done
in machine learning.
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In this paper, we consider optimization under uncer-
tainty, in the data-driven and high dimensional regime
where our knowledge of the constraint parameters
comes from samples, the dimensionality of the problem
and hence the noise is very high, and hence the mag-
nitude of the noise can greatly exceed the magnitude
of the true parameters. Ignoring issues of overfitting
and dimensionality in such a setting can present poten-
tially catastrophic consequences for both the solution
of the problem, as well as computational complexity.
Reversing the typical arrows of influence, we leverage
results from statistics and machine learning, to inform
optimization.

2 Problem Setup

The general problem we consider is the following: we
wish to solve the convex problem

Minimize:x∈X f0(x)

Subject to: f(x,ai) ≤ 0, i = 1, . . .m.

where X is a known convex feasible set representing
structural constraints, f and f0 are convex, but where
the parameters {ai} are known only through noisy
samples, hence representing data-driven constraints.
That is, we observe {ãi}mi=1, generated according to
ãi = ai + ni, where ai are unknown parameters, and
ni are iid Gaussian noise N (0, σ2I). We are particu-
larly interested in the high-dimensional regime where
the dimensionality, p, is approximately equal to m.

We focus on the case of linear optimization, and with-
out loss of generality, consider only uncertain con-
straints: a>i x ≤ bi. For ni ∼ N (0, σ2I), ‖ni‖ =
Θ(
√
pσ), hence the magnitude of the corrupting noise

may dwarf the magnitude of the true parameter.

Given this setting, estimating or even approximating
each true constraint parameter ai is hopeless. The
contribution of this paper is to show that neverthe-
less, there is a way forward. We propose three distinct
formulations that approximate this problem. We give
bounds on the performance of each. Our third for-
mulation, is geared to the setting where the true pa-
rameters {ai} lie in a low-dimensional space, but this
special structure is obscured by the added noise. In
this case, our approach combines robust optimization
and dimensionality reduction, and provides drastic im-
provements in computation time.

The first formulation, which we call the nominal
method, takes a (surprisingly) naive approach: it sim-
ply replaces the unknown true parameter with its noisy

observation. Thus, one solves

Nominal Method:
Minimize:x∈X c>x
Subject to: ã>i x ≤ bi, i = 1, . . .m.

(1)

We show that the optimal solution, x∗o, to the nom-
inal method will not violate the majority of the true
constraints with a large gap and hence is already a
reasonable candidate solution. Note that under this
guarantee, it is still possible that x∗o violates most or
all constraints, with a small gap. Thus, if the decision
maker is less sensitive to the gap of the constraint vi-
olation, but instead cares more about the number of
constraints satisfied, the nominal method may not be
appropriate.

The second formulation, which we call the robust
method, borrows an idea from robust optimization
(Ben-Tal & Nemirovski, 1999; Bertsimas & Sim, 2004;
Xu et al., 2009a) to address exactly this setup. The
basic idea is since ãi is a noisy copy of the true parame-
ter, we require the constraint to hold for all parameters
“close” to ãi. This leads to the following formulation
for fixed γ > 0.

Robust Method:

Minimize:x∈X c>x (2)

S. t. : (ãi + δi)
>x ≤ bi, ∀‖δi‖2 ≤ γ, i = 1, . . .m.

Note that larger γ leads to a solution that violates
fewer constraints, at the cost of being more conserva-
tive. Interestingly, while the noise satisfies ‖ni‖2 =
Θ(
√
pσ), we show that it is sufficient to pick γ =

Θ(σ) to guarantee that the majority of constraints
are satisfied. That is, by protecting against order-wise
smaller perturbation, the robust method significantly
improves the feasibility of the solution, even though
the true parameters is not “close” to the observed pa-
rameter. Interestingly, the robust constraint , is equiv-
alent to ã>i x+γ‖x‖2 ≤ bi which is a constraint with a
regularization term. The latter has been broadly ap-
plied in various machine learning algorithms. For ex-
ample, if we consider a quadratic objective function,
then the resulting robust method is indeed a variant
of support vector machines (Xu et al., 2009b; Shiv-
aswamy et al., 2006).

The third method focuses on the setting where the true
parameters a1, . . . ,am lie on a d-dimensional subspace
where d � p. We call this the dimensionality reduc-
tion method. We first perform Principal Component
Analysis (PCA) (Jolliffe, 1986), and let w∗1, . . . ,w

∗
d be

the d principal components of ã1, . . . , ãm. Next we
project ãi onto the span of w∗1, . . . ,w

∗
d, denoting the

projection by âi. Then we solve the following Robust
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Optimization problem.

PCA Method:

Minimize:x∈X c>x (3)

S. t. : (âi + δi)
>x ≤ bi, ∀‖δi‖2 ≤ γ, i = 1, . . . ,m.

The main advantage of this formulation is computa-
tional: by reducing the dimensionality, the computa-
tional cost is reduced compared to the robust method.

Our work diverges in an important way from the
traditional setup of optimization under uncertainty
(e.g., Bertsimas & Sim, 2004; Birge & Louveaux,
1997). The classical setup (high-dimensionality and
noise magnitude aside) assume we observe parameters
ai, but then the solution x∗ is judged against per-
turbed parameters ai+ni, thus rendering the solution
independent of the noise. We find this to be a poor
model of reality, where noise could potentially skew
the solution itself, not just degrade its performance.
Indeed, in our setting, in all methods presented, the
solution is dependent on the noise. In terms of the
analysis, it is this fact that presents the main techni-
cal challenges.

3 A Technical Lemma

The centerpiece of our analysis is random matrix the-
ory, and specifically an estimation of the largest singu-
lar value of random matrices, as shown in the following
proposition. We define a quantity that we frequently
use in the sequel: τ , max(p/m, 1).

Proposition 1. Let ni be iid following N (0, σ2Ip).
Then for any δ ∈ [0, 1], with probability 1− θ we have

supw∈Rp,‖w‖2≤1
1
m

∑m
i=1(w>ni)

2

≤ σ2(1 +
√
τ +

√
−2 log θ/m)2.

Proof. We require the following lemma, which is essen-
tially Theorem II.13 of Davidson and Szarek (2001).

Lemma 1. Let Γ be an m × p matrix, whose entries
are IID N (0, 1). Denote v1 = min(m, p) and v2 =
max(m, p). Let s1(Γ) be the largest singular value of
Γ, then we have

Pr(s1(Γ) >
√
v1 +

√
v2 +

√
v2ε) ≤ exp(−v2ε

2/2).

Note that supw∈Rp,‖w‖2≤1
1
m

∑m
i=1(w>ni)

2 =

σ2[s1(Γ)]2/m. The proposition thus holds.

4 The Nominal Method

In this section we show that the optimal solution to the
nominal problem, x∗o, satisfies the following property:

the number of constraints that are violated with a large
gap is small.

Theorem 1. Let x∗o be an optimal solution to the
nominal method, i.e., Formulation (1). Then with
probability at least 1−θ, for any c ∈ R+, the following
holds:1

1

m

∑
1(a>i x

∗
o > bi + c)

≤
σ‖x∗o‖2(1 +

√
τ +

√
−2 log θ/m)

c
.

Proof. Proposition 1 implies that with probability 1−
θ, the following holds uniformly over all x ∈ Rp,

m∑
i=1

(x>ni)
2 ≤ m‖x‖22σ2(1 +

√
τ +

√
−2 log θ/m)2.

Since x∗o is an optimal solution to Formulation (1),

0 =

m∑
i=1

max
(
a>i x

∗
o − bi, 0

)
=

m∑
i=1

max
(
(ãi − ni)

>x∗o − bi, 0
)

≤
m∑
i=1

max
(
ã>i x

∗
o − bi, 0

)
+

m∑
i=1

|x∗>o ni|

≤

√√√√m

m∑
i=1

(x∗>o ni)2

≤ mσ‖x∗o‖2(1 +
√
τ +

√
−2 log θ/m),

which implies the theorem.

5 The Robust Method

While Theorem 1 bounds the magnitude of the con-
straint violation, it is still possible that the solution of
the nominal method violates every constraint (maybe
slightly). In contrast, in this section we show that the
solution of the robust method is guaranteed to satisfy
most of the constraints.

Theorem 2. Fix γ > 0. Let x∗r be an optimal solution
to Formulation (2). Then we have with probability at
least 1− θ,

1

m

m∑
i=1

1(a>i x
∗
r > bi) ≤

σ(1 +
√
τ +

√
−2 log θ/m)

γ
.

1Here and in the sequel, unless otherwise stated, the
probability is taken over random realizations of the obser-
vations.
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Proof. Since x∗r is an optimal solution to Formula-
tion (2), then we have for i = 1, . . . ,m,

(ãi + δi)
>x∗r ≤ bi, ∀‖δi‖2 ≤ γ,

which leads to
∑m
i=1 max

(
ã>i x

∗
r − bi + γ‖x∗r‖2, 0

)
=

0. Note that for any i

max
(
a>i x

∗
r − bi, 0

)
= max

(
(ãi − ni)

>x∗r − bi, 0
)

≤max
(
ã>i x

∗
r − bi + γ‖x∗r‖2, 0

)
+ max(|x∗>r ni| − γ‖x∗r‖2, 0)

= max(|x∗>r ni| − γ‖x∗r‖2, 0).

Furthermore, similarly to the proof of Theorem 1, we
have with probability 1− θ

m∑
i=1

|x∗>r ni| ≤ mσ‖x∗r‖2(1 +
√
τ +

√
−2 log θ/m).

Combining these, we have with probability at least
1− θ,

1

m

m∑
i=1

1(a>i x > bi) ≤
1

m

m∑
i=1

1(|x∗>r ni| > γ‖x∗r‖2)

≤
σ(1 +

√
τ +

√
−2 log θ/m)

γ
.

This establishes the theorem.

Besides feasibility, conservatism of the solution is an
equally important property of a formulation. The rest
of this section quantifies the conservatism of the robust
approach. Specifically we consider a solution to the
following problem assuming that ai are indeed known,

Minimize: c>x (4)

Subject to: sup
‖δi‖2≤γ̃

(ai + δi)
>x ≤ bi; i = 1, . . . ,m.

Hence Formulation (4) can be regarded as an ideal for-
mulation with an additional conservatism γ̃. The next
theorem shows that a solution to Formulation (4) satis-
fies the majority of constraints of the robust approach,
and hence the latter is not overly conservative.

Theorem 3. Suppose γ > γ, Let x be the optimal
solution to Problem (4), then with probability 1 − θ,
we have

1

m

m∑
i=1

1( sup
‖δi‖2≤γ

(ãi + δi)
>x > bi)

≤ 1− Φ((γ − γ)/σ) +

√
− log θ

2m
. (5)

Proof. First notice that x does not depend on the noise
n1, . . . ,nm. If x = 0, then claim trivially holds. Hence
we assume x 6= 0, and let w , x/‖x‖2. Fix i ∈ [1 : m],
we have

ã>i x = a>i x + n>i x = a>i x + (w>ni)w
>x.

Since w is independent to ni, we have Pr(w>ni > (γ−
γ)) = 1−Φ((γ−γ)/σ). Notice that 1(w>ni > (γ−γ))
is a binomial random variable. By independence of
{nj}mj=1,

Pr

{
1

m

m∑
i=1

1(w>ni ≥ γ − γ) ≥ 1− Φ((γ − γ)/σ) + ε

}
≤ exp(−2mε2).

Equivalently, with probability 1− θ

1

m

m∑
i=1

1(w>ni ≥ (γ−γ)) ≤ 1−Φ((γ−γ)/σ)+

√
− log θ

2m
.

Note that by definition sup‖δi‖2≤γ̃(ai + δi)
>x ≤ bi.

Hence the event {sup‖δi‖2≤γ(ãi + δi)
>x > bi} implies

that {w>ni ≥ γ − γ}. Hence we have Equation (5)
holds.

6 The Dimensionality Reduction
Method

If the true parameters a1, . . . ,am belong to a
low-dimensional subspace, one can perform PCA
to approximately recover this space together with
the parameters, and solve an optimization problem
based on the approximated parameters â1, . . . , âm.
In this section we analyze the performance of
this dimensionality-reduction based algorithm. To
lighten notations, we define the following: C0 ,
conv{a1, . . . ,am}, Ĉ , conv{â1, . . . , âm}, Ĉγ , {c +

b|c ∈ Ĉ, ‖b‖2 ≤ γ}. PΩ̂(·) is the projection onto
the subspace spanned by w∗1, . . . ,w

∗
d, and PΩ0

(·) is
the projection onto the original subspace. Thus we
have PΩ0(ai) = ai, and similarly PΩ̂(âi) = âi. Finally,
define

ν ,

(
1

m

m∑
i=1

‖ai‖22

)1/2

.

Theorem 4. Let x∗d be the optimal solution to For-
mulation (3), then with probability 1− θ, we have

1

m

m∑
i=1

(a>i x
∗
d > bi) ≤ 5

√
d(1 +

√
τ +

√
−2 log θ/m)

σν

γ2

+
dσ2(1 +

√
τ +

√
−2 log θ/m)2

γ2
.
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Suppose (a1, b1), . . . , (am, bm) are indeed iid sampling
of an unknown distribution µ supported on a d-
dimensional subspace, then we can bound the prob-
ability that x∗d violates a new constraint, randomly
generated from the same distribution. We remark that
bound only depends on the intrinsic dimensionality d.

Corollary 1. Let x∗d be the optimal solution to For-
mulation (3), then with probability 1− 2θ, we have

Pr(a,b)∼µ(a>x∗d > b) ≤
√

4

m

(
d+ 1) ln(

2em

d+ 1
) + ln(

δ

4
)
)

+ 5
√
d(1 +

√
τ +

√
−2 log θ/m)

σν

γ2

+
dσ2(1 +

√
τ +

√
−2 log θ/m)2

γ2
.

(6)

Proof. It is known (e.g.,Anthony & Bartlett, 1999; van
der Vaart & Wellner, 2000) that the VC dimension of
the indicator functions of d-dimensional half-spaces is
d+ 1, i.e.,

V C
(
{fv,b(·)|v ∈ Rd, b ∈ R}

}
= d+ 1;

where fv,b(x) ≡ 1(v>x > b); ∀x ∈ Rd.

Therefore, by VC theory, we have the following holds
with probability (of sampling) at least 1− θ:

sup
z∈Rp,PΩ(z)=z

{
E(a,b)∼µ1(a>z > b)− 1

m

m∑
i=1

1(a>i z > bi)
}

≤
√

4

m

(
(d+ 1) ln(

2em

d+ 1
) + ln(

θ

4
)
)
.

Here we used the fact that (ai, bi) are iid follows µ,
and that µ is supported on the d-dimensional. This
implies the corollary.

6.1 Proof of Theorem 4

We now prove Theorem 4. We first show that under
certain condition ai will be close to âi, which indeed
implies the feasibility.

Lemma 2. Suppose for some c ∈ [0, 1] and α > 0, we
have

m∑
i=1

‖PΩ̂(ai)‖22 ≥ (1− c)
m∑
i=1

‖ai‖22; (7)

sup
w: ‖w‖2=1

1

m

m∑
i=1

(w>ni)
2 ≤ α. (8)

Then we have

1

m

m∑
i=1

1(a>i x
∗
d > b) ≤

c
∑m
i=1 ‖ai‖22 +mdα

mγ2
.

Proof. Recall that âi = PΩ̂(ãi) = PΩ̂(ai +ni). Denote
ǎi = ai − PΩ(ai), then Equation (7) leads to

m∑
i=1

‖ǎi‖22 ≤ c
m∑
i=1

‖ai‖22.

On the other hand, notice that PΩ̂ is a projection onto
a d-dimensional subspace. Hence Equation (8) leads
to

m∑
i=1

‖PΩ̂(ni)‖22 ≤ d sup
w: ‖w‖2=1

m∑
i=1

(w>ni)
2 ≤ dmα.

Thus we have

1

m

m∑
i=1

1(a>i x ≤ bi) ≥
1

m

m∑
i=1

1(ai ∈ Ĉγ)

≥ 1

m

m∑
i=1

1(‖ai − âi‖ ≤ γ)

(a)
=

1

m

m∑
i=1

1
(
‖PΩ̂(ai)− âi‖22 + ‖ai − PΩ̂(ai)‖22 ≤ γ2

)
=

1

m

m∑
i=1

1
(
‖PΩ̂(ni)‖22 + ‖ǎi‖22 ≤ γ2

)
(b)

≥ 1−
∑m
i=1

(
‖PΩ̂(ni)‖22 + ‖ǎi‖22

)
mγ2

≥ 1−
c
∑m
i=1 ‖ai‖22 +mdα

mγ2
.

Here, (a) holds because PΩ̂(ai) − âi and ai − PΩ̂(ai)
are orthogonal to each other; (b) follows from Markov
inequality. The lemma thus holds.

Thus, to establish Theorem 4, we only need to find c
and α that satisfies Equation (7) and (8).

Lemma 3. Suppose Equation (7) holds, and let β ,
1
m

∑m
i=1 ‖ai‖22/(dα). Then

m∑
i=1

‖PΩ̂(ai)‖22 ≥ (1− 4
√

1/β − 1/β)

m∑
i=1

‖ai‖22,

Proof. We have that

1

m

m∑
i=1

‖PΩ0(ai + ni)‖22

=
1

m

m∑
i=1

{
‖ai‖22 + ‖PΩ0(ni)‖22 + 2(ai)

>(PΩ0(ni))
}

(a)

≥ 1

m

m∑
i=1

‖ai‖22 − 2

√√√√[
1

m

m∑
i=1

‖ai‖22][
1

m

m∑
i=1

‖PΩ0
(ni)‖22]

(b)

≥ 1

m

m∑
i=1

‖ai‖22 − 2

√√√√dα
1

m

m∑
i=1

‖ai‖22.
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Here, (a) follows from the inequality
(
∑
i aibi)

2 ≤
∑
i a

2
i

∑
i b

2
i , and (b) holds due to

1
m

∑m
i=1 ‖PΩ0

(ni)‖22 ≤ d supw∈Rm
1
m

∑m
i=1(w>ni)

2 ≤
dα. Similarly we have

1

m

m∑
i=1

‖PΩ̂(ai + ni)‖22

=
1

m

m∑
i=1

{
‖PΩ̂(ai)‖22 + ‖PΩ̂(ni)‖22 + 2(ai)

>(PΩ0(ni))
}

≤ 1

m

m∑
i=1

‖PΩ̂(ai)‖22 + dα+ 2

√√√√dα
1

m

m∑
i=1

‖PΩ̂(ai)‖22.

Since by definition, 1
m

∑m
i=1 ‖PΩ̂(ai + ni)‖22 ≥∑m

i=1 ‖PΩ0(ai + ni)‖22, and β = 1
m

∑m
i=1 ‖ai‖22/(dα),

we have

(1− 2
√

1/β)(
1

m

m∑
i=1

‖ai‖22)

≤ 1

m

m∑
i=1

‖ai‖22 − 2

√√√√dα
1

m

m∑
i=1

‖ai‖22

≤ 1

m

m∑
i=1

‖PΩ̂(ai)‖22 + dα+ 2

√√√√dα
1

m

m∑
i=1

‖PΩ̂(ai)‖22

≤ 1

m

m∑
i=1

‖PΩ̂(ai)‖22 + (
1

m

m∑
i=1

‖ai‖22)/β

+ 2
√

1/β(
1

m

m∑
i=1

‖ai‖22).

Re-arranging the terms establishes the lemma.

Now, observing that the assumption in Equation (7) of
Lemma 2 indeed follows from Proposition 1, we collect
these pieces to prove Theorem 4.

Proof of Theorem 4. By Proposition 1, we have with
probability 1− θ,

sup
w∈Rp,‖w‖2≤1

1

m

m∑
i=1

(w>ni)
2 ≤ σ2(1+

√
τ+
√
−2 log θ/m)2.

Thus, let β = 1
m

∑m
i=1 ‖ai‖22/(dσ2(1 +

√
τ +√

−2 log θ/m)2). By Lemma 3 we have

1

m

m∑
i=1

‖PΩ̂(ai)‖22 ≥ 1

m
(1− 4

√
1/β − 1/β)

m∑
i=1

‖ai‖22

≥ 1

m
(1− 5

√
1/β)

m∑
i=1

‖ai‖22.

Theorem 4 holds by applying Lemma 2 with α =
σ2(1 +

√
τ +

√
−2 log δ/m)2 and c = 5

√
1/β, and not-

ing that β = ν2/dα.

6.2 Conservatism

We next investigate the conservatism of the dimen-
sionality reduction approach.

Theorem 5. Fix γ̃ > γ and let x be the optimal solu-
tion to Formulation (4). Then the following holds with
probability 1− θ:

1

m

m∑
i=1

1

(
sup
‖δ̂i‖2≤γ

(â + δ̂i)
>x > bi

)
≤ 5

√
d(1 +

√
τ +

√
−2 log θ/m)

σν

(γ̃ − γ)2

+
dσ2(1 +

√
τ +

√
−2 log θ/m)2

(γ̃ − γ)2
.

Proof. We have that â>i x ≤ a>i x +
supδ:‖δ‖2≤‖ai−âi‖2 δ

>x, and thus by optimality
of x,

{‖ai−âi‖2 ≤ γ̃−γ} =⇒ { sup
‖δ̂i‖2≤γ

(âi+δ̂i)
>x ≤ bi}.

This leads to

1

m

m∑
i=1

1

(
sup
‖δ̂i‖2≤γ

(âi + δ̂i)
>x > bi

)

≤ 1

m

m∑
i=1

1 (‖ai − âi‖2 > γ̃ − γ)

=
1

m

m∑
i=1

1
(
‖ai − âi‖22 > (γ̃ − γ)2

)
.

By Markov inequality we have the right-hand-side is
upper-bounded by

1
m

∑m
i=1 ‖ai − âi‖22
(γ̃ − γ)2

(a)
=

1
m

∑m
i=1[‖ai − PΩ̂(ai)‖22 + ‖PΩ̂(ni)‖22]

(γ̃ − γ)2

(b)
=

1
m

∑m
i=1[‖ai‖22 − ‖PΩ̂(ai)‖22] + 1

m

∑m
i=1 ‖PΩ̂(ni)‖22

(γ̃ − γ)2
.

Here, (a) follows from âi = PΩ̂(ai + ni), and the fact
that ai − PΩ̂(ai) and PΩ̂(ni) are orthogonal; (b) fol-
lows from the the fact that PΩ̂ is an orthogonal pro-
jection. Suppose Equation (7) and (8) from Lemma 2
holds. Then follow a similar argument as in the proof
of Lemma 2, the right-hand-side is upper bounded by

1

m

m∑
i=1

1

(
sup
‖δ̂i‖2≤γ

(â + δ̂i)
>x > bi

)

≤
c
∑m
i=1 ‖ai‖22 +mdα

m(γ̃ − γ)2
.

Now we can apply Proposition 1 to bound α in Equa-
tion (8), and by Lemma 3 to bound c in Equation (7).
The theorem thus follows.
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6.3 Low-dimensional computation

Suppose for this section that the set X is the entire
space, i.e., there are no additional constraints besides
the data-driven ones. (This assumption is needed to
facilitate the analysis but can be ignored in practice
by projecting the set to which the solution belongs
to.) Formulation (3) is a Second Order Cone Program
(SOCP) in Rp, as the robust method, and can often be
computationally expensive. However, in this section
we show that solving Formulation (3) can be reduced
to a SOCP in Rd. This in turn provides significant
computational advantage over the robust formulation.

Theorem 6. Let ĉ , PΩ̂(c), and č , c− ĉ. Let α ,
‖č‖2. Then the optimal solution of Formulation (3)
is given by x∗d = x̂∗d + x̌∗d, where x̌∗d = −r∗č/α, and
(x̂∗d, r

∗) is the optimal solution to

Minimize:x̂,r∈R ĉ>x̂− rα (9)

Subject to: â>i x̂ + γ
√
‖x̂‖2 + r2 ≤ bi; ∀i;

r ≥ 0;

PΩ̂(x̂) = x̂.

Proof. Note that we can decompose any x into the sum
of two parts, one belongs to PΩ̂, and the other one is
orthogonal to PΩ̂. Thus, formulation (3) is equivalent
to

Minimize:x̂,x̌ ĉ>x̂ + č>x̌

Subject to: â>i x̂ + γ
√
‖x̂‖22 + ‖x̌‖22 ≤ bi, ∀i;

PΩ̂(x̌) = 0;

PΩ̂(x̂) = x̂.

Introducing slack variable r, we have the following
equivalent formulation

Minimize:x̂,x̌ ĉ>x̂ + č>x̌ (10)

Subject to: â>i x̂ + γ
√
‖x̂‖2 + r2 ≤ bi, ∀i;

‖x̌‖ ≤ r;
PΩ̂(x̌) = 0;

PΩ̂(x̂) = x̂.

Notice that for any r and x̂, the corresponding optimal
x̌ = −rč/α. Substituting this into Formulation (10)
implies the theorem.

Notice that all terms in Formulation (9) belong to the
d-dimensional subspace PΩ̂, and hence can be repre-
sented by d-dimensional vectors. Thus, solving (9) is
indeed solving an SOCP in Rd.

7 Simulation

In this section we report some simulation results to
illustrate the proposed methods.2 We randomly gen-
erate a m × p constraint matrix with rank d, using
Matlab command randn(m, d)∗ randn(d, p). The cost
vector also belongs to this d-dimensional subspace, and
bi is set as 1. We then perturb each entry of the cost
vector and the constraint matrix by iid Gaussian noise
N (0, σ2). We compare the performance of four meth-
ods: the nominal method, the robust method (we set
γ = σ/2), the PCA-nominal method (Formulation 3
with γ = 0), and the PCA-robust method (Formu-
lation 3 with γ = σ/2). We fix the dimensionality
p = 100, and vary the number of constraints m from
100 to 400. Three performance criteria are compared,
namely (a) magnitude of violation, (b) fraction of vi-
olated constraints, and (c) objective value. For all
three criteria, a small value means a better perfor-
mance. We repeat the experiment for different noise
levels (σ = 0.1, 0.5 and 1). For each parameter set, 50
experiments are performed. The result is reported in
Figure 1. The results show that when m is relatively
large, all methods perform well. On the other hand, for
smaller m, both the nominal method and the robust
method is worse, and often incurs huge constraint vio-
lation. One possible explanation is that when m is rel-
atively small, because of the noise, the nominal prob-
lem may be ill-conditioned and the “optimal” solution
can deviate significantly or becomes even unbounded.
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Figure 2: Computation time for different approaches.

We further compare the computational time of each
method for different problem sizes, while d is fixed as
5. To avoid the solution to the nominal problem being
unbounded, we let the number of constraints equals to
three times the number of variables. The computation
was done on a Dell desktop using Matlab, and Sedumi
as the solver. For each parameter set, 10 runs were

2The code of the experiment is available online at
http://guppy.mpe.nus.edu.sg/˜mpexuh/code/sta-opt.zip.
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Figure 1: Performance comparison of nominal method (black), robust method (blue), PCA-nominal (green), and PCA-
robust (red). We fix the dimensionality p = 100, and vary the number of constraints m from 100 to 400. Three performance
criteria are compared: (a) the magnitude of violation; (b) the fraction of violated constraints; and (c) the objective value.
The first, second and third rows are for σ = 0.1, σ = 0.5 and σ = 1, respectively.

conducted, and the average running time is reported
in Figure 2. It is clear that the nominal method and
the robust method do not scale well when the problem
size increase. Indeed, when the problem size doubles,
the computational time to the nominal and the robust
method increases about 8 times. On the other hand,
the PCA based methods scales much better.

8 Discussion

In this paper we investigate linear programming un-
der uncertainty where the parameters are observed
via noisy sampling. We propose to (approximately)
solve such problems using dimensionality reduction
techniques, in particular PCA. We provide theoretic
justifications as well as empirical evidence to support
the proposed method. Our main thrust is to bring
to bear tools from statistics and machine learning to
inform optimization. There are some natural exten-
sions. These include the consideration of more general
structure for the samples. For instance, instead of as-

suming samples are generated from a low-dimensional
subspace, one can consider the case where the sam-
ples are generated by a low-dimensional manifold, or
a union of multiple subspaces, which would call for
dimensionality reduction techniques other than PCA.
Another interesting extension is to investigate general
(i.e., non-linear) convex optimization problems under
uncertainty.
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