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Abstract

Minimum rank problems arise frequently in ma-
chine learning applications and are notoriously
difficult to solve due to the non-convex nature
of the rank objective. In this paper, we present
the first online learning approach for the prob-
lem of rank minimization of matrices over poly-
hedral sets. In particular, we present two online
learning algorithms for rank minimization - our
first algorithm is a multiplicative update method
based on a generalized experts framework, while
our second algorithm is a novel application of the
online convex programming framework (Zinke-
vich, 2003). In the latter, we flip the role of the
decision maker by making the decision maker
search over the constraint space instead of fea-
sible points, as is usually the case in online con-
vex programming. A salient feature of our on-
line learning approach is that it allows us to give
provable approximation guarantees for the rank
minimization problem over polyhedral sets. We
demonstrate the effectiveness of our methods on
synthetic examples, and on the real-life applica-
tion of low-rank kernel learning.

1. Introduction

Minimizing the rank of matrices restricted to a convex set
is an important problem in the field of optimization with
numerous applications in machine learning. For instance,
many important problems like low-rank kernel learning,
feature efficient linear classification, semi-definite embed-
ding (SDE), non-negative matrix approximation (NNMA),
etc., can be viewed as rank minimization problems over
a polyhedron with additional convex constraints such as a
Frobenius norm constraint and/or a semi-definiteness con-
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straint. Even though there has been extensive work on the
specific problems mentioned above, the general problem
of rank minimization over polyhedral sets is not well un-
derstood. In this paper we address the problem of rank
minimization when there are a large number of trace con-
straints along with a few convex constraints that are rela-
tively “easy” in a precise sense defined below.

We now formulate the rank minimization problem we
study. LetA1, . . . , Am ∈ Rn×n, b1, . . . , bm ∈ R and let
C ⊆ Rn×n be a convex set of matrices. Then, consider the
following optimization problem which we refer to asRMP

(for Rank Minimization over Polyhedron):

min rank(X)

s.t Tr(AiX) ≥ bi, 1 ≤ i ≤ m (RMP)

X ∈ C.

The setC will represent the “easy” constraints in the sense
that for such a setC, we assume thatRMP with a single
trace constraint can be solved efficiently. This holds for
many typical convex setsC, e.g., the unit ball under anyLp

or Frobenius norm, the semi-definite cone, and the inter-
section of the unit ball with the p.s.d. cone. Furthermore,
low-rank kernel learning, SDE and NNMA can all be seen
as instantiations of the above general formulation.

The generalRMP problem as stated above is non-convex,
NP-hard and, as we prove, cannot be approximated well
unlessP = NP . Due to the computational hardness of the
problem, much of the previous work has concentrated on
providing heuristics, with no guarantees on the quality of
the solution. We remark that the recent trace-norm based
approach of (Recht et al., 2007) does guarantee an optimal
solution for a simplified instance of RMP where only well-
conditioned linear equality constraints are allowed. How-
ever, it is not clear how to extend their guarantees to the
more generalRMP problem.

We now list the main contributions of this paper:

• We show that for theRMP problem, the minimum fea-
sible rank cannot be approximated well unlessP =
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NP (see Theorem 3.1). To get over this hurdle we
introduce a relaxed notion of approximation, where
along with approximating the optimal rank we also al-
low small violations in the constraints. In practice,
this relaxed notion is as meaningful as the standard no-
tion of approximation since almost all real-life prob-
lems have noisy measurements.

• We provide an algorithm forRMP based on the Multi-
plicative Weights Update framework of (Plotkin et al.,
1991; Arora et al., 2005b) and under the relaxed no-
tion of approximation, we prove approximation guar-
antees for the algorithm.

• We provide an algorithm forRMP based on the frame-
work of online convex programming (OCP) intro-
duced by (Zinkevich, 2003). We use the OCP frame-
work in a novel way by changing the role of the deci-
sion maker to search over the constraints instead of the
feasible points, as is usually the case. We prove that
under the relaxed notion of approximation, the algo-
rithm provides approximation guarantees. The guar-
antees obtained using the OCP framework are better
than those obtained using the Multiplicative Weights
Update framework by a logarithmic factor.

• For a practical application, we apply our methods to
the problem of low-rank kernel learning which can be
seen as a specific instance of generalRMP.

We empirically evaluate our methods on synthetic instances
of RMP, where the constraints are chosen randomly. We
compare them with the trace-norm heuristic of (Fazel et al.,
2001; Recht et al., 2007) and the log-det heuristic of (Fazel
et al., 2003), and our experimental results indicate that our
methods are significantly faster and give comparable rank
solutions to existing methods. We also evaluate the per-
formance of our methods for low-rank kernel learning on
UCI datasets. On all the datasets, our algorithms improve
the accuracy of the baseline kernel while also significantly
decreasing the rank.

2. Related Work and Background

Most existing methods for rank minimization over convex
sets are based on relaxing the non-convex rank function to
a convex function, e.g., the trace-norm (Fazel et al., 2001;
Recht et al., 2007) or the logarithm of the determinant
(Fazel et al., 2003). Unfortunately, these heuristics do not
have any guarantees on the quality of the solution in gen-
eral. A notable exception is the work of (Recht et al., 2007),
which extends the techniques of (Candès & Tao, 2005) for
compressed sensing to rank minimization. (Recht et al.,
2007) show that minimizing the trace-norm guarantees an
optimal rank solution to a special class ofRMP where only
well-conditioned linear equalities are allowed. Thus their
approach is limited in its applicability and it is not clear

how to extend it to generalRMP. We also remark that mini-
mizing the trace-norm is computationally expensive, which
further limits its applicability.

(Barvinok, 2002) (Chapter V) describes an approximation
algorithm forRMP based on random projections and a gen-
eralization of the Johnson-Lindenstrauss Lemma, with an
approximation guarantee similar to the one provided by
our MW algorithm (Section 4.1). However, this approach
works only for a special case ofRMP where only linear
equalities described by p.s.d. matrices are allowed. Fur-
thermore, this approach needs to solve the relaxedRMP

problem without the rank constraint which involves solving
a large semi-definite programming problem. This maybe
undesirable for various real-world applications such as the
low-rank kernel learning problem. In contrast, our ap-
proaches can be used for a larger class of convex setsC
and are considerably more scalable.

Several specific instances of the generalRMP problem
have been widely researched in the machine learning com-
munity. Examples include low-rank kernel learning, SDE,
sparse PCA and NNMA. Most methods for these problems
can be broadly grouped into the following two categories:
a) methods which drop the rank constraint and use the top
k eigenvectors of the solution to the relaxed optimization
problem e.g., (Weinberger et al., 2004); b) methods which
factor the matrixX in RMP into ABT and optimize the re-
sultant non-convex problem e.g., (Lee & Seung, 2000; Kim
et al., 2007). However, typically these methods do not have
any provable guarantees.

We apply our algorithms for the generalRMP problem
to the low-rank kernel learning problem(Bach & Jordan,
2005; Kulis et al., 2006). Existing methods for this prob-
lem do not provide any provable guarantees on the solution
and/or assume that the initial kernel has a small rank to
begin with. In contrast, a straight forward application of
our generalRMP framework gives algorithms with prov-
able guarantees on the rank of the learned kernel. Further-
more, we demonstrate that our algorithms can be used to
initialize existing methods to obtain better solutions.

Our approaches toRMP are based on two online learning
methods - the generalized experts framework as abstracted
in (Arora et al., 2005b) and the online convex programming
(Zinkevich, 2003), which we now review briefly.

2.1. Multiplicative Weights Update Algorithm

The Multiplicative Weights Update algorithm (MW algo-
rithm) is an adaptation of the Winnow algorithm (Little-
stone & Warmuth, 1989) for a generalized experts frame-
work as described in (Freund & Schapire, 1997). This
framework was implicitly used by (Plotkin et al., 1991) for
solving several fractional packing and covering problems
and was formalized and extended to semi-definite programs



Rank Minimization via Online Learning

in (Arora et al., 2005a). Throughout this work we will fol-
low the presentation of the generalized experts framework
as abstracted in (Arora et al., 2005b).

In the generalized experts (GE) framework there is a set of
n experts, a set of eventsE , and a penalty matrixM such
that thei-th expert incurs a penalty ofM(i, j) for an event
j ∈ E . The penalties are assumed to be bounded and lie
in the interval[−ρ, ρ] for a fixedρ > 0. At each time step
t = 1, 2, . . . , an adversary chooses an eventjt ∈ E so that
thei-th expert incurs a penalty ofM(i, jt). The goal in the
GE framework is to formulate aprediction algorithmthat
chooses a distributionDt = (pt

1, . . . , p
t
n) on the experts

at time stept, so that the total expected loss incurred by
the prediction algorithm is not much worse than the total
loss incurred by the best expert. Formally, the goal of the
prediction algorithm is to minimize

T
∑

t=1

n
∑

l=1

pt
lM(l, jt) − min

i

T
∑

t=1

M(i, jt).

Note that the distribution in roundt, Dt, must be chosen
without knowledge of the eventjt chosen at time stept. At
every stept, the MW algorithm has a weightwt

i assigned to
experti, and sets the distributionDt = (pt

1, . . . , p
t
n), where

pt
i = wt

i/
∑

j wt
j . The MW algorithm then proceeds analo-

gously to the Winnow algorithm and updates the weights at
time stept+1 to wt+1

i = wt
i(1− δ)M(i,jt)/ρ if M(i, jt) ≥

0 andwt+1
i = wt

i(1 + δ)M(i,jt)/ρ if M(i, jt) < 0, whereδ
is a parameter provided to the algorithm. For our analysis
we will use the following theorem.

Theorem 2.1(Corollary 4 of (Arora et al., 2005b)). Sup-
pose that for all i and j ∈ E , M(i, j) ∈ [−ρ, ρ]. Let
ǫ > 0 be an error parameter and let δ = min{ ǫ

4ρ , 1
2},

and T = 16ρ2 ln n
ǫ2 . Then, the following bound holds for the

average expected loss of the MW algorithm

∑T
t=1

∑n
l=1 pt

lM(l, jt)

T
≤ ǫ +

∑

t M(k, jt)

T
, ∀k.

2.2. Online Convex Programming

The online convex programming (OCP) framework (Zinke-
vich, 2003; Kalai & Vempala, 2005; Hazan et al., 2006)
models various useful online learning problems like indus-
trial production and network routing. The OCP framework
involves a fixed convex setK and a sequence of unknown
cost functionsf1, f2, . . . : K → R. At each time stept, a
decision maker must choose a pointzt ∈ K and incurs a
costft(zt). However, the choice ofzt must be made with
the knowledge ofz1, . . . , zt−1 andf1, . . . , ft−1 alone i.e.,
without knowingft. The total cost incurred by the algo-
rithm afterT steps equals

∑

t ft(zt). The objective in OCP

is to minimize theregretas defined below:

R(T ) =

T
∑

t=1

ft(zt) − min
z∈K

T
∑

t=1

ft(z). (1)

(Zinkevich, 2003) has shown that in the case when the func-
tions ft are convex and differentiable with bounded gra-
dient, one can achieve a regret ofO(

√
T ). Let ‖K‖ =

maxz1,z2∈K ‖z1 − z2‖ and G = maxz∈K,t∈{1,...} ‖ ▽
f t(z)‖, where‖ · ‖ denotes the Euclidean norm (or Frobe-
nius norm if the setK is defined over matrices). Also, as-
sume that▽f t can be evaluated efficiently at any given
point z. Under the above assumptions (Zinkevich, 2003)
proposed a Generalized Infinitesimal Gradient Ascent algo-
rithm which achieves a regret ofO((G2 +‖K‖2)

√
T ). The

function GIGA in Algorithm 2 describes a slightly modi-
fied version of (Zinkevich, 2003)’s algorithm that achieves
the following improved regret bound.

Theorem 2.2 (Adaptation of Theorem 1 of (Zinkevich,
2003)). The following bound holds for the regret of the
GIGA sub-routine of Algorithm 2 after T rounds,

R(T ) ≤ G · ‖K‖
√

T (2)

Proof sketch: Using the modified step-size in Algorithm 2,
the theorem follows from Zinkevich’s original proof.

3. Computational Complexity

As was mentioned in the introduction,RMP is NP-hard in
general. Further, by a reduction to the problem of support
minimization over convex sets, and using hardness of ap-
proximation results from (Amaldi & Kann, 1998) we prove
the following hardness result for RMP. A full proof of the
following theorem appears in (Meka et al., 2008).

Theorem 3.1. There exists no polynomial time algorithm
for approximating RMP within a logarithmic factor unless
P = NP. Further, assuming NP * DTIME(npoly log n),

RMP is not approximable within a factor of 2log1−δ n for
every δ > 0; and RMP is not approximable within a factor
of 2log1−δ ∆ for every δ > 0, where ∆ = max{‖Ai‖F +
|bi| : 1 ≤ i ≤ m} 1.

In view of the above hardness result we introduce a weaker
notion of approximation. We believe the relaxed notion of
approximation to be of equal use, if not more, as the stan-
dard notion of approximation in practice. For an instance of
RMP, let F(A1, . . . , Am, b, C) denote the feasible region,
whereb = (b1, . . . , bm):

F(A1, . . . , Am, b, C) = {X : X ∈ C, Tr(AiX) ≥ bi, ∀i}.
(3)

1This hardness result holds even whenC is fixed to be the unit
ball under anLp or Frobenius norm or many other common sets.
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Definition 3.1. Given a function c : R → R+, we say that
a matrix X is a (c(ǫ), ǫ)-approximate solution to RMP if
the following hold:

X̄ ∈ F(A1, . . . , Am, b − ǫ1, C)

rank(X̄) ≤ c(ǫ)min{rank(X) : X ∈ F(A1, .., Am, b, C)}.
Further, we say that RMP is (c(ǫ), ǫ)-approximable, if
there exists a polynomial time algorithm that given inputs
A1, . . . , Am, b, ǫ, outputs a (c(ǫ), ǫ)-approximate solution
to RMP.

Thus, along with approximating the minimum feasible rank
we also allow a small violation, quantified byǫ, of the con-
straints. Note that forǫ = 0, we recover the normal notion
of approximation with an approximation factor ofc(0).

4. Methodology

Our approaches toRMP rely on the fact that even though
RMP is hard in general, it is efficiently solvable for certain
convex setsC when there is a single trace constraint. For
instance, whenC = {X : ‖X‖F ≤ 1}, a RMP problem
with a single trace constraint can be solved efficiently using
a singular value decomposition of the constraint matrix.

In our approach, we assume the existence of an oracleO
that solves the followingRMP problem with a single trace
constraint, and returns an optimalX or declares the prob-
lem infeasible:

O : min rank(X) s.t. Tr(AX) ≥ b, X ∈ C. (4)

As discussed above, for certain convex setsC, oracleO
solves a non-convex problem. In both our approaches, we
exploit this fact by making several queries to the oracle
where the trace constraint Tr(AX) ≥ b is obtained by a
weighted combination of the original trace constraints. The
trick then is to choose the combinations in such a way that
after a small number of iterations, we can find a low-rankX
that satisfies all the constraints with at most anǫ-violation.

Based on the above intuition, we give two approaches to
solve theRMP problem - one based on the Multiplicative
Weights Update algorithm and the other based on online
convex programming.

Before we describe our algorithms, we need to intro-
duce additional notation. For an instance ofRMP speci-
fied by matricesA1, . . . , Am, scalarsb1, . . . , bm and con-
vex setC, let D = max{‖X‖F : X ∈ C}. We as-
sume, without loss of generality, thatD ≥ 1. Recall
thatF((A1, . . . , Am), b, C) andF((A1, . . . , Am), b−ǫ1, C)
denote the feasibility sets as defined in (3) and∆ =
max{‖Ai‖F + |bi| : 1 ≤ i ≤ m}. Further, letk∗ be
the rank of the optimal solution toRMP. That is,

k∗ = min{rank(X) : X ∈ F((A1, . . . , Am), b, C)}.

Algorithm 1 RMP-MW (Multiplicative Updates)

Require: Constraints(Ai, bi), 1 ≤ i ≤ m, ǫ
Require: OracleO(A, b) which solves

min rank(X) s.t. Tr(AX) ≥ b, X ∈ C
1: Initialize: w1

i = 1, ∀i andt = 1
2: repeat
3: Set(At, bt) =

∑

i wt
i(Ai, bi)

4: if OracleO(At, bt) declares infeasibilitythen
5: return Problem is infeasible
6: else
7: ObtainXt using OracleO(At, bt)
8: SetM(i, Xt) = Tr(AiX

t) − bi

9: Setρ = maxi M(i, Xt)
10: Setwt+1=MultUpdate(wt, M, ρ, ǫ)
11: end if
12: Sett = t + 1
13: until t > T
14: return X =

∑

t Xt/T

function w
t+1=MultUpdate(wt, M, ρ, ǫ)

1: Setδ = min{ ǫ
4ρ , 1

2}
2: for all 1 ≤ i ≤ m do
3: if M(i, Xt) ≥ 0 then
4: wt+1

i = wt
i(1 − δ)M(i,Xt)/ρ

5: else
6: wt+1

i = wt
i(1 + δ)−M(i,Xt)/ρ

7: end if
8: end for

4.1. Rank Minimization via Multiplicative Weights
Update

In this section we present an approach toRMP based on
the generalized experts (GE) framework described in Sec-
tion 2.1. To adapt the GE framework for theRMP prob-
lem, we first need to select a set of experts, a set of events
and the associated penalties. We associate eachRMP con-
straint Tr(AiX) ≥ bi with an expert and let the events cor-
respond to elements ofC. The penalty for experti corre-
sponding to thei-th constraint and eventX is then given
by Tr(AiX) − bi. Note that rather than rewarding a satis-
fied constraint, we penalize it. This strategy is motivated
by the work of (Plotkin et al., 1991; Arora et al., 2005a)
and is similar to boosting, where a distribution is skewed
towards an example for which the current hypothesis made
an incorrect prediction.

We assign weightwt
i to thei-th expert in thet-th iteration,

and initialize the weightsw1
i = 1, for all i. In thet-th iter-

ation we query the oracleO with (At, bt) =
∑

i wt
i(Ai, bi)

to obtain a solutionXt+1 ∈ C. We then use the Multi-
plicative Weights Update algorithm as described in func-
tion MultUpdate of Algorithm 1 to compute the weights
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wt+1
i for the(t + 1)-st iteration. Algorithm 1 describes our

multiplicative update based algorithm forRMP. In the fol-
lowing theorem we prove approximation guarantees for the
solution output by Algorithm 1.

Theorem 4.1. Given the existence of an oracle O to solve
the problem (4), Algorithm 1 outputs an (O(∆2D2 log n

ǫ2 ), ǫ)-
approximate solution to RMP.

Proof. Observe that, if the oracle declares infeasibility at
any time stept, the original problem is also infeasible.
Hence, we assume that the oracle returns a feasible point
Xt at time-stept, for all 1 ≤ t ≤ T .

Now, |Tr(AiX)− bi| ≤ ‖Ai‖F ‖X‖F + |bi| ≤ ∆D. Thus,
the penalties Tr(AiX)− bi lie in the interval[−∆D, ∆D].
Since Algorithm 1 uses multiplicative updates to update the
weights2 as in Theorem 2.1, forT = 16(∆D)2 log n/ǫ2,
we have

∑

t

∑

j pt
j[AjX

t − bj]

T
≤ ǫ +

∑

t[AiX
t − bi]

T
, ∀i,

wherept
j = wt

j/
∑

l wt
l . Since Tr(AtXt) ≥ bt), ∀t, the

LHS ≥ 0. Thus, forX =
∑

t Xt/T we have

Tr(AiX) ≥ bi − ǫ, ∀i. (5)

We now bound the rank ofX compared to the optimal
value. Lett be such thatXt has the highest rank, sayk,
amongX1, . . . , XT . Then,k∗ ≥ k, as for a particular
convex combination of(Ai, bi) the minimum rank possible

wask. Thus, rank(X) ≤ kT = O( (∆2·D2 log n)k∗

ǫ2 ). Using
(5) we have thatX ∈ F((A1, . . . , Am), b − ǫ1, C). Thus,

by Definition 3.1X is an(O(∆2D2 log n
ǫ2 ), ǫ)-approximate

solution toRMP.

The running time of Algorithm 1 isO(∆2D2 log n
ǫ2 (TO +

mn2)), whereTO denotes the oracle’s running time.

4.2. Rank Minimization via OCP

In this section, we present a novel application of online
convex programming described in Section 2.2 to obtain an
approximate solution toRMP. The intuition behind this
approach is similar to that of Section 4.1; in fact this ap-
proach can be viewed as a generalization of the approach
of Section 4.1.

In the OCP framework one generally associates the convex
set K with a feasible region and the cost functions with
penalty functions. In our application of OCP toRMP we

2Our updates are slightly different from those of (Arora et al.,
2005b) in that we adaptively choose the width parameterρ. How-
ever, the analysis of (Arora et al., 2005b) is applicable forthese
updates as well.

Algorithm 2 RMP-OCP (Online Convex Programming)

Require: Constraints(Ai, bi), 1 ≤ i ≤ m, ǫ
Require: Oracle O(A, b) which solves

min rank(X) s.t. Tr(AX) ≥ b, X ∈ C
1: Initialize: A1 =

P

i
Ai

m andb1 =
P

i
bi

m , t = 1
2: SetK = {∑i λi(Ai, bi) :

∑

i λi = 1, λi ≥ 0 ∀i}
3: repeat
4: if OracleO(At, bt) declares infeasibilitythen
5: return Problem is infeasible
6: else
7: ObtainXt using OracleO(At, bt)
8: Define functionf t(A, b) = Tr(AXt) − b
9: Set(At+1, bt+1)=GIGA((At, bt), f t(A, b), K, t)

10: end if
11: Sett = t + 1
12: until t > T
13: return X =

∑

t Xt/T

function z
t+1=GIGA(zt, f t(z), K, t)

1: Setηt = ∆
2D

√
t

2: Setzt+1 = ΠK

(

z
t − ηt∇f t(zt)

)

, whereΠK repre-
sents the orthogonal projection ontoK

flip this view and chooseK to be the space of convex com-
binations of the constraints and associate cost functions
with feasible points ofRMP. In particular, we setK ⊆
Rn×n×R to be the convex hull of(A1, b1), . . . , (Am, bm),
i.e.,

K =

{

∑

i

λi(Ai, bi) :
∑

i

λi = 1, λi ≥ 0 ∀i

}

.

Given a matrixX , we define a cost functionfX : K → R
by fX(A, b) = Tr(AX) − b.

We initializeA1 =
∑

i Ai/m andb1 =
∑

i bi/m. Given
(At, bt) ∈ K for the t-th iteration, we query the oracle
O with (A, b) = (At, bt) to obtain a solutionXt ∈ C.
We then set the cost functionf t(A, b) = fXt(A, b) =
Tr(AXt)−b and use the OCP algorithm (Zinkevich, 2003)
as described in function GIGA of Algorithm 2 to com-
pute (At+1, bt+1) for the (t + 1)-st iteration. Algorithm
2 describes our OCP based algorithm forRMP. In the fol-
lowing theorem we prove approximation guarantees for the
output of Algorithm 2.

Theorem 4.2. Given the existence of an oracle O to solve
the problem (4), Algorithm 2 outputs an (O(∆2D2

ǫ2 ), ǫ)-
approximate solution to RMP.

Proof. As in Theorem 4.1 we assume that the oracle re-
turns a feasible point at all time steps. Note that using the
terminology of Theorem 2.2,G = maxz∈K,t∈{1,...} ‖ ▽
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f t(z)‖ ≤ D and‖K‖ ≤ ∆. Thus, using Theorem 2.2 we
have

T
∑

t=1

(Tr(AtXt)−bt) ≤ min
(A,b)∈K

T
∑

t=1

(Tr(AXt)−b)+∆D
√

T .

Note that the above LHS≥ 0 since oracle returns a feasible
Xt, ∀t. Thus, forT = ∆2D2/ǫ2 andX =

∑

t Xt/T ,

Tr(AX) ≥ b − ǫ, (6)

for all (A, b) ∈ K. In particular, we have for everyi,
Tr(AiX) ≥ bi− ǫ. We now bound the rank ofX compared
to the optimal value. Lett be such thatXt has the highest
rank, say k, amongX1, . . . , XT . Then, we must havek∗ ≥
k, and so we have rank(X) ≤ kT ≤ O((∆D)2k∗/ǫ2).
Also, from (6) we have thatX ∈ F((A1, . . . , Am), b −
ǫ1, C). Thus by Definition 3.1,X is a(O((∆2D2)/ǫ2), ǫ)-
approximate solution toRMP.

The running time of Algorithm 2 isO(∆2D2

ǫ2 (TO+TOCP +
mn2)), whereTO denotes the running time of the oracle,
and TOCP denotes the time taken in each round by the
GIGA algorithm of Theorem 2.2.

4.3. Discussion

Oracle: The oracle for solving problem (4) plays a crucial
role in both our approaches. As discussed previously, for
typical cases ofC, like the unit ball under anLp or Frobe-
nius norm etc., (4) can be solved by the singular value de-
composition ofA. Further, in the case when the setC in-
volves a quadratic or ellipsoid constraint we can use the
S-procedure (Rockafellar, 1970) to solve (4).

Comparison of the approaches: Our approach toRMP

based on Multiplicative Weights Update has a slightly
weaker guarantee than the approach based on OCP. This is
also confirmed by our experiments where OCP gives better
results than the MW approach. However, the MW approach
is computationally less intensive as the approach based on
OCP involves a projection onto the convex setK. Thus,
MW can be used for large scale problems.

Limitations : A drawback of our methods is the depen-
dence on∆, ǫ in the bounds of Theorems 4.1 and 4.2. This
limits the applicability of our methods to problems, such as
NNMA, with a large number of non-negativity constraints
where the ratio∆

ǫ is typically large. However, our algo-
rithms can be used as a heuristic for such problems and can
be used to initialize other methods which require a good
low-rank solution for initialization. Also, the lower bounds
for the experts framework and boosting suggest that the de-
pendence on∆, ǫ in our bounds may be optimal for the
generalRMP problem (Arora et al., 2005b).

5. Low-rank Kernel Learning

In this section we apply both our rank minimization algo-
rithms to the problem of low-rank kernel learning, which
involves finding a low-rank positive semi-definite (p.s.d.)
matrix that satisfies linear constraints typically derived
from labeled data. Due to the rank constraint, this problem
is non-convex and is in general hard to solve. As described
below, both our online learning approaches can be applied
naturally to this problem. We provide provable guarantees
on the rank of the obtained kernel.

Formally, the low-rank kernel learning problem can be cast
as the following optimization problem:

min
K

‖K − K0‖F

s.t. Tr(SiK) ≤ ℓ, ∀ 1 ≤ i ≤ |S|,
Tr(DjK) ≥ u, ∀ 1 ≤ j ≤ |D|,
rank(K) ≤ r, K � 0,

(7)

whereS is a set of pairs of points from the same class that
are constrained to have distance less thanℓ. Similarly,D is
a set of pairs of points from different classes that are con-
strained to have distance greater thanu, with ℓ ≪ u. For
a similarity constraint matrixSi, Si(i1, i1) = Si(i2, i2) =
1, Si(i1, i2) = Si(i2, i1) = −1 and all other entries0.
The dissimilarity constraint matricesDj can be constructed
similarly. Assuming‖K0‖F = 1, (7) can be reformulated
as:

min
K

rank(K)

s.t. Tr(SiK) ≤ ℓ ∀i, Tr(DjK) ≥ u ∀j,

Tr(KK0) ≥ β, ‖K‖F ≤ 1, K � 0,

(8)

whereβ is a function ofr and can be computed using bi-
nary search. Note that (8) is a special case ofRMP with the
convex setC being the intersection of the p.s.d. cone and
the unit Frobenius ball. Hence, we can useRMP-MW and
RMP-OCP to solve (8). Given(A, b) the oracle for both
the methods solves:

min
K

rank(K) : Tr(AK) ≥ b, ‖K‖F ≤ 1, K � 0. (9)

Let A = UΣUT be the eigenvalue decomposition ofA,
and letΛ be a diagonal matrix with just the positive entries

of Σ. Then the minimumk s.t.
√

∑k
i=1 Λ(i, i)2 ≥ b is

the solution to (9). This follows from elementary linear
algebra. Note that for the oracle solving (9),TO = O(n3).

Now, D = 1 and ∆ = O(1 + l2 + u2) as ‖Si‖F =
‖Dj‖F = 2. Using Theorem 4.1, theRMP-MW algo-

rithm obtains a solution with rankr ≤ O(1+u2+l2

ǫ2 log n)r∗

wherer∗ is the optimal rank. Similarly,RMP-OCP ob-

tains an
(

O(1+u2+l2

ǫ2 ), ǫ
)

-approximate solution. In Sec-

tion 6.2, we present empirical results forRMP-MW and
RMP-OCP algorithms on some standard UCI datasets.
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6. Experimental Results

We empirically evaluate and compare our algorithms to ex-
isting methods for generalRMP as well as low-rank ker-
nel learning. For generalRMP, we use synthetic examples
to compare our methods against the trace-norm heuristic
(Recht et al., 2007) and the log-det heuristic (Fazel et al.,
2001). The trace-norm heuristic relaxes the rank objective
to the trace-norm of the matrix, which is given by the sum
of its singular values. Note that the trace-norm of a matrix
is a convex function. The log-det heuristic relaxes the rank
objective to the log of the determinant of the matrix. For
the application ofRMP to low-rank kernel learning, we use
standard UCI datasets. All the presented results represent
the average over 20 runs.

6.1. Synthetic Datasets

First we use synthetic datasets by generating random ma-
tricesAi ∈ Sn, whereSn is the set ofn × n symmetric
matrices. We also generate a random positive semi-definite
matrix X0 ∈ Sn with ‖X0‖F ≤ 1, and use the obtained
X0 to generate constraints Tr(AiX) ≥ bi = Tr(AiX0).
The convex setC is fixed to be the intersection of the p.s.d
cone and the unit ball under the Frobenius norm. We fix
the number of constraints to be200 and the toleranceǫ for
RMP-MW andRMP-OCP to be5%. We use SeDuMi to
implement the trace-norm and log-det heuristics.

In Table 1, we compare the ranks of the solutions obtained
by our algorithms against the ones obtained by the trace-
norm and log-det heuristics. For smalln, both trace-norm
and log-det heuristic perform better thanRMP-MW and
RMP-OCP. Note that since the constraint matricesAi

are random, they satisfy (with high probability) the re-
stricted isometry property used in the analysis of (Recht
et al., 2007). However,RMP-OCP outperforms trace-norm
heuristic for largen (Table 1,n = 100) andRMP-MW

performs comparably. We attribute this phenomenon to the
Frobenius norm constraint for which the theoretical guar-
antees of (Recht et al., 2007) are not applicable. Also,
both trace-norm and log-det heuristic scale poorly with the
problem size and fail to obtain a result in reasonable time
even for moderately largen. In contrast, both our algo-
rithms scale well withn, with RMP-MW in particular able
to solve problems of sizes up ton = 5000.

6.2. Low-rank Kernel Learning

We evaluate the performance of our methods applied to the
problem of low-rank kernel learning, as described in Sec-
tion 5, for k-NN classification on standard UCI datasets.
We use two-fold cross validation withk = 5. The lower
and upper bounds for the similarity and dissimilarity con-
straints (l, u) are set using the30-th and70-th percentiles

Method\n 50 75 100 200 300
RMP-MW 23.25 11.25 7.3 2 2
RMP-OCP 12.8 7.5 5.3 2 2
Trace-norm 6.8 6.7 6.5 - -

LogDet 5 4.2 4.0 - -

Table 1.Rank of the matrices obtained by differentRMP meth-
ods for varying size of the constraint matrices (n). The number of
constraints generated (m) is fixed to be200. A “-” represents that
the method could not find a solution within 3 hours on a 2.6GHz
Pentium 4 machine. Note that for large problem sizes, both the
trace-norm and the log-det heuristics are not computationally vi-
able. Both our approaches outperform the trace-norm heuristic as
the problem size increases.

Dataset\Method GK MW OCP BK
Musk 80.80 93.11 98.15 81.51

(476) (44.1) (61.2) (61.2)
Heart 77.44 91.05 91.13 83.91

(267) (46.8) (39.5) (39.5)
Ionosphere 90.34 91.26 91.17 90.67

(350) (40) (27.9) (27.9)
Cancer 90.12 93.14 91.46 93.38

(569) (82) (94) (94)
Scale 66.34 73.78 72.46 72.11

(607) (146) (91) (91)

Table 2.Accuracies for5-Nearest Neighbor classification using
kernels obtained by different methods. Numbers in parentheses
represent the rank of the obtained solution. GK represents Gaus-
sian Kernel (σ = 0.1), MW representsRMP-MW, OCP rep-
resentsRMP-OCP and BK represents BurgKernel(Kulis et al.,
2006). Overall,RMP-OCP obtains the best accuracy.

of the observed distribution of distances between pairs of
points. We randomly select a set of40c2 pairs of points for
constraints, wherec is the number of classes in the dataset.
We run bothRMP-MW andRMP-OCP for T = 50 itera-
tions. Empirically our algorithms significantly outperform
the theoretical rank guarantees of Theorems (4.1) and (4.2).

Table 2 shows the accuracies achieved by the baseline
Gaussian kernel (withσ = 0.1), RMP-MW, RMP-OCP

and the Burg divergence (also called as LogDet diver-
gence) based low-rank kernel learning algorithm (BurgK-
ernel) of (Kulis et al., 2006). It can be seen from the ta-
ble that bothRMP-MW andRMP-OCP obtain a signifi-
cantly lower rank kernel than the baseline Gaussian kernel.
Further,RMP-MW andRMP-OCP achieve a substantially
higher accuracy than the Gaussian kernel. Our algorithms
also achieve a substantial improvement in accuracy over the
BurgKernel method. Note that we iterate our algorithms
for fewer iterations compared to the ones suggested by the
theoretical bounds, hence few of the constraints maybe un-
satisfied. This suggests that these unsatisfied constraints
maybe noisy constraints and have small effect on the gen-
eralization error. We leave further investigation into gener-
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alization error of our methods as a topic for future research.

Note that the BurgKernel method needs to be initialized
with a low-rank kernel. Typically, a few top eigenvectors of
the baseline kernel are used for this initialization. However,
selecting only a few top eigenvectors can lead to a poor
initial kernel, especially if the rank of the initial kernelis
high. This can further lead to poor accuracy for the BurgK-
ernel method, as indicated by our experiments. Instead, the
kernels obtained by our algorithms could be used toinitial-
ize the BurgKernel algorithm. For example, for the case
of the Heart dataset, initialization of BurgKernel algorithm
with the low-rank solution obtained byRMP-OCP method
achieves an accuracy of94.29 compared to83.91 achieved
when initialized with the top eigenvectors of the baseline
Gaussian kernel. Note that this also improves upon the ac-
curacy achieved byRMP-MW andRMP-OCP.

7. Conclusion

In this paper, we address the general problem of rank min-
imization over polyhedral sets and in particular the prob-
lem of low-rank kernel learning. We show that the prob-
lem is hard to approximate within a factor of2log1−ǫ ∆ (see
Theorem 3.1). Further, we introduce a relaxed notion of
approximation and present two novel approaches for solv-
ing RMP with provable guarantees. Our first approach is
based on the multiplicative weights update framework and
provides an(O(∆2D2

ǫ2 log n), ǫ)-approximate solution. Our
second approach is based on online convex programming
and provides a tighter bound ofO(∆2D2

ǫ2 ) for the rank of
the obtained matrix.

For future work, it would be interesting to see if the hard-
ness of approximation factor of Theorem 3.1 can be im-
proved; we believe it can be improved toO(∆2). Another
question of interest is whether the dependence onǫ in the
bounds of Theorems 4.1 and 4.2 can be improved.

The regret bounds of (Zinkevich, 2003) were improved in
(Hazan et al., 2006). However, the algorithms of (Hazan
et al., 2006) require stronger convexity properties which are
not satisfied in our application of OCP toRMP. It would
be interesting to see if the linear constraints in RMP can be
perturbed to satisfy the strong convexity properties, so that
the improved regret bounds of (Hazan et al., 2006) can be
used to achieve better bounds forRMP.

Our algorithms toRMP are motivated from an online learn-
ing perspective. However, for an optimization problem
such asRMP an understanding of the algorithms from an
optimization perspective would be highly desirable. In par-
ticular, intuitively there seems to be a correspondence be-
tween our methods and a primal-dual approach but we were
unable to obtain a rigorous connection. We believe that
such an understanding would be of importance in obtaining

new applications of the online learning approach to solving
optimization problems.
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