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ABSTRACT

From Cholera, AIDS/HIV, and Malaria, to rumors and vi-
ral video, understanding the causative network behind an
epidemic’s spread has repeatedly proven critical for man-
aging the spread (controlling or encouraging, as the case
may be). Our current approaches to understand and pre-
dict epidemics rely on the scarce, but exact/reliable, expert
diagnoses. This paper proposes a different way forward: use
more readily available but also more noisy data with many
false negatives and false positives, to determine the causative
network of an epidemic. Specifically, we consider an epi-
demic that spreads according to one of two networks. At
some point in time we see a small random subsample (per-
haps a vanishingly small fraction) of those infected, along
with an order-wise similar number of false positives. We de-
rive sufficient conditions for this problem to be detectable,
and provide an efficient algorithm that solves the hypothe-
sis testing problem. We apply this model to two settings.
In the first setting, we simply want to distinguish between
random illness (a complete graph) and an epidemic (spread
along a structured graph). In the second, we have a super-
position of both of these, and we wish to detect which is the
strongest component.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Stochastic Processes
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1. INTRODUCTION
The study of epidemic spread over social, communication,

and human contact networks, be it a contagion of a hu-
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man or computer virus, or a rumor, opinion or trend, begins
with two basic questions: do we indeed have a spreading epi-
demic, and if so, what is the causative network spreading it?
Numerous famous examples from the history of epidemiol-
ogy ([22, 3]) have illustrated the importance and difficulty of
determining the causative network. With accurate data col-
lected over time, for example, from high accuracy medical
diagnoses of a known illness, the causative network essen-
tially reveals itself. Yet such data are rarely available. More
to the point, highly incomplete and noisy data often are
available. Indeed, the challenge arises in particular, when
time lapse data of “true” illness is not available, and when
the data we do have is highly noisy with many false positives
and negatives. For example, online records (flu-related key-
words in social networks [4], or Internet searches such as in
Google Flu Trends [11]) provide large but noisy data sources
for detecting flu epidemics, but potentially containing many
false positives.

A similar fundamental difficulty arises with other epi-
demics. Consider the adoption of the latest tablet or smart-
phone. The spread is likely driven both by “word-of-mouth”
(online social networks via tweets or Facebook posts) adver-
tising, as well as explicit advertising campaigns over televi-
sion, Internet ads, etc. While both modes likely play a part
in driving sales, is it the broad-spectrum advertising (which
is in effect a star network that connects the advertiser to all
the television viewers) that serves as the dominant driver of
spread, or is it the word-of-mouth viral marketing that is
dominant? Surveys may reveal (noisy) data on who owns
the new tablet, but pinpointing time-of-acquisition and the
causative network is much more difficult.

In a communications setting, carriers need to worry about
similar problems. On observing abnormal interactions from
some smartphones on their network, they need to decide if
this is due to a buggy firmware update, or something more
malicious (such as malware/virus spread). Unfortunately
however, these carriers rarely have access to these user de-
vices themselves, thus, need to recourse to inferring from
the limited and noisy samples (e.g., phone-to-network inter-
actions). While currently small, malwares [15] and viruses
that spread via user contact networks [8, 23] are receiving
increasing attention.

The key idea in this work, is that different spreading mech-
anisms have different statistical signatures, in terms of the
subset of people infected. This is certainly the case when the



causative graphs are very different, and the subset of nodes
(people, machines, etc.) the epidemic has reached (“infected
nodes”) are completely and accurately revealed. As dis-
cussed, however, the data available are typically noisy, with
many false positives and negatives. Moreover, the larger the
fraction of the network the contagion has reached, the more
this “network signature” is washed out. This paper explores
these tradeoffs. We consider a broad class of graphs: graphs
with bounded degree. The degree controls the infection’s
speed. We give sufficient conditions on when the causative
network can be determined when only a vanishing number
of infected nodes report, and moreover when a constant frac-
tion of those reporting are false positives. Then, we consider
the case most relevant in spread of rumors, technology and
ideas: the superposition of two spreading mechanisms. In-
deed, in the age of mass advertising and mass media, trends
spread friend-to-friend, but also through television, Internet
ads, and similar advertising efforts that exhibit a “star-like”
contagion network. We provide sufficient conditions for de-
termining which is the dominant effect, again when only a
vanishing fraction of infected nodes report, and when no
time-lapse data are available.

1.1 Related Work
Analyzing the spread of epidemics under the susceptible-

infected (SI) model [9] has been considered in depth for a
variety of graphs and circumstances [1, 12]. While there
has been much work on what we call the forward problem,
i.e., predicting what an infection may look like or do, the
present work falls under the heading of backward problems.
Thus, the work in this paper is related to the task of infer-
ring various characteristics of the infection given the infected
nodes. We briefly mention several related works. Demiris
and O’Neill estimate the transmission rates of the epidemic
[5, 6]. Shah and Zaman provide an algorithm to estimate
the node most likely to be the source of the infection [20,
21]. Luo and Tai consider a similar problem with multiple
infection sources [14]. Myers et al. estimate the proportion
of infections that occur randomly (from unknown sources
external to the network) given the full sequence of infected
nodes under a similar mixed infection setting [18].

In even more closely related work, Netrapalli and Sang-
havi analyze the problem of estimating the structure of the
contagion network given the times each node is infected
for several epidemics on the same network [19]. Gomez-
Rodriguez et al. provide an algorithm to solve a similar
problem with a somewhat different infection model [10].
These works use time-lapse information of multiple epidemics,
and from those are able to detect the edges of the causative
network. This is more general in the sense that very little is
known about the underlying spreading mechanics, compared
to what amounts to a hypothesis testing problem in our set-
ting. On the other hand, the data-availability regime under
which we operate, is much more harsh. We have very lim-
ited information, viewing only a very partial and also noisy,
subset of the infected nodes of a single contagion at a single
point in time. We have no time-related information. Under
these limited-information conditions, inferring the network
structure, as in [19] or [10], would not be possible. The
work in [16] and [17] on hypothesis testing for determining
the graph corresponding to the epidemic spread, by Milling
et al., is also very relevant (we elaborate on the connec-
tion in Section 3). However, these papers do not consider

false positives, or superposed spreading (spreading simulta-
neously via multiple networks), whereas these are precisely
the main contributions of this current paper.

1.2 Main Contributions
The fundamental problem we consider is diagnosing the

causative network of an epidemic or contagion, using noisy
and highly incomplete data, and in particular, data without
temporal information. The focus and main contribution of
this paper is in tempering the effect of this noise in the data,
and hence greatly expanding the available data sets that can
be used. To the best of our knowledge, this is the first paper
that has considered epidemic forensics in this regime.

The first part of the paper attempts to diagnose a conta-
gion as arising from node-to-node contact via a specific con-
tact network, or through a random infection process. The
latter can be modeled as a contagion spreading from the cen-
ter node of a star graph, to the leaves. As discussed above,
we assume there is an overwhelming fraction of false neg-
atives (that is, only a vanishing fraction of infected nodes
report). Of this vanishing fraction, we assume that a con-
stant fraction are false positives. We note that there is no
way to identify false positives or false negatives, but only
to provide a system-level diagnosis. Indeed, our goal is to
diagnose the spreading network of the contagion.

Next, we consider the superposition of these two conta-
gion processes, and attempt to determine the stronger of
the two components. That is, a contagion spreads through
a star network as described above, and also simultaneously
through subsequent node-to-node contact. This is the case
with much advertising: television and other mass-media ad-
vertisements provide initial “seeds,” but subsequent spread
may occur through word-of-mouth. For different products,
the relative effects of these two mechanisms may differ. Un-
der what circumstances can we determine the stronger com-
ponent?

We note that robustness is again at the crux: we are at-
tempting to determine system-wide effects; at the local level,
it is impossible to say if the contagion reached an infected
node through what we have called the star model, or through
local interactions (e.g., word of mouth).

Specifically, our contributions are as follows.

• Algorithm Development: We provide an algorithm we
call the Median Ball Algorithm. This algorithm is sim-
ple, efficient to run, and terminates quickly even for
very large graphs. In the first case of diagnosing a
contagion as a spreading epidemic or a random illness
(the star graph), it outputs what it believes is the most
likely candidate. Similarly, for the case of a superposi-
tion of those two processes, it outputs what it believes
is the stronger of the two components.

• Arbitrary (Adversarial) False Positives: We give suffi-
cient conditions in terms of number of total sick nodes,
number of sick nodes reporting (i.e., fraction of false
negatives) and fraction of false positives, under which
the algorithm above correctly diagnoses the causative
network, i.e., with the probability of Type I and Type
II error going to zero in the size of the graph. In par-
ticular, our results show that our algorithm correctly
identifies the causative network even when only a van-
ishingly small fraction of sick nodes report, and more-
over, when up to 50% of the reporting nodes are false



positives, even when those false positives are adversar-
ially selected.

• Random False Positives: We give sufficient conditions
for the same problem, when the false positives are
randomly (independently and uniformly) distributed
in the graph. Here, we show that our algorithm cor-
rectly identifies the causative network for any fraction
of false positives up to 100%.

• Superposed Spreading (Mixed Infection Types): Fi-
nally, we consider the setting where the spreading oc-
curs through both random infection (the star spreading
graph) representing, for instance, television or Inter-
net advertisement, and subsequently through node-to-
node contact (word-of-mouth) and give sufficient con-
ditions for when our algorithm correctly determines
which of the two components is the dominant factor in
the contagion spread. Again, we require only a van-
ishingly small fraction of sick nodes to report.

2. MODEL AND ALGORITHM
We have described intuitively the contagion spreading mod-

els we attempt to distinguish. In this section, we describe
them more precisely. We consider two distinct infection
regimes: a contagion spreading through node-to-node con-
tact, versus random spread of the contagion, when each node
becomes sick independently of its location in the graph or
the status of its neighbors. We can model this, too, as an
epidemic spreading over a star graph where initially only
the center node is infected. For ease of discussion, we call
the node-to-node mode of spreading an epidemic, and the
star-mode of spreading a random sickness. In both cases,
we start with a single infected node at time 0.

The Infection Process

Let G = (V,E) denote the graph along which the infection
spreads. As discussed above, in the case of an epidemic
spreading node-to-node, G is a structured graph (e.g., d-
dimensional grid). For the case of a random illness, the
graph G is a star graph, with every node connected to a
central node assumed to be infected at time zero. We let
n = card(V), the size of the graph. The diameter of the
graph is denoted diam(G).

Given a graph G, the contagion spreads as follows. At
time zero, an initial node is selected and called “infected.”
For the structured graph case, we assume this initial infected
node is selected uniformly at random. For the star graph,
it is the central node. The infection spreads from that node
to its neighbors, across the edges of the graph. The spread-
ing occurs according to a standard susceptible-infected (SI)
model [9, 7, 13] for an epidemic. The spreading rate is pa-
rameterized by a single number, or rate. To make clear the
distinction between the rate for a structured graph or for a
star graph, we use η to represent the rate of the structured
graph, and γ/n the rate of the star graph. We divide by
n in the case of the star graph so that new infections ap-
pear at rate γ (ignoring the shrinking number of susceptible
nodes). This means the following: for each infected node
and for each edge incident to that node, we start an expo-
nential clock, i.e., a clock that expires after an exponentially
distributed length of time, of expectation 1/η, i.e., of rate
η for a structured graph, and n/γ, i.e., of rate γ/n, for the

star graph. The expiration of a clock indicates that the ad-
jacent node becomes infected (if it is not already infected)
and new clocks are started for each edge from this newly
infected node. In this way, the infection spreads along the
edges of the graph in a node-to-node fashion.

Let S denote the set of infected nodes at a given time.
The rate of new infections is (roughly) proportional to the
number of uninfected nodes (V \ S) incident to an infected
node. Thus, for a random sickness (G a star graph) new
nodes become infected at a rate (card(V \ S))γ, and hence
the rate of new infections in fact decreases as more nodes
become infected. For most graphs, the rate of infections
initially increases, before decreasing as more and more nodes
become infected. The most challenging regime to pose the
problem of diagnosing the causative network of the epidemic,
is where the expected number of infected nodes is the same
under both models. Thus, for the remainder of this paper,
all results are stated under precisely this assumption.

The second half of this paper considers mixtures of both
of these types of infections: the star graph infects nodes at
rate γ/n, and then these infected nodes infect their neigh-
bors on the structured graph (e.g., the grid) at rate η. Thus,
in this superposed process, nodes become infected at ran-
dom at some rate γ, and the infection then spreads from
these nodes as an epidemic at the (different) rate η. In this
setting, we consider two different processes: one where the
dominant factor is the random infection (the spread from
the star graph) and the other where it is the spread along
the structured graph that dominates. Thus, in the first set-
ting we have γ ≫ η, and the random infection dominates
the epidemic, and in the second setting, η ≫ γ, and the
epidemic spread dominates the infection process.

The Reporting Process

At a given point in time, a subset of the infected nodes is
revealed – these nodes are discovered to be infected, or they
self-report as infected. Given this snapshot, the task is to de-
termine the spreading process. If we had access to the entire
set of infected nodes, then a simple test of the connectivity
of the infected nodes would easily distinguish the infection
mechanism with overwhelming probability. In most conta-
gion processes, however, only a small – perhaps a vanishingly
small – fraction of infected nodes are detected, or self-report.
Indeed, most people suffering from flu symptoms do not
visit a doctor; no survey or poll reveals more than a minus-
cule fraction of adopters of a new technology; and likewise,
only few virus-infected computers are reported/detected. In
short, there may be a large – possibly an overwhelming –
fraction of false negatives, i.e., of infected nodes that do not
report (or are not detected). As a consequence, reporting
infected nodes are likely to be disconnected, possibly with
relatively large distance between them. This may be partic-
ularly challenging in small-world graphs.

As the theorem statements below make clear, we indeed
assume that the fraction of false negatives is overwhelming.
Our theorems show that the algorithm we provide can re-
cover the true infection mechanism when only a logarithmic
number of infected nodes reports, i.e., when the fraction of
reporting infected nodes is exponentially small.

Further confounding the task of diagnosing an epidemic
versus random illness may be the presence of false positives
among the reporting infected nodes. This again is the case
with many available data sets. Obtaining accurate diagnoses



(i.e., with very low false-positive rate) is difficult. In human
illnesses, in many cases (in particular, easily treatable sex-
ually transmitted diseases) public policy prescriptions have
focused on tests that are inexpensive, yield results quickly,
and have a low false-negative rate. Moreover, data on self-
reported illness (i.e., without medical diagnosis) are increas-
ingly available, and should be exploited. Answers to surveys
and polls suffer from precisely the same possibility of false
positives. Moreover, depending on the setting, it is impor-
tant to consider the case of correlated (clustered) or even
worse, manipulative false positives, that may collude to ob-
scure the infection propagation mechanism, or, simply, may
not have an easily describable distribution. On the other
hand, one would expect that if false positives are randomly
(uniformly, and independently) distributed across the graph,
that their effect would be less pernicious. We consider both
settings, and indeed, show that this is the case. In the case of
adversarially distributed false positives, our algorithm suc-
ceeds when up to 50% of the reporting nodes are false pos-
itives. When the false positives are randomly distributed,
our algorithm can tolerate nearly 100% false positives.

The notation we use is as follows. As above, we let S
denote the set of actually infected nodes (revealed or not).
We assume that each of these reports its infection with some
probability. We note that we do not require the reporting
process to be independent, i.e., the set of infected nodes that
report may well be correlated. We denote by q the probabil-
ity that infected nodes report, and we denote the resulting
subset by Sr ⊆ S (and hence, card(Sr) has expected value
qcard(S)). We further assume that some fraction of the un-
infected nodes, V \ S, may (falsely) report infection as well.
As discussed, we consider both cases where this fraction of
falsely reporting nodes is chosen by an adversary and chosen
randomly. In the random case, each false positive node is
chosen uniformly at random from the entire graph, where
repeats are allowed. We allow the “falsely reporting” nodes
to be in Sr (so they are not truly false positives) to reduce
dependence on Sr. This also ensures that the density of
reporting nodes is highest in Sr. We thus denote the set
of reporting sick nodes (including both truly infected, and
false positives) by S̄r ⊇ Sr. We parameterize the number of
false reporting nodes by a constant f ≥ 0. Let the number
of false positives be given by ⌊f · card(Sr)⌋. Thus, f/(1+ f)
is approximately the fraction of all reporting nodes that are
false positives. When f → 1, then fully half the reporting
nodes are false positives. As f continues to increase, this
fraction approaches 100%.

We consider false positives in the setting where we must
determine if the infection spreads as an epidemic (a struc-
tured graph) or a random illness (a star graph). We show
that our algorithm succeeds against adversarially selected
false positives even as f → 1. In the case of randomly se-
lected false positives, our algorithm succeeds for any value
of f . In the second half of the paper, we consider the super-
position of the two processes. Here we focus only on false
negatives. As the proof makes clear, incorporating false pos-
itives is a straightforward extension.

2.1 Graphs
Our results apply to a broad family of graphs, with dif-

ferent topologies. The key property we require is that the
graph should have bounded degree (where this bound is a
constant). From this property, we show that the infection

can spread at only limited asymptotic speed, and that the
neighborhood sizes are sufficiently small.

That is, there exists a constant d̄ greater than or equal to
the degree of each node for sufficiently large n. As a result
of this property, the infection can only travel at a certain
maximum rate through the graph. Define the random vari-
able W as the maximum distance an epidemic has spread
from its source. We define the condition limited epidemic
speed as follows:

Definition 1. A graph has limited epidemic speed if there
exist finite, positive constants s, λ1 such that for sufficiently
large n and an epidemic starting at any node a and duration
t,

P (W > st) < e−λ1t.

The speed s mentioned in the above definition is in fact an
upper bound on the speed, in that there is no matching lower
bound. Nevertheless, we refer to it as the speed for brevity.
In addition, we also need a constraint on the neighborhood
size.

Definition 2. A graph G has limited neighborhood size if
diam(G) scales as Ω(log n) and there exists a increasing con-
cave function b(x) such that for all 0 < x < 1, b(x) > 0 and
all balls of radius no more than b(x) contains less than xn
nodes for sufficiently large n with probability tending to 1.

In fact, both of these previous conditions follow from a
bounded degree distribution, as stated formally below.

Theorem 1. Let G be a graph with maximum degree d̄.
Then G has both limited epidemic speed and limited neigh-
borhood size.

Proof. First, the spread of the epidemic on G can be
upper bounded by a tree of degree d̄ where nodes are re-
peated for each path to them. See [17] for details on this
bound. Then using a speed upper bound for trees, we find
that G has limited epidemic speed, where the exponential
probability of error follows from a Chernoff bound [2]. Next,
using the maximum degree condition, the number of nodes
within distance r from an arbitrary node a of G is at most
d̄r+1. Therefore, for any x, 0 < x < 1, no ball of radius
logd̄ xn− 1 contains more than xn nodes. From this, we see
that diam(G) ≥ logd̄ n−1. Letting b(x) = logd̄ xn−1, we see
this satisfies the desired condition for limited neighborhood
size. This completes the proof.

Our bounds in the ensuing Theorems depend explicitly
on the parameters that define the limited epidemic speed
and neighborhood size conditions. We comment that tighter
bounds can be derived with additional graph structure. For
instance in a grid (lattice), first passage percolation results
[13] provide sharper estimates, which in turn, can lead to
stronger sufficient conditions in the ensuing Theorems. We
refer to [17, 16] for an analogous discussion on graph-specific
conditions (however, without false positives or superposed
spreading).

Next, the following simple lemma (using a balls-in-bins
argument) proves useful in the sequel, so we give it here.

Lemma 1. Suppose graph G has limited neighborhood size.
Let 0 < x < 1, ǫ > 0 and R be a collection of nodes with
card(R) < (1 − ǫ)xn. Let S be a collection of uniformly



random nodes with card(S) = ω(log n). Then the probability
that R contains at least x fraction of the random nodes in
S decays to 0 as n increases. In particular, there exists a
constant λ2 > 0 such that

P (card(R ∩ S) ≥ xcard(S)) < e−λ2card(S).

The main way we use this lemma is to show that the prob-
ability that a large fraction of randomly selected nodes fall
in a ball around a given node, goes to zero.

2.2 Algorithm
We develop a single algorithm we call the Median Ball

Algorithm to solve the hypothesis testing problems in this
paper – both for the case of detection of epidemic versus
random illness (the first part of the paper), as well as the
case of determining the dominant factor in the spread of the
contagion (the second part of the paper). The Median Ball
Algorithm is simple to describe: it searches for the smallest
ball that covers a fraction of the reporting infected nodes. Of
course, it has no way to tell if a reporting sick node is truly
infected or a false positive, and as emphasized above, this
is not the goal of this paper. If the resulting radius of this
ball is small enough, it declares that there is an epidemic;
otherwise, it concludes that the infection process is in fact a
random illness. This algorithm is efficient, as even the brute-
force implementation runs in time at most O(|V | ·diam(G)).

The algorithm takes two parameters α, and r. These pa-
rameters are tailored to the problem at hand, including, in
the case of r, the size of the graph. As input, it takes a
graph G and a set of reporting infected nodes Sr. If the
algorithm can cover an α-fraction of the infected nodes in a
ball of radius at most r, it declares the infection to be an
epidemic; otherwise, it labels the infection a random illness.

Define BallG(a, r) as all nodes in G within distance r from
node a.

Algorithm 1 Median Ball Algorithm

Input: Graph G; Set of reporting infected nodes Sr;
Output: Epidemic or Random

c← α [card(Sr)]
for all d ∈ V do

B ← BallG(d, r)
if card(B ∩ Sr) ≥ c then

return Epidemic
end if

end for

return Random

3. FALSE POSITIVES
We consider the problem of determining if the spreading

mechanism of a contagion is what we have termed an epi-
demic, or a random illness. We consider the superposition
of these two in Section 4.

When all reporting nodes are truly infected (i.e., no false
positives) then a special case of our algorithm can solve this
problem with asymptotically (as the graph size scales) zero
error: taking α = 1, our algorithm reduces to the special
case considered in [16] where one seeks a small ball contain-
ing all the reporting sick nodes. However, the algorithm in
[16] fails even with a vanishing fraction of false positives –

indeed, even with one single false positive. In contrast, the
algorithm we give here succeeds with up to 50% adversari-
ally placed false positives, and up to any fixed fraction less
than 100% randomly placed outliers. Both of these results
are the best possible under our formulation, where the num-
ber of false positives is proportional to the number of true
infected nodes.

We show that by looking at the α-quantile ball, our algo-
rithm becomes effectively immune to outliers. This happens
for the following reason: suppose the true spreading process
is an epidemic. We show that there is in fact a small-radius
ball that covers all truly infected nodes. Now, the false pos-
itives either fall near or within this ball, or far outside it. In
the first case, they do not require the ball to be larger and
hence do not lead the algorithm to incorrectly pronounce
the epidemic a random illness. In the latter case, they are
ignored by the quantile ball algorithm, and thus again do
not cause the algorithm to produce an error. If the true
mechanism is random infection (i.e., the star graph) then
the algorithm produces an error if it declares the infection
mechanism to be an epidemic. For this to happen, either
the true infections must appear clustered, even though they
are independently distributed uniformly on the graph, or
the false positives must exhibit a sufficient clustering to fool
the algorithm. As we see, this is possible under adversar-
ial placement of enough false positives, but probabilistically
extremely unlikely otherwise.

Adversarial False Positives: First, consider the case where
the false positives are chosen by an adversary with full knowl-
edge of our algorithm and the true type of infection. The
adversary can act non-randomly to attempt to confound the
algorithm. In particular, the adversary can spread the false
positives to look randomly placed when the infection is in
fact an epidemic, and when the infection is random, can clus-
ter the false positives to make the random sickness appear
like an epidemic. We show that in both of these cases, if
f < 1, i.e., the reporting nodes are less than 50% false pos-
itives, it is possible (for appropriate infection parameters)
to distinguish the type of infection with probability of error
tending to 0 as the number of nodes, n, tends to infinity.

We consider a graph G, with limited epidemic speed and
limited neighborhood size. Let s denote the speed of an epi-
demic on the graph G (in fact, an upper bound on this, as
discussed in Definition 1). Let b(x) denote the limited neigh-
borhood size function as defined previously in Definition 2.
Note that from Theorem 1, all graphs with bounded degree
have limited speed and neighborhood size.

Theorem 2. [Adversarial False Positives] Suppose G
is as described. Suppose further that f < 1 and set f ′ =
(1−f)/(1+f) > 0. Suppose t scales such that the number of
reporting nodes is ω(logn) and t < b(f ′/2)/s. Then the Me-
dian Ball Algorithm with α = 1/(1+ f) and r = st correctly
determines the type of infection with probability tending to
1 with the number of nodes, n.

Proof. First we show that the Type II error probability
decays to 0. To this end, suppose the infection is in fact an
epidemic. Consider only the true reporting nodes Sr. Note
that card(Sr) ≥ αcard(S̄r). By the definition of speed s,
the probability the epidemic spreads outside a ball of radius
r = st decays to 0, so this ball covers Sr and hence at least



α fraction of the reporting nodes. Therefore it is correctly
labeled an epidemic.

Now we show that the Type I error probability also decays
to 0. We need to show no ball of radius r can cover α =
1/(1 + f) fraction of the nodes. Since only f/(1 + f) of
the nodes are false positives, the ball must contain at least
(1 − f)/(1 + f) = f ′ > 0 true reporting nodes. Then it is
sufficient that the probability there exists a ball of radius r
covering f ′card(Sr) true reporting nodes (which are located
randomly) decays to 0.

Since r < b(f ′/2), no ball of radius r contains over f ′n/2
nodes. Consider one of the n balls of radius r (one ball for
each possible center node), call it R. Then by Lemma 1,
there exists a strictly positive λ2 such that

P (card(R ∩ Sr) ≥ f ′card(Sr)) < e−λ2card(Sr).

Since card(Sr) = ω(logn), e−λ2card(Sr) = o(1/n2). There-
fore, from a union bound, there is some ball of radius r
containing over f ′ fraction of the true reporting nodes with
probability at most o(1/n). Hence, no such ball covers α
fraction of the nodes in S̄r with probability tending to 1 so
the Type I error probability goes to 0.

Therefore, as long as the number of false positives is (a
fraction) less than the number of true reporting nodes, it
is possible to determine whether an infection is due to an
epidemic or a random sickness. Given the unlimited adver-
sarial model, it is clear that this is tight. That is, if f = 1,
it is impossible to distinguish the types of infection in the
adversarial setting by any algorithm of any complexity. We
state this simple converse result as a theorem.

Theorem 3. Suppose f = 1 and the random sickness is
normalized so that the infection size distribution is equal for
both infection processes. Then with adversarial false posi-
tives, the probability of error for any algorithm is at least
0.5.

Proof. There is a simple adversarial algorithm that guar-
antees a probability of error of 0.5. Recall the a priori proba-
bility for each infection process is equal. When the infection
is from an epidemic, the adversary chooses nodes randomly
exactly as in the random sickness. When the infection is
from a random sickness, the adversary chooses nodes ex-
actly as in an epidemic. Therefore, in all cases, exactly half
the nodes are due to an epidemic, and half are due to a ran-
dom sickness. Since the infection size is normalized, each
collection of infected nodes is equally likely to be an epi-
demic as a random sickness. Then the probability of error
for every set Ŝr is 0.5 (no matter the algorithm), and hence
the overall probability is 0.5.

Random False Positives: When an adversary places the
false positives, the worst case scenario is generally when it
places them in a cluster when the infection is in fact a ran-
dom sickness. Therefore, when the false positives are located
randomly over the graph, one would expect that the infec-
tion process is distinguishable for a larger range of f . We
show that this is in fact the case. It is possible to distinguish
an epidemic from a random sickness for all values of f . We
note, though, that as one would expect, the larger the f ,
the tighter the constraint on the time of detection, i.e., than
total number of infected nodes.

Theorem 4. [Random False Positives] Let f > 0.
Suppose t scales such that number of reporting nodes is ω(logn)

and t < b
(

1
2(1+f)

)

/s. Then the Median Ball Algorithm with

α = 1/(1 + f) and r = st correctly determines the infection
type with prob. tending to 1.

Proof. The proof proceeds in a very similar way to The-
orem 2. First suppose the infection is an epidemic. We can
cover all true reporting nodes with probability scaling to 1
using the speed definition. Since at least an α fraction of the
reporting nodes are truly infected, our algorithm correctly
reports the infection is an epidemic. Therefore the Type II
error probability decays to 0.

Now suppose the infection is a random sickness. Since the
false positives are also random, the reporting nodes with the
false positives are simply are larger set of random nodes.

Note r = b
(

1
2(1+f)

)

. Using Lemma 1 in the same way as in

Theorem 2, we see that no ball of radius r contains over a
α = 1/(1+f) fraction of the random nodes with probability
approaching 1. In this case, our algorithm returns random
sickness. Thus the Type I error probability also tends to
0.

4. MIXED INFECTION TYPES
Now we turn to the problem of mixed infection types.

In this case, we deal with infections where the infection is
spreading both as an epidemic and a random sickness. We
term the nodes that become infected randomly as seeds, from
which the infection starts spreading as an epidemic. We
consider two distinct infection processes. In Process 0, the
infection spreads mostly randomly. Let γ0, η0 be the infec-
tion rates for the random sickness and epidemic respectively
and t0 be the infection time for Process 0. For clarity, we
also call Process 0 “Process SR-WE” (Strong random, weak
epidemic). In Process 1, the infection is dominated by the
epidemic, and let γ1, η1, and t1 be the corresponding param-
eters as before. We label Process 1 “Process WR-SE”(Weak
random, strong epidemic). Note that the infection is the
same if the rates are scaled up by the same factor that time is
scaled down. Then we can say that the epidemic dominates
in Process 1 relative to Process 0 if η1/γ1 ≫ η0/γ0. Unlike
in the previous section, we apply no explicit normalization.
Rather, we provide sufficient conditions on the range of the
parameters for which the Median Ball Algorithm succeeds.

First we consider Type I errors. Assume the infection
spreads by Process SR-WE [Process 0]. We use the Median
Ball Algorithm with parameters α and r. Then the following
theorem characterizes when the probability of error decays
to 0. Let s and b(x) be the speed and neighborhood size
function as defined previously.

Theorem 5. Consider an infection spreading as in Pro-
cess 0. Suppose qγ0t0 = ω(logn). Suppose there exists a

constant integer c1 ≥ 1 where η0t0 = o
(

(γ0t0)
−1/(1+c1)

)

and for some ǫ > 0, suppose that r + c1 < b
(

α
d̄c1+1(1+ǫ)

)

.

Then the Type I error probability decays to 0 as n increases.

Proof. First we show that no infection (from a single
seed) spreads farther than a distance c1, so each infection
contains at most a constant d̄c1+1 nodes (where, recall, d̄ is
a bound on the maximum degree of the graph). Consider an
arbitrary seed a and all paths of length c1 + 1 beginning at



a. There are at most d̄c1+1 such paths. An infection from a
must spread over one such path in time t0 to spread farther
than distance c1. Since the traversal time of an edge has dis-
tribution Exp(η0), the probability the infection can spread
over the edge in time t0 is 1 − e−η0t0 < η0t0. Then using
a union bound, the probability that the infection spreads
more than a distance c1 is less than (d̄η0t0)

c1+1. Let ǫ2
satisfy 0 < ǫ2 < 1. By hypothesis, the expected number of
seeds is ω(logn), so from standard concentration results, the
number of seeds is at most 1 + (1 + ǫ)γ0t0 with probability
tending to 1. Let P be the probability the infection spreads
farther than distance c1. Then from a final union bound,

P < (1 + (1 + ǫ)γ0t0) (d̄η0t0)
c1+1

= o
(

2γ0t0d̄
c1+1(γ0t0)

−1) (1)

= o(2d̄c1+1).

Eq. (1) follows from our hypothesis η0t0 = o
(

(γ0t0)
−1/(1+c1)

)

.

Therefore, P → 0 so the infection travels no more than a
distance c1 with probability tending to 1.

Now we need to show no ball of radius r contains over an α
fraction of the reporting nodes. We first consider all infected
nodes. Let ǫ > 0 be a constant as specified in the theorem
statement. For convenience, let c2 = d̄c1+1, the maximum
number of nodes in a ball of radius c1. Consider an arbitrary
node a, and let Binner = Ball(a, r), Bouter = Ball(a, r + c1).
Then from the previous result, any seed that has an infection
that spreads to a node in Binner must be inside Bouter (since
it can only travel a distance c1). By the hypothesis that

r + c1 < b
(

α
c2(1+ǫ)

)

, card(Bouter) < αn
c2(1+ǫ)

. Let u be the

number of seeds, so u = ω(logn), again by hypothesis. Then
from Lemma 1, the number of seeds within Bouter is less
than αu

c2(1+ǫ/2)
with probability greater than 1− 1/n2. Each

of these seeds infects less than c2 nodes, so the total number
of infected nodes within Binner (which must all be from seeds
in Bouter) is less than αu

1+ǫ/2
. Hence, this ball contains less

than a α
1+ǫ/2

fraction of the infected nodes.

Finally, we need to show the reporting process does not
significantly impact the fraction of infected nodes seen in
that ball. We consider an equivalent method of choosing the
reporting nodes: first the number of reporting nodes is cho-
sen (with the appropriate distribution), and then these are
distributed uniformly over the infected nodes. Let Q be the
number of reporting nodes. Then we need to find the prob-
ability that αQ reporting nodes are within Binner. Let X
be the number of reporting nodes in this region. As we just
showed, the probability that any particular reporting node is
within that region is at most α

1+ǫ/2
. From a standard balls-

in-bins arguement like in Lemma 1, since αQ = ω(logn),
P (X > αQ) < 1/n2. That is, the probability that at least
αQ of the reporting nodes are in that region is at most 1/n2.

Since each ball contains over an α fraction of the reporting
nodes with probability no more than 1/n2, from a union
bound, we find the probability that any of the n possible
balls exceeds this bound is at most 1/n. In this case, our
algorithm correctly labels it ‘Random’. Therefore, the Type
I error probability decays to 0 as desired.

Next consider the infection spreading by Process WR-SE
[Process 1]. Define each of the parameters as before. Then

we can characterize the range for which the Type II error
goes to 0 as follows.

Theorem 6. Consider an infection spreading as in Pro-
cess 1. Suppose r > sη1t1, where s is the speed of the in-
fection when it spreads at rate 1, and η1t1 scales to infinity.
Suppose α = o((1 + γ1t1)

−1), and log(1/α) = o(η1t1). Then
the Type II error probability decays to 0 as n increases.

Proof. First we show an upper bound on the number of
seeds (recall seeds are the nodes randomly infected). The
number of seeds is equal to one (the initially infected node)
plus a Poisson random variable with mean γ1t1. Let U be
the set of seeds, and let u = 1

α
. Since 1

α
= ω(1+ γ1t1), from

the distribution, u > card(U) with probability scaling to 1.
From the speed definition, there exists a constant λ1 such

that for each seed a,

P (W > sη1t1) < e−λ1η1t1 ,

where W is the radius of the infection starting at a. Now
we apply a union bound to see that,

P (∃a ∈ Us.t.W > sη1t1) <
1

α
e−λ1η1t1

< eλ1η1t1/2e−λ1η1t1 (2)

= e−λ1η1t1/2 → 0,

where Equation 2 follows from the fact that log(1/α) =
o(η1t1). Therefore, each seed spreads no farther than a dis-
tance r with probability tending to 1.

We now show that our algorithm returns ‘Epidemic’ in this
case. Cover the seed with the largest (reporting) infection
using a ball of radius r, which we showed covers the entire
infection for that seed. Since there are at most 1/α seeds
total, the fraction of reporting infected nodes covered is at
least 1/ 1

α
= α. Therefore, an α fraction of the reporting

infected nodes has been covered a ball of radius r, so the
Median Ball Algorithm returns ‘Epidemic’ as desired.

The previous theorems establish the set of conditions suf-
ficient for the algorithm to succeed. As the conditions are a
little opaque, we summarize them here: (i) The total number
of nodes that can be covered by a ball of radius 2r (where
r increases with n) must scale a constant factor less than
the total number of nodes times α. (ii) In Process SR-WE
[Process 0], the expected number of reporting seeds must
be order-wise more than log n. (iii) In Process SR-WE, the
infection spreads no more than a constant distance. (iv)
For Process WR-SE [Process 1], the threshold r must be set
large enough that a ball of radius r covers the largest infec-
tion (using the epidemic speed). (v) For Process WR-SE,
the expected number of seeds must be order-wise less than
α−1. (vi) For Process WR-SE, α−1 must be order-wise less
than exponentials in η1t1.

Finally, recall we can choose the algorithm parameters α
and r. Then the question is, when can we choose appropriate
algorithm parameters so that the probability of error goes
to 0? This is answered by the following theorem.

Theorem 7. Suppose there exists c1 such that η0t0 =

o
(

(γ0t0)
−1/(c1+1)

)

and qγ0t = ω(logn). Suppose η1t1 =

ω(log(γ1t1)), γ1t1 = ω(1), and sη1t1 = o
(

b( 1
γ1t1

)
)

. Then

the algorithm parameters can be chosen so that the probabil-
ity of error tends to 0.



Proof. We need to choose r and α so that sη1t1 < r <

b
(

α
c2(1+ǫ)

)

− c1 and α = o((γ1t1)
−1), log(1/α) = o(η1t1),

where c2 = d̄c1+1. First we consider the conditions on α.
Define an arbitrary slowly increasing function g(n) = θ(1),
g(n) = o(γ1t1). This is possible since η1t1 = ω(1). Choose
α = (γ1t1g(n))

−1. Then we have

log(1/α) = log(γ1t1g(n))

< 2 log(γ1t1)

= o(η1t1).

Thus α satisfies the desired conditions. Now we will show
it is possible to choose an appropriate r. By hypothesis,
sη1t1 = o(b( 1

γ1t1
)). From our choice of α, for sufficiently

large n, α
c2(1+ǫ)

< 1
γ1t1

. Using the concavity of b(x),

b

(

1

γ1t1

)

<
γ1t1

α/(c2(1 + ǫ))
b

(

α

c2(1 + ǫ)

)

= o

(

b

(

α

c2(1 + ǫ)

))

. (3)

Therefore, sη1t1 = o(b( α
c2(1+ǫ)

)), with sη1t1 = ω(1) by hy-

pothesis. Thus it is clear r can be chosen with sη1t1 < r <

b
(

α
c2(1+ǫ)

)

− c1, for example by averaging each side. With

this choice of parameters, the conditions of Theorem 5 and
Theorem 6 are satisfied. Hence, both the Type I and Type
II error probabilities will tend to 0.

5. SIMULATIONS
In the previous sections, we show that the Median Ball Al-

gorithm can distinguish epidemics and random sicknesses in
both the cases of false positives, and when the infection pro-
cess is mixed. In this section we illustrate via simulation the
probability of error for reasonable graph sizes and param-
eters, and how it changes as the parameters are adjusted.
While the theory developed so far applies to many types
of graphs, here we specifically consider only one structure –
grid graphs with wrapping edges – to explore various aspects
(false positves, mixed infection) and for different parameter
choices, within the page-length space constraints. Naturally,
these graphs have bounded degree, and hence have the nec-
essary properties to detect an infection. We use this graph
to explore the non-asymptotic behavior of the Median Ball
algorithm.

We performed these simulations with false positives and
for mixed infections. We evaluate our algorithm by the em-
pirical error probability, the average error probability for
both Type I and Type II errors, weighting both equally. The
results give insight in how the error probability is affected by
graph topology, algorithm parameters, and infection time.

Each simulation was performed as follows. We used a grid
graph with n = 4900, and infection time t = 10. The re-
porting probability was fixed at q = 0.25. The infection
was simulated for 10000 trials for each infection processes
(a random sickness and an infection), running the Median
Ball Algorithm for each set of reporting nodes. We set the
ball size parameter (r) to the optimal value as determined
empirically. The other parameters were set as described in
each caption. The probability of error is mostly plotted
against the empirical expected fraction of infected nodes.
That is, for each set of parameters, we estimated the ex-
pected number of infected nodes from the simulations, which

Figure 1: [False Positive Model] This figure shows the

overall error probability, the sum of equally weighted

Type I and Type II error rates, for a grid graph. The

false positives were located randomly on the graph. The

x-axis measures the expected fraction of nodes truly in-

fected. As in our results, α = 1/(1 + f). The ball radius r

was set to the optimal value empirically.

was divided by n to determine the fraction infected. This
expected fraction of infected nodes conveys the size of the
infection, and hence the difficulty of the problem (since the
task is more difficult the larger the infection is). Note that
since q = 0.25, the expected fraction of reporting nodes is
approximately 0.25 times as large. Finally the probability of
error was estimated from the frequency at which the Median
Ball Algorithm mischaracterized the type of infection.
False Positives: Our first simulation results are on the
probability of error for grid graphs for a variety of false pos-
itive frequencies. As in our analytical setting, the random
sickness infection size was normalized to the same distribu-
tion as the epidemic as determined empirically. The results
are shown in Figure 1.

The error probability is very low up to a very large number
of truly infected nodes. It climbs fairly slowly as the number
of false positives increases. Even when two-thirds of the
reporting nodes are false positives, the error probability is
low even up to an expected 40% of the network infected.
Therefore our algorithm works very well in this setting.
Mixed Infection: Next, we present the simulation results
for infections with mixed spreading regimes. Unlike for false
positives, there is no direct normalization of the infection
sizes. Rather, we adjusted the rates so that the infection
sizes for both infection processes would be similar. This was
done by first choosing the epidemic rate, and then empiri-
cally finding the random rate to three significant digits so
that expected number of infected nodes hit a target value.
This was done so that all the infections (for the various
parameters) would be fairly comparable. Process SR-WE
[Process 0] used an infection rate of 0.2.

Figure 2 shows the probability of error for various infection
sizes. The infection rate for Process WR-SE [Process 1] is
given on the x-axis. As expected, the larger the infection,
the more difficult it is to use clustering to determine whether
an infection is mostly random or mostly an epidemic. When



Figure 2: [Mixed Infection Model] This figure shows

the overall error probability, the sum of equally weighted

Type I and Type II error rates, for various expected frac-

tion infected and Process WR-SE infection rates. The

Process SR-WE infection rate is 0.2. The parameter

α = 0.5. The ball radius r was set to the optimal value

empirically.

an expected 60% of the nodes in the network are infected,
then the probability of error stays high, even for much larger
infection rates. Note that there is a maximum infection rate
before the target infection size is exceeded regardless of the
random sickness rate. We used Process WR-SE infection
rates close to that maximum.

Next we determine the effect of α on the probability of
error. These results are shown in Figure 3. Surprisingly,
changing α has a relatively small effect on the probability of
error. The largest effect seen is using too large a value for
larger Process WR-SE infection rates (when the probability
of error is low). However, that is still relatively small. Then
our algorithm seems fairly insensitive to the value of α.
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